首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
DNA double-strand breaks (DSB) mobilize DNA-repair machinery and cell cycle checkpoint by activating the ataxia-telangiectasia (A-T) mutated (ATM). Here we show that ATM kinase activity is inhibited by poly(ADP-ribose) polymerase-1 (PARP-1) in vitro. It was shown by biochemical fractionation procedure that PARP-1 as well as ATM increases at chromatin level after induction of DSB with neocarzinostatin (NCS). Phosphorylation of histone H2AX on serine 139 and p53 on serine 15 in Parp-1 knockout (Parp-1(-/-)) mouse embryonic fibroblasts (MEF) was significantly induced by NCS treatment compared with MEF derived from wild-type (Parp-1(+/+)) mouse. NCS-induced phosphorylation of histone H2AX on serine 139 in Parp-1(-/-) embryonic stem cell (ES) clones was also higher than that in Parp-1(+/+) ES clone. Furthermore, in vitro, PARP-1 inhibited phosphorylation of p53 on serine 15 and (32)P-incorporation into p53 by ATM in a DNA-dependent manner. These results suggest that PARP-1 negatively regulates ATM kinase activity in response to DSB.  相似文献   

3.
Severe levels of hypoxia (oxygen concentrations of less that 0.02%) have been shown to induce a rapid S-phase arrest. The mechanism behind hypoxia-induced S-phase arrest is unclear, we show here that it was not mediated by a shortage of nucleosides and was not dependent on p53, p21 or Hif 1alpha status. The drugs aphidicolin and hydroxyurea both induce rapid replication arrest and have been used throughout the literature to study the ATR-mediated response to stalled replication. We have shown previously that hypoxia induces ATR-dependent phosphorylation of p53, Chk1 and histone H2AX. Using comet-assays to detect DNA-damage we found that both aphidicolin and hydroxyurea induced significant levels of DNA-damage while hypoxia did not. Here we show that like aphidicolin and hydroxyurea, hypoxia induces phosphorylation of Nbs1 at serine 343 and Rad17 serine 645. Hypoxia-dependent phosphorylation of Nbs1 and Rad17 was ATM-independent and therefore likely to be a result of the ATR kinase activity. In contrast, p53 was phosphorylated differentially in response to the three treatments considered here. p53 was phosphorylated at serine 15 in response to all three treatments but was only phosphorylated at serine 20 in response to the drug treatments. We propose that treatment with either aphidicolin or hydroxyurea leads to not only replication arrest but also DNA-damage and therefore both ATM and ATR-mediated signaling. In contrast replication arrest induced by severe hypoxia is sensed exclusively through ATR, with ATM only having a role to play after re-oxygenation.  相似文献   

4.
Elevated level of oxygen (hyperoxia) is widely used in critical care units and in respiratory insufficiencies. In addition, hyperoxia has been implicated in many diseases such as bronchopulmonary dysplasia or acute respiratory distress syndrome. Although hyperoxia is known to cause DNA base modifications and strand breaks, the DNA damage response has not been adequately investigated. We have investigated the effect of hyperoxia on DNA damage signaling and show that hyperoxia is a unique stress that activates the ataxia telangiectasia mutant (ATM)- and Rad3-related protein kinase (ATR)-dependent p53 phosphorylations (Ser6, -15, -37, and -392), phosphorylation of histone H2AX (Ser139), and phosphorylation of checkpoint kinase 1 (Chk1). In addition, we show that phosphorylation of p53 (Ser6) and histone H2AX (Ser139) depend on both ATM and ATR. We demonstrate that ATR activation precedes ATM activation in hyperoxia. Finally, we show that ATR is required for ATM activation in hyperoxia. Taken together, we report that ATR is the major DNA damage signal transducer in hyperoxia that activates ATM.  相似文献   

5.
The ATR kinase phosphorylates both p53 and Chk1 in response to extreme hypoxia (oxygen concentrations of less than 0.02%). In contrast to ATR, loss of ATM does not affect the phosphorylation of these or other targets in response to hypoxia. However, hypoxia within tumors is often transient and is inevitably followed by reoxygenation. We hypothesized that ATR activity is induced under hypoxic conditions because of growth arrest and ATM activity increases in response to the oxidative stress of reoxygenation. Using the comet assay to detect DNA damage, we find that reoxygenation induced significant amounts of DNA damage. Two ATR/ATM targets, p53 serine 15 and histone H2AX, were both phosphorylated in response to hypoxia in an ATR-dependent manner. These phosphorylations were then maintained in response to reoxygenation-induced DNA damage in an ATM-dependent manner. The reoxygenation-induced p53 serine 15 phosphorylation was inhibited by the addition of N-acetyl-l-cysteine (NAC), indicating that free radical-induced DNA damage was mediated by reactive oxygen species. Taken together these data implicate both ATR and ATM as critical roles in the response of hypoxia and reperfusion in solid tumors.  相似文献   

6.
Genistein is an isoflavenoid that is abundant in soy beans. Genistein has been reported to have a wide range of biological activities and to play a role in the diminished incidence of breast cancer in populations that consume a soy-rich diet. Genistein was originally identified as an inhibitor of tyrosine kinases; however, it also inhibits topoisomerase II by stabilizing the covalent DNA cleavage complex, an event predicted to cause DNA damage. The topoisomerase II inhibitor etoposide acts in a similar manner. Here we show that genistein induces the up-regulation of p53 protein, phosphorylation of p53 at serine 15, activation of the sequence-specific DNA binding properties of p53, and phosphorylation of the hCds1/Chk2 protein kinase at threonine 68. Phosphorylation and activation of p53 and phosphorylation of Chk2 were not observed in ATM-deficient cells. In contrast, the topoisomerase II inhibitor etoposide induced phosphorylation of p53 and Chk2 in ATM-positive and ATM-deficient cells. In addition, genistein-treated ATM-deficient cells were significantly more susceptible to genistein-induced killing than were ATM-positive cells. Together our data suggest that ATM is required for activation of a DNA damage-induced pathway that activates p53 and Chk2 in response to genistein.  相似文献   

7.
Ataxia-telangiectasia (A-T) mutated (ATM) kinase signals all three cell cycle checkpoints after DNA double-stranded break (DSB) damage. H2AX, NBS1, and p53 are substrates of ATM kinase and are involved in ATM-dependent DNA damage responses. We show here that H2AX is dispensable for the activation of ATM and p53 responses after DNA DSB damage. Therefore, H2AX functions primarily as a downstream mediator of ATM functions in the parallel pathway of p53. NBS1 appears to function both as an activator of ATM and as an adapter to mediate ATM activities after DNA DSB damage. Phosphorylation of ATM and H2AX induced by DNA DSB damage is normal in NBS1 mutant/mutant (NBS1m/m) mice that express an N-terminally truncated NBS1 at lower levels. Therefore, the pleiotropic A-T-related systemic and cellular defects observed in NBS1m/m mice are due to the disruption of the adapter function of NBS1 in mediating ATM activities. While H2AX is required for the irradiation-induced focus formation of NBS1, our findings indicate that NBS1 and H2AX have distinct roles in DNA damage responses. ATM-dependent phosphorylation of p53 and p53 responses are largely normal in NBS1m/m mice after DNA DSB damage, and p53 deficiency greatly facilitates tumorigenesis in NBS1m/m mice. Therefore, NBS1, H2AX, and p53 play synergistic roles in ATM-dependent DNA damage responses and tumor suppression.  相似文献   

8.
The phosphorylation of histone H2AX at serine 139 is one of the earliest responses of mammalian cells to ionizing radiation-induced DNA breaks. DNA breaks are also generated during the terminal stages of apoptosis when chromosomal DNA is cleaved into oligonucleosomal pieces. Apoptotic DNA fragmentation and the consequent chromatin condensation are important for efficient clearing of genomic DNA and nucleosomes and for protecting the organism from auto-immmunization and oncogenic transformation. In this study, we demonstrate that H2AX is phosphorylated during apoptotic DNA fragmentation in mouse, Chinese hamster ovary, and human cells. We have previously shown that ataxia telangiectasia mutated kinase (ATM) is primarily responsible for H2AX phosphorylation in murine cells in response to ionizing radiation. Interestingly, we find here that DNA-dependent protein kinase (DNA-PK) is solely responsible for H2AX phosphorylation during apoptosis while ATM is dispensable for the process. Moreover, the kinase activity of DNA-PKcs (catalytic subunit of DNA-PK) is specifically required for the induction of gammaH2AX. We further show that DNA-PKcs is robustly activated in apoptotic cells, as evidenced by autophosphorylation at serine 2056, before it is inactivated by cleavage. In contrast, ATM is degraded well before DNA fragmentation and gammaH2AX induction resulting in the predominance of DNA-PK during the later stages of apoptosis. Finally, we show that DNA-PKcs autophosphorylation and gammaH2AX induction occur only in apoptotic nuclei with characteristic chromatin condensation but not in non-apoptotic nuclei from the same culture establishing the most direct link between DNA fragmentation, DNA-PKcs activation, and H2AX phosphorylation. It is well established that DNA-PK is inactivated by cleavage late in apoptosis in order to forestall DNA repair. Our results demonstrate, for the first time, that DNA-PK is actually activated in late apoptotic cells and is able to initiate an early step in the DNA-damage response, namely H2AX phosphorylation, before it is inactivated by proteolysis.  相似文献   

9.
p53 plays an important role in response to ionizing radiation by regulating cell cycle progression and triggering apoptosis. These activities are controlled, in part, by the phosphorylation of p53 by the protein kinase ATM. Recent evidence indicates that the monofunctional DNA alkylating agent N-methyl-N'-nitro-N- nitrosoguanidine (MNNG) also triggers up-regulation and phosphorylation of p53; however, the mechanism(s) responsible for this are unknown. We observed that in MNNG-treated normal human fibroblasts, up-regulation and phosphorylation of p53 was sensitive to the ATM kinase inhibitor wortmannin. ATM-deficient fibroblasts exhibited a delay in p53 up-regulation indicating a role for ATM in triggering the MNNG-induced response. Likewise, a mismatch repair (MMR)-deficient colorectal tumor line failed to show rapid up-regulation of p53. However, unlike ATM-deficient cells, these MMR-deficient cells displayed rapid phosphorylation of the p53 residue serine 15 after MNNG. In vitro kinase assays indicate that ATM is rapidly activated in both normal and MMR-deficient cells in response to MNNG. Using a number of morphological and biochemical approaches, we failed to observe MNNG-induced apoptosis in normal human fibroblasts, suggesting that apoptosis-induced DNA strand breaks are not required for the activation of ATM in response to MNNG. Comet assays indicated that strand breaks accumulated, and p53 up-regulation/phosphorylation occurred quite rapidly (within 30 min) after MNNG treatment, suggesting that DNA strand breaks that arise during the repair process activate ATM. These findings indicate that ATM activation is not limited to the ionizing radiation-induced response and potentially plays an important role in response to DNA alkylation.  相似文献   

10.
Ataxia-telangiectasia mutated (ATM) is a serine/threonine protein kinase that plays a central role in controlling the cellular response to ionizing radiation and other DNA-damaging agents. ATM is a 3056 amino acid polypeptide that is present in low abundance in the nucleus of human cells. Here, we describe the purification and characterization of ATM from the nuclear fraction of HeLa cells. Microgram quantities of highly stable, kinase-active ATM were prepared. Purified ATM was phosphorylated on serine 1981 and was active towards a variety of known ATM substrates, including p53 and the Bloom Syndrome helicase, BLM. The protein kinase activity of ATM was selectively inhibited by wortmannin, caffeine and LY294002 and was stimulated by charged biological polymers, including single-stranded M13 DNA (ssDNA), sheared double-stranded calf thymus DNA, heparin sulfate and poly ADP-ribose (PAR), raising the possibility that charged structures may contribute to regulation of ATM activity. However, chemical inhibition of the formation of poly ADP-ribose in cells had no effect on the activation of ATM-dependent pathways by ionizing radiation. Using gel filtration chromatography, we also show that purified ATM, as well as ATM in crude nuclear extracts from unirradiated and irradiated cells elutes with an estimated native molecular weight of approximately 600 kDa. Moreover, dephosphorylation of serine 1981 did not affect the apparent molecular weight of ATM in irradiated extracts. Our results suggest that phosphorylation of serine 1981 alone may not directly regulate the subunit composition of ATM.  相似文献   

11.
12.
The ATM (ataxia telangiectasia mutated) kinase plays an essential role in maintaining genome integrity by coordinating cell cycle arrest, apoptosis, and DNA damage repair. Phosphorylation of ATM at serine 1981 (ATMpSer1981) by DNA damage activates ATM, which subsequently phosphorylates H2AX Ser139 (gammaH2AX), Chk2 Thr68 (Chk2pThr68), and p53 Ser15 (p53pSer15). To determine the role of the ATM pathway in prostate cancer tumorigenesis, we have analyzed 35 primary prostate cancer specimens for ATMpSer1981 (ATM activation), Chk2pThr68, gammaH2AX, and p53pSer15 by immunohistochemistry (IHC) in normal glands, prostatic intraepithelial neoplasias (PINs), and carcinomas. Increases in the intensities of ATMpSer1981, Chk2pThr68, and gammaH2AX and in the percentage of cells that are positive for ATMpSer1981, Chk2pThr68, or gammaH2AX were observed in PINs (p<0.001) compared to normal prostatic glands and carcinoma. However, this pattern of immunostaining was not seen for p53pSer15. Thus, ATM and Chk2 are specifically activated in PINs. As PINs are generally regarded as precursors of prostatic carcinoma, our results suggest that ATM and Chk2 activation at earlier stages of prostate tumorigenesis suppresses tumor progression, with attenuation of ATM activation leading to cancer progression.  相似文献   

13.
DNA damage can activate the oncosuppressor protein ataxia telangiectasia mutated (ATM), which phosphorylates the histone H2AX within characteristic DNA damage foci. Here, we show that ATM undergoes an activating phosphorylation in syncytia elicited by the envelope glycoprotein complex (Env) of human immunodeficiency virus-1 (HIV-1) in vitro. This was accompanied by aggregation of ATM in discrete nuclear foci that also contained phospho-histone H2AX. DNA damage foci containing phosphorylated ATM and H2AX were detectable in syncytia present in the brain or lymph nodes from patients with HIV-1 infection, as well as in a fraction of blood leukocytes, correlating with viral status. Knockdown of ATM or of its obligate activating factor NBS1 (Nijmegen breakage syndrome 1 protein), as well as pharmacological inhibition of ATM with KU-55933, inhibited H2AX phosphorylation and prevented Env-elicited syncytia from undergoing apoptosis. ATM was found indispensable for the activation of MAP kinase p38, which catalyzes the activating phosphorylation of p53 on serine 46, thereby causing p53 dependent apoptosis. Both wild type HIV-1 and an HIV-1 mutant lacking integrase activity induced syncytial apoptosis, which could be suppressed by inhibiting ATM. HIV-1-infected T lymphoblasts from patients with inactivating ATM or NBS1 mutations also exhibited reduced syncytial apoptosis. Altogether these results indicate that apoptosis induced by a fusogenic HIV-1 Env follows a pro-apoptotic pathway involving the sequential activation of ATM, p38MAPK and p53.  相似文献   

14.
Embryonic stem cells (ESCs) are the progenitors of all adult cells; consequently, genomic abnormalities in them may be catastrophic for the developing organism. ESCs are characterized by high proliferation activity and do not stop in checkpoints upon DNA-damage executing only G2/M delay after DNA damage. ATM and ATR kinases are key sensors of double-strand DNA breaks and activate downstream signaling pathways involving checkpoints, DNA repair, and apoptosis. We examined activation of ATM/ATR signaling in human ESCs and revealed that irradiation induced ATM, ATR, and Chk2 phosphorylation, and γH2AX foci formation and their colocalization with 53BP1 and Rad51 proteins. Interestingly, human ESCs exhibit noninduced γH2AX foci colocalized with Rad51 and marking single-strand DNA breaks. Next, we revealed the significant contribution of ATM, Chk1, and Chk2 kinases to G2/M block after irradiation and ATM-dependent activation (phosphorylation) of p53 in human ESCs. However, p53 activation and subsequent induction of p21 Waf1 gene expression after DNA damage do not result in p21Waf1 protein accumulation due to its proteasomal degradation.  相似文献   

15.
The DNA damage-response regulators ATM (ataxia-telangiectasia-mutated) and ATR (ATM-Rad3-related) are structurally and functionally related protein kinases that exhibit nearly identical substrate specificities in vitro. Current paradigms hold that the relative contributions of ATM and ATR to nuclear substrate phosphorylation are dictated by the type of initiating DNA lesion; ATM-dependent substrate phosphorylation is principally activated by DNA double strand breaks, whereas ATR-dependent substrate phosphorylation is induced by UV light and other forms of DNA replication stress. In this report, we employed the cyclic AMP-response element-binding (CREB) protein to provide evidence for substrate discrimination by ATM and ATR in cellulo. ATM and ATR phosphorylate CREB in vitro, and CREB is phosphorylated on Ser-121 in intact cells in response to ionizing radiation (IR), UV light, and hydroxyurea. The UV light- and hydroxyurea-induced phosphorylation of CREB was delayed in comparison to the canonical ATR substrate CHK1, suggesting potentially different mechanisms of phosphorylation. UV light-induced CREB phosphorylation temporally correlated with ATM autophosphorylation on Ser-1981, and an ATM-specific small interfering RNA suppressed CREB phosphorylation in response to this stimulus. UV light-induced CREB phosphorylation was absent in ATM-deficient cells, confirming that ATM is required for CREB phosphorylation in UV irradiation-damaged cells. Interestingly, RNA interference-mediated suppression of ATR partially inhibited CREB phosphorylation in response to UV light, which correlated with reduced phosphorylation of ATM on Ser-1981. These findings suggest that ATM is the major genotoxin-induced CREB kinase in mammalian cells and that ATR lies upstream of ATM in a UV light-induced signaling pathway.  相似文献   

16.
17.
BACKGROUND: Histone H1 and H3 phosphorylation associated with chromatin condensation during mitosis has been studied extensively. Less is known on histone modifications that occur during premature chromosome condensation (PCC). The aim of the present study was to reveal the status of histone H3 and H2AX phosphorylation on Ser-10 and Ser-139, respectively, as well as ATM activation through phosphorylation on Ser-1981, during PCC, and relate these events to cell-cycle phase and to initiation of apoptosis. MATERIALS AND METHODS: To induce PCC, A549 and HL-60 cells were exposed to the phosphatase inhibitor calyculin A (Cal A). Phosphorylation of histone H3 and H2AX as well as ATM activation were detected immunocytochemically concurrent with analysis of cellular DNA content and activation of caspase-3, a marker of apoptosis. The intensity of cellular fluorescence was measured by flow- or laser scanning cytometry. RESULTS: Induction of PCC led to rapid histone H3 phosphorylation, followed by activation of ATM and then H2AX phosphorylation in both, HL-60 and A549 cells. All these events occurred sequentially, prior to caspase-3 activation, and affected cells in all phases of the cell cycle. ATM activation and H2AX phosphorylation was seen during mitosis of A549 but not HL-60 cells. CONCLUSIONS: Because the Cal A-induced phosphorylation of histone H3 and H2AX, and of ATM, precede caspase-3 activation these modifications are pertinent to PCC and not to apoptosis-associated chromatin condensation. The sequence of histone H3 and H2AX phosphorylation and ATM activation during PCC is compatible with a role of ATM in mediating phosphorylation of H2AX but not H3. Mitosis in some cell types may proceed without ATM activation and H2AX phosphorylation.  相似文献   

18.
Upon exposure of cells to hydrogen peroxide (H(2)O(2)) phosphorylation of p53 was rapidly induced in human fibroblast GM00637, and this phosphorylation occurred on serine 9, serine 15, serine 20, but not on serine 392. In addition, H(2)O(2)-induced phosphorylation of p53 was followed by induction of p21, suggesting functional activation of p53. Induction of phosphorylation of p53 on multiple serine residues by H(2)O(2) was caffeine-sensitive and blocked in ATM(-/-) cells. Polo-like kinase-3 (Plk3) activity was also activated upon H(2)O(2) treatment, and this activation was ATM-dependent. Recombinant His(6)-Plk3 phosphorylated glutathione S-transferase (GST)-p53 fusion protein but not GST alone. When phoshorylated in vitro by His(6)-Plk3, but not by the kinase-defective mutant His6-Plk3(K52R), GST-p53 was recognized by an antibody specifically to serine 20-phosphorylated p53, indicating that serine 20 is an in vitro target of Plk3. Also serine 20-phosphorylated p53 was coimmunoprecipitated with Plk3 in cells treated with H(2)O(2). Furthermore, although H(2)O(2) strongly induced serine 15 phosphorylation of p53, it failed to induce serine 20 phosphorylation in Plk3-dificient Daudi cells. Ectopic expression of a Plk3 dominant negative mutant, Plk3(K52R), in GM00637 cells suppressed H(2)O(2)-induced serine 20 phosphorylation. Taken together, our studies strongly suggest that the oxidative stress-induced activation of p53 is at least in part mediated by Plk3.  相似文献   

19.
Damage that engenders DNA double-strand breaks (DSBs) activates ataxia telangiectasia mutated (ATM) kinase through its auto- or trans-phosphorylation on Ser1981 and activated ATM is one of the mediators of histone H2AX phosphorylation on Ser139. The present study was designed to explore: (i) whether measurement of ATM activation combined with H2AX phosphorylation provides a more sensitive indicator of DSBs than each of these events alone, and (ii) to reveal possible involvement of ATM activation in H2AX phosphorylation during apoptosis. Activation of ATM and/or H2AX phosphorylation in HL-60 or Jurkat cells treated with topotecan (Tpt) was detected immunocytochemically in relation to cell cycle phase, by multiparameter cytometry. Exposure to Tpt led to concurrent phosphorylation of ATM and H2AX in S-phase cells, whereas G1 cells were unaffected. Immunofluorescence (IF) of the S-phase cells immunostained for ATM-S1981P and gammaH2AX combined was distinctly stronger compared to that of the cells stained for each of these proteins alone. However, because of the relatively high ATM-S1981P IF of G1 cells, the ratio of IF of S to G1 cells, that is, the factor that determines competence of the assay in distinction of cells with DSBs, was 2- to 3-fold lower for ATM-S1981P alone, or for ATM-S1981P and gammaH2AX IF combined, than for gammaH2AX alone. ATM activation concurrent with H2AX phosphorylation, likely triggered by induction of DSBs during DNA fragmentation, occurred during apoptosis. The data suggest that frequency of activated ATM and phosphorylated H2AX molecules, per apoptotic cell, is comparable.  相似文献   

20.
The ATM protein kinase regulates the response of the cell to DNA damage by associating with and then phosphorylating proteins involved in cell cycle checkpoints and DNA repair. Here, we report on deletion studies designed to identify protein domains required for ATM to phosphorylate target proteins and to control cell survival following exposure to ionizing radiation. Deletion studies demonstrated that amino acids 1-150 of ATM were required for the ATM protein to regulate cellular radiosensitivity. Additional deletions and point mutations indicated that this domain extended from amino acids 81-106 of ATM, with amino acid substitutions located between amino acids 91 and 97 inactivating the functional activity of ATM. When ATM with mutations in this region (termed ATM90) was expressed in AT cells, it was unable to restore normal radiosensitivity to the cells. However, ATM90 retained normal kinase activity and was autophosphorylated on serine 1981 following exposure to DNA damage. Furthermore, wild-type ATM displayed DNA-damage induced association with p53, brca1, and LKB1 in vivo, whereas ATM90 failed to form productive complexes with these target proteins either in vivo or in vitro. Furthermore, ATM90 did not phosphorylate p53 in vivo and did not form nuclear foci in response to ionizing radiation. We propose that amino acids 91-97 of ATM contain a protein interaction domain required for the DNA damage-induced association between ATM and its target proteins, including the brca1, p53, and LKB1 proteins. Furthermore, this domain of ATM is required for ATM to form nuclear foci following exposure to ionizing radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号