首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Barley (Hordeum vulgare L.) telomeres were investigated by means of pulsed field gel electrophoresis (PFGE) and in situ hybridization. In situ hybridization showed that a tandemly repeated satellite sequence has a subtelomeric location, and is present at thirteen of the fourteen chromosome ends. PFGE revealed that this satellite sequence is physically close to the telomeric repeat. Pulsed field gel electrophoresis was then used for segregation analysis and linkage mapping of several telomeric and satellite loci in a segregating doubled-haploid population. The telomeric repeat displayed a hypervariable segregation pattern with new alleles occurring in the progeny. Eight satellite and telomeric sites were mapped on an restriction fragment length polymorphism (RFLP)-map of barley, defining the ends of chromosome arms 1L, 2S, 3L, 4S, 4L, 5S and 6. One satellite locus mapped to an interstitial site on the long arm of chromosome 3. The pyhsical location of this locus was confirmed by in situ hybridization to wheat/barley addition line 3.  相似文献   

2.
The TTAGG repeat, the only determined telomerase-dependent sequence in the Insecta, is generally reputed to be the canonical telomeric motif within the class. By studying the distribution of telomeric DNAs in 30 coleopteran beetles using Southern hybridization, BAL 31 DNA end-degradation assay and fluorescence in situ hybridization, we showed that arrays built of a TCAGG repeat substitute for (TTAGG)n sequences in all tested species within the superfamily Tenebrionoidea. We also provided the experimental evidence that (TCAGG)n repeats represent the terminal sequences on all chromosomes of the model species Tribolium castaneum. (TCAGG)n repeats are therefore promoted as the first sequence-motif alternative to TTAGG-type chromosome ends in insects. Detection of species negative for both TTAGG and TCAGG reveals that, although widespread, these motifs are not ubiquitous telomeric sequences within the order Coleoptera. In addition, Timarcha balearica proved to be a species that harbors (TTAGG)n repeats, but not at telomeric positions, thus further increasing the complexity of telomeric DNAs. Our experiments discarded CTAGG, CTGGG, TTGGG, and TTAGGG variants as potential replacements in TTAGG/TCAGG-negative species, indicating that chromosome termini of these beetles comprise other form(s) of telomeric sequences and telomere maintenance mechanisms.  相似文献   

3.
The majority of chromosomes in Oreochromis niloticus, as with most fish karyotyped to date, cannot be individually identified owing to their small size. As a first step in establishing a physical map for this important aquaculture species of tilapia we have analyzed the location of the vertebrate telomeric repeat sequence, (TTAGGG)n, in O. niloticus. Southern blot hybridization analysis and a Bal31 sensitivity assay confirm that the vertebrate telomeric repeat is indeed present at O. niloticus chromosomal ends with repeat tracts extending for 4-10 kb on chromosomal ends in erythrocytes. Fluorescent in situ hybridization revealed that (TTAGGG)n is found not only at telomeres, but also at two interstitial loci on chromosome 1. These data support the hypothesis that chromosome 1, which is significantly larger than all the other chromosomes in the karyotype, was produced by the fusion of three chromosomes and explain the overall reduction of chromosomal number from the ancestral teleost karyotype of 2n=48 to 2n=44 observed in tilapia.  相似文献   

4.
In association with a phylogenetic tree of Asparagales, our previous results showed that a distinct clade included plant species where the ancestral, Arabidopsis-type of telomeric repeats (TTTAGGG)n had been partially, or fully, replaced by the human-type telomeric sequence (TTAGGG)n. Telomerases of these species synthesize human repeats with a high error rate in vitro. Here we further characterize the structure of telomeres in these plants by analyzing the overall arrangement of major and minor variants of telomeric repeats using fluorescence in situ hybridization on extended DNA strand(s). Whilst the telomeric array is predominantly composed of the human variant of the repeat, the ancestral, Arabidopsis-type of telomeric repeats was ubiquitously observed at one of the ends and/or at intercalary positions of extended telomeric DNAs. Another variant of the repeat typical of Tetrahymena was observed interspersed in about 20% of telomerics. Micrococcal nuclease digestions indicated that Asparagales plants with a human-type of telomere have telomeric DNA organised into nucleosomes. However, unexpectedly, the periodicity of the nucleosomes is not significantly shorter than bulk chromatin as is typical of telomeric chromatin. Using electrophoretic mobility shift assays we detected in Asparagales plants with a human type of telomere a 40-kDa protein that forms complexes with both Arabidopsis- and human-type G-rich telomeric strands. However, the protein shows a higher affinity to the ancestral Arabidopsis-type sequence. Two further proteins were found, a 25-kDa protein that binds specifically to the ancestral sequence and a 15-kDa protein that binds to the human-type telomeric repeat. We discuss how the organisation of the telomere repeats in Asparagales may have arisen and stabilised the new telomere at the point of mutation.  相似文献   

5.
Although telomere sequences are considered to be highly conserved, there are switch-points in plant telomere evolution that are congruent with species' phylogenies. When Asparagales diverged, the Arabidopsis-type telomeric minisatellite repeat (TTTAGGG)(n) was first replaced by a human-type (TTAGGG)(n) repeat, and both were lost in Allium cepa (Alliaceae). We aimed to discover (1) when this loss occurred during divergence of Alliaceae and, (2) if (TTAGGG)(n) repeats were replaced by other known telomeric minisatellites. Slot-blot hybridization, fluorescent in situ hybridization, BAL31 digestion, asymmetric PCR, and cloning were used to identify and localize candidate telomeric sequences in species of Nothoscordum, Miersia, Ipheion, Tulbaghia, Gethyum, Gilliesia, Leucocoryne, Tristagma, and representatives of the three major Allium clades. Alliaceae genera other than Allium have human (TTAGGG)-type telomeric repeats that form telomeres. In Allium, only Tetrahymena-type (TTGGGG) repeats were ubiquitous in the genome, but they were not localized to telomeres. Likewise, the consensus telomeric repeats in Arabidopsis, human, Bombyx (TTAGG), Chlamydomonas (TTTTAGGG), and Oxytricha (TTTTGGGG) are absent in Allium telomeres. Alliaceae with human-type telomeres share telomere structures with related Asparagales species. We demonstrate that in the Allium ancestor human-type telomeric repeats were lost from telomeres and were not replaced by any investigated alternative minisatellite repeats. However, human and other types of minisatellite telomeric repeats are interspersed in some Allium genomes and their genomic signatures coincide with Allium clades.  相似文献   

6.
A rice A genome-specific tandem repeat sequence (TrsA) and telomeric nucleotide sequences, (TTTAGGG)n, were simultaneously detected by multicolor fluorescence in situ hybridization (McFISH) using rice prometaphase chromosomes. Six pairs of TrsA sites visualized by fluorescence signals were all localized on the long arms close to the telomeric regions. Differences in the copy number of TrsA at the different sites were visualized both by the size of the telomeric condensation block stained with Giemsa solution and the signal intensity after FISH with TrsA. McFISH analyses using interphase nuclei could resolve close disposition of TrsA and telomere and also gave rough estimation of the distance between them. The functional significance of the close disposition of TrsA and telomere is discussed.  相似文献   

7.
The physical ends of mammalian and other vertebrate chromosomes consist of tandemly repeated (TTAGGG)(n) hexamers, nucleating a specialized telomeric structure. However, (TTAGGG)(n) sequences can also occur at non-telomeric sites, providing important insights into karyotypic evolution. By fluorescence in situ hybridization (FISH) we studied the chromosomal distribution of (TTAGGG)(n) sequences in 16 bird species, representing seven different orders. Many species, in particular the ratites, display (TTAGGG)(n) hybridization signals in interstitial and centromeric regions of their macrochromosomes in addition to the typical telomeric signals. In some but not all species these non-telomeric sites coincide with C-band-positive heterochromatin. The retention and/or amplification of telomeric (TTAGGG)(n) repeats at interstitial and centromeric sites may indicate the fusion of ancestral chromosomes. Compared with the macrochromosomes, the microchromosomes of most species are enriched with (TTAGGG)(n) sequences, displaying heterogeneous hybridization patterns. We propose that this high density of (TTAGGG)(n) repeats contributes to the exceptionally high meiotic recombination rate of avian microchromosomes.  相似文献   

8.
We describe a novel fragile site in a rearranged chromosome, associated with the presence of telomeric repeat sequences at the fusion point of a translocation between chromosomes 13 and Y. The case reported in this study shows a de novo (Y;13) translocation, which appears to represent fusion of an apparently intact chromosome Y with a chromosome 13 that has lost only part of its short arm. Ten percent of the cells show a normal karyotype without the (Y;13) translocation. Molecular cytogenetic studies of the derived Y;13 chromosome revealed three hybridization sites of the telomeric probes – one at each end and one at the breakpoint junction. A fragile site is also observed in the intrachromosomic telomeric region. This coincidence suggests that the telomere repeat sequences (TTAGGG)n, when present at an interstitial chromosomal location, can promote the formation of a novel fragile site. Received: 15 November 1995 / Revised: 6 March 1996  相似文献   

9.
Macrostructure of the tomato telomeres.   总被引:23,自引:3,他引:20  
The macrostructure of the tomato telomeres has been investigated by in situ hybridization, genomic sequencing, and pulsed-field gel electrophoresis. In situ hybridizations with a cloned telomeric sequence from Arabidopsis thaliana indicated that the telomeric repeat of tomato cross-hybridizes with that of Arabidopsis and is located at all telomeres. Bal31 digestion kinetics confirmed that the tomato telomeric repeat represents the outermost DNA sequence of each tomato chromosome. Genomic sequencing of enriched tomato telomeric sequences, using primers derived from the Arabidopsis sequence, revealed that the consensus sequence of the tomato telomeric repeat is TT(T/A)AGGG compared with the Arabidopsis consensus sequence of TTTAGGG. Furthermore, as shown by pulsed-field gel electrophoresis, the telomeric repeat of tomato is separated by not more than a few hundred kilobases from a previously described 162-base pair satellite DNA repeat of tomato (TGR I) at 20 of the 24 telomeres. Together, these sequences are found in the heterochromatic terminal knob observed in pachytene chromosomes. Therefore, these two repeats determine the structure of 20 of the 24 tomato chromosome ends over approximately 2% of the total chromosome length.  相似文献   

10.
Cheng Z  Stupar RM  Gu M  Jiang J 《Chromosoma》2001,110(1):24-31
Highly repetitive tandem DNA sequence repeats are often associated with centromeric and telomeric regions of eukaryotic chromosomes. The rice tandem repeat Os48 is organized as long arrays of a 355 bp monomer and is mainly located in the telomeric regions. The chromosomal locations of the Os48 sequence were determined by fluorescence in situ hybridization (FISH) on rice pachytene chromosomes. The majority of the Os48 loci are associated with brightly 4',6-diamidino-2-phenylindole (DAPI)-stained and knob-like heterochromatin in rice pachytene chromosomes. As with other DNA sequences located in the heterochromatic regions, the cytosines of the CG and C(A/T)G sites within the Os48 repeat are heavily methylated. Surprisingly, a proportion of the FISH signals are highly decondensed and deviate significantly from the DAPI-stained periphery of the pachytene chromosomes. This highly decondensed chromatin structure has not been reported in pachytene chromosomes prepared from alcohol/acid-fixed meiotic samples in any other eukaryotic species. The condensation of the Os48 sequences is dynamic during prophase I of meiosis. The FISH signals derived from the Os48 repeat progress from a condensed configuration between leptonema and early pachynema into a decondensed structure from middle pachynema to diakinesis, and then return to a condensed form at metaphase I.  相似文献   

11.
Telomeric repeats in two members of the sawfly family Tenthredinidae (Hymenoptera), namely, Tenthredo omissa (Förster, 1844) and Taxonus agrorum (Fallén, 1808) (both have n?=?10), were studied using fluorescence in situ hybridization (FISH). Chromosomes of both species were demonstrated to contain the canonical TTAGG insect telomeric repeat, which constitutes the first report of the (TTAGG)n telomeric motif for the Tenthredinidae as well as for the clade Eusymphyta and the suborder Symphyta in general. Taken together with the presence of this repeat in many other Holometabola as well as in the hymenopteran families Formicidae and Apidae from the suborder Apocrita, these results collectively suggest the ancestral nature of the (TTAGG)n telomeric motif in the Hymenoptera as well as its subsequent loss within the clade Unicalcarida and independent reappearance in ants and bees. If this is true, the loss of the TTAGG repeat can be considered as a synapomorphy of the corresponding clade.  相似文献   

12.
Telomeres are specialized nucleoproteic complexes localized at the physical ends of linear eukaryotic chromosomes that maintain their stability and integrity. The DNA component of telomeres is characterized by being a G-rich double stranded DNA composed by short fragments tandemly repeated with different sequences depending on the species considered. At the chromosome level, telomeres or, more properly, telomeric repeats--the DNA component of telomeres--can be detected either by using the fluorescence in situ hybridization (FISH) technique with a DNA or a peptide nucleic acid (PNA) (pan)telomeric probe, i.e., which identifies simultaneously all of the telomeres in a metaphase cell, or by the primed in situ labeling (PRINS) reaction using an oligonucleotide primer complementary to the telomeric DNA repeated sequence. Using these techniques, incomplete chromosome elements, acentric fragments, amplification and translocation of telomeric repeat sequences, telomeric associations and telomeric fusions can be identified. In addition, chromosome orientation (CO)-FISH allows to discriminate between the different types of telomeric fusions, namely telomere-telomere and telomere-DNA double strand break fusions and to detect recombination events at the telomere, i.e., telomeric sister-chromatid exchanges (T-SCE). In this review, we summarize our current knowledge of chromosomal aberrations involving telomeres and interstitial telomeric repeat sequences and their induction by physical and chemical mutagens. Since all of the studies on the induction of these types of aberrations were conducted in mammalian cells, the review will be focused on the chromosomal aberrations involving the TTAGGG sequence, i.e., the telomeric repeat sequence that "caps" the chromosomes of all vertebrate species.  相似文献   

13.
The long interstitial telomeric repeat sequence (ITRS) blocks located in the pericentromeric chromosomal regions of most of Chinese hamster chromosomes behave as hot spots for spontaneous and induced chromosome breakage and recombination. The DBD-FISH (DNA breakage detection-fluorescence in situ hybridization) procedure demonstrated that these ITRS are extremely sensitive to alkaline unwinding, being enriched in constitutive alkali-labile sites (ALS). To determine whether this chromatin modification occurs in other genomes with large ITRS that are not phylogenetically related to mammalian species, the grasshopper Pyrgomorpha conica was analyzed. We chose this species because, with conventional FISH, their chromosomes yield extremely small telomeric signals when probed with the (TTAGG)n polynucleotide, but large ITRS blocks as part of their pericentromeric constitutive heterochromatin. A high density of constitutive ALS was evidenced in the ITRS when intact meiotic cells or somatic cells were subjected to the DBD-FISH technique and probed with the specific telomeric DNA. DBD-FISH with simultaneous hybridization using telomeric and whole genome DNA probes showed that the ITRS tend to colocalize with areas of stronger signal from the whole genome probe. Nevertheless, the signal from the whole genome was more widespread than that from the ITRS, thus providing evidence that a high frequency of constitutive ALS was present in more than one DNA sequence type. Furthermore, stretched DNA fibers processed with DBD-FISH, revealed a distribution of telomeric sequences alternating interspersed with other possible highly repetitive DNA sequences. The abundance of ALS varied from one meiotic stage to another. Interestingly, most of the breakage and meiotic recombination in males takes place close to the constitutive heterochromatin, particularly enriched in ALS. These results provide further evidence of a particular, and possible universal, chromatin structure enriched in constitutive ALS at constitutive heterochromatic regions.  相似文献   

14.
Telomeres, DNA-protein structures, are important elements of the eukaryotic chromosome. Telomeric regions of the majority of higher plants contain heptanucleotides TTTAGGG arranged into a tandem repeat. However, some taxa have no such repeats. These are some species of lilies (Lilium) and onions (Allium). For example, terminal regions of chromosomes of Spanish onion (Allium fistulosum) contain satellite DNA whose unit repeats are 380 bp in length, and the short arm of its chromosome 8 contains rDNA repeats. This study deals with the terminal heterochromatin and organization of the satellite repeat in A. fistulosum. Fluorescent in situ hybridization (FISH) was used to locate the satellite DNA on chromosomes and on extended DNA of A. fistulosum. Nonsatellite DNA was found in the structure of telomeric repeat. Polymerase chain reaction (PCR) and Southern hybridization were used for analysis of terminal heterochromatin. Various rearrangements were found in the satellite repeat. The roles of retrotransposones and microsatellites in the formation of terminal heterochromatin are discussed.  相似文献   

15.
The intrachromosomal distribution of non-telomeric sites of the (TTAGGG)n telomeric repeat was determined for 100 vertebrate species. The most common non-telomeric location of this sequence was in the pericentric regions of chromosomes. A variety of species showed relatively large amounts of this sequence present within regions of constitutive heterochromatin. We discuss possible relationships between the non-telomeric distribution of the (TTAGGG)n sequence and the process of karyotype evolution, during which these sites may provide potential new telomeres.  相似文献   

16.
A human subtelomeric repeat (designated as the HST repeat) has been isolated and characterized from a yeast artificial chromosome containing one human telomere. This repeat is located immediately adjacent to the telomeric T2AG3 repeats at the extreme termini of the human chromosomes. The DNA sequence of 3.6 kb of the HST repeat has been determined. The HST repeat spans over 3.6 kb in length, and contains one evolutionarily conserved CpG-rich region. The copy number of the HST repeat varies among telomeres. Genomic hybridization experiments suggest that the HST repeat consists of two distinct segments, and the distal portions of the HST repeat are also distributed elsewhere in the genome. In HeLa cells, the HST repeat sequence appears to be transcribed into a 6 kb polyadenylated RNA and a variety of non-polyadenylated RNA species.  相似文献   

17.
R D Adam 《Nucleic acids research》1992,20(12):3057-3061
Giardia lamblia trophozoites contain at least five sets of chromosomes that have been categorized by chromosome-specific probes. Pulsed field separations of G. lamblia chromosomes also demonstrated minor bands in some isolates which stained less intensely with ethidium than the major chromosomal bands. Two of the minor bands of the E11 clone of the ISR isolate, MBa and MBb, were similar to each other and to chromosomal band I by hybridization to total chromosomal DNA and by hybridization of specific probes. In order to determine the extent of this similarity, I have developed a panel of probes for many of the Pacl restriction fragments and have shown that most of the Pacl and Notl fragments found in MBa are also present in MBb. The differences are found in both telomeric regions. At one end, MBb contains a 300 kb region not found in MBa. At the other end of MBb is a 160 kb region containing the rDNA repeats which is bounded on one end by the telomeric repeat and on the other by sites for multiple enzymes that do not digest the rDNA repeats. The corresponding region of MBa is 23 kb in size. The size difference is consistent with the eightfold greater number of rDNA repeats in MBb than MBa and suggests that 30% of the size difference is accounted for by different numbers of copies of the rDNA repeat. MBa of another ISR clone (ISR G5) is 150 kb larger in size than MBa of ISR E11. The data suggest that MBa and MBb are homologous chromosomes of different sizes and that a portion of the size difference is accounted for by different copy numbers of the rDNA repeat.  相似文献   

18.
The CMT1A-REP repeat consists of two copies of a 24-kb sequence on human chromosome 17p11.2-12 that flank a 1.5-Mb region containing a dosage-sensitive gene, peripheral nerve protein-22 (PMP22). Unequal meiotic crossover mediated by misalignment of proximal and distal copies of the CMT1A-REP in humans leads to a 1.5-Mb duplication or deletion associated with two common peripheral nerve diseases, Charcot-Marie-Tooth disease type 1A (CMT1A) and hereditary neuropathy with liability to pressure palsies (HNPP). Previous molecular hybridization studies with CMT1A-REP sequences suggested that two copies of the repeat are also found in the chimpanzee, raising the possibility that this unique repeat arose during primate evolution. To further characterize the structure and evolutionary synthesis of the CMT1A-REP repeat, fluorescent in situ hybridization (FISH) analysis and heterologous PCR-based assays were carried out for a series of primates. Genomic DNA was analyzed with primers selected to differentially amplify the centromeric and telomeric ends of the human proximal and distal CMT1A-REP elements and an associated mariner (MLE) sequence. All primate species examined (common chimpanzee, pygmy chimpanzee, gorilla, orangutan, gibbon, baboon, rhesus monkey, green monkey, owl monkey, and galago) tested positive for a copy of the distal element. In addition to humans, only the chimpanzee was found to have a copy of the proximal CMT1A-REP element. All but one primate species (galago) tested positive for the MLE located within the CMT1A-REP sequence. These observations confirm the hypothesis that the distal CMT1A-REP element is the ancestral sequence which was duplicated during primate evolution, provide support for a human-chimpanzee clade, and suggest that insertion of the MLE into the CMT1A-REP sequence occurred in the ancestor of anthropoid primates.  相似文献   

19.
Telomeres, DNA–protein structures, are important elements of the eukaryotic chromosome. Telomeric regions of the majority of higher plants contain heptanucleotides TTTAGGG arranged into a tandem repeat. However, some taxa have no such repeats. These are some species of Liliaceae and Alliaceae. For example, terminal regions of chromosomes of bunching onion (Allium fistulosum) contain satellite DNA whose unit repeats are 380 bp in length, and the short arm of its chromosome 8 contains rDNA repeats. This study deals with the terminal heterochromatin and organization of the satellite repeat in A. fistulosum. Fluorescent in situ hybridization (FISH) was used to locate the satellite DNA on chromosomes and on extended DNA of A. fistulosum.Nonsatellite DNA was found in the structure of telomeric repeat. Polymerase chain reaction (PCR) and Southern hybridization were used for analysis of terminal heterochromatin. Various rearrangements were found in the satellite repeat. The roles of retrotransposons and microsatellites in the formation of terminal heterochromatin are discussed.  相似文献   

20.
Phylogenetic divergence of the members of the Pongidae familyhas been based on genetic evidence. The terminal repeat array(T2AG3) has lately been considered as an additional basis toanalyze genomes of highly related species. The recent isolationof subtelomeric DNA probes specific for human (HSA) chromosomes7q and 14q has prompted us to cross-hybridize them to the chromosomesof the chimpanzee (PTR), gorilla (GGO) and orangutan (PPY) tosearch for its equivalent locations in the great ape species.Both probes hybridized to the equivalent telomeric sites ofthe long (q) arms of all three great ape species. Hybridizationsignals to the 7q subtelomeric DNA sequence probe were observedat the telomeres of HSA 7q, PTR 6q, GGO 6q and PPY 10q, whilehybridization signals to the 14q subtelomeric DNA sequence probewere observed at the telomeres of HSA 14q, PTR 15q, GGO 18qand PPY 15q. No hybridization signals to the chromosome 7-specificalpha satellite DNA probe on the centromeric regions of theape chromosomes were observed. Our observations demonstratesequence homology of the subtelomeric repeat families D7S427and D14S308 in the ape chromosomes. An analogous number of subtelomericrepeat units exists in these chromosomes and has been preservedthrough the course of differentiation of the hominoid species.Our investigation also suggests a difference in the number ofalpha satellite DNA repeat units in the equivalent ape chromosomes,possibly derived from interchromosomal transfers and subsequentamplification of ancestral alpha satellite sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号