首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The importance of microniches for the survival of introduced Rhizobium leguminosarum biovar trifolii cells was studied in sterilized and recolonized sterilized loamy sand and silt loam. The recolonized soils contained several species of soil microorganisms but were free of protozoa. Part of these soil samples was inoculated with the flagellate Bodo saltans, precultured on rhizobial cells. The introduced organisms were enumerated in different soil fractions by washing the soil, using a standardized washing procedure. With this method, free organisms and organisms associated with soil particles or aggregates >50 μm were separated. The total number of rhizobia was influenced slightly (silt loam) or not at all (loamy sand) by the recolonization with microorganisms or by the addition of flagellates alone. However, when both flagellates and microorganisms were present, numbers of rhizobia decreased drastically. This decrease was more than the sum of both effects separately. Nevertheless, populations of rhizobia were still higher than in natural soil. In the presence of flagellates, higher percentages of rhizobia and other microorganisms were associated with soil particles or aggregates >50 μm than in the absence of flagellates. In recolonized soils, however, the percentages of particle-associated rhizobia were lower than in soils not recolonized previous to inoculation. Thus, the presence of other microorganisms hindered rhizobial colonization of sites where they are normally associated with soil particles or aggregates.  相似文献   

2.
Abstract After the introduction of Rhizobium leguminosarum biovar trifolii into natural loamy sand and silt loam, bacterial numbers increased only directly after inoculation. Thereafter, bacterial numbers decreased until an equilibrium was reached. This decrease was exponential on a log scale and could be described by the function Y = A + B − R ', where Y is the log number of rhizobial cells at time: T ; A represents the lgo of the final population size; B is the difference between the log (initial number of bacteria) and A ; R is the daily reduction factor of Y−A and t is time in days after inoculation. The final population sizes increased with increasing inoculum densities (104−108 bacteria/g soil). In sterilized soil, however, the populations increased up to an equilibrium, which was not affected by the inoculum density.
The final population sizes were higher in silt loam than in loamy sand in natural, as well as in sterilized soil. The final population size was reached earlier in natural silt loam than in loamy sand. Also the growth rate in sterilized soil was higher in silt loam than in loamy sand. The growth rate of low inoculum densities in silt loam was exponential and approximately the same as in yeast extract mannitol broth. The growth rate in loamy sand could be improved by incresing the bulk density of the soil from 1.0 to 1.4 g/cm3.  相似文献   

3.
The effects of four soil types, soil porosity, particle size, and organic matter were tested on survival and migration of Xiphinema americanum. Survival and migration were significantly greater in silt loam than in clay loam and silty clay soils. Nematode numbers were significantly greater in softs planted with soybeans than in fallow softs. Nematode survival was greatest at the higher of two pore space levels in four softs. Migration of X. americanum through soft particle size fractions of 75-150, 150-250, 250-500, 500-700, and 700-1,000 μ was significantly greater in the middle three fractions, with the least occurring in the smallest fraction. Additions of muck to silt loam and loamy sand soils resulted in reductions in survival and migration of the nematode. The fulvic acid fraction of muck, extracted with sodium hydroxide, had a deleterious effect on nematode activity. I conclude that soils with small amounts of air-filled pore space, extremes in pore size, or high organic matter content are deleterious to the migration and survival of X. americanum, and that a naturally occurring toxin affecting this species may be present in native soft organic matter.  相似文献   

4.
Gill  J. S.  Sivasithamparam  K.  Smettem  K. R. J. 《Plant and Soil》2000,221(2):113-120
The effect of different soil textures, sandy (97.5% sand, 1.6% silt, 0.9% clay), loamy sand (77% sand, 11% silt, 12% clay) and a sandy clay loam (69% sand, 7% silt, 24% clay), on root rot of wheat caused by Rhizoctonia solani Kühn Anastomosis Group (AG) 8 was studied under glasshouse conditions. The reduction in root and shoot biomass following inoculation with AG-8 was greater in sand than in loamy sand or sandy clay loam. Dry root weight of wheat in the sand, loamy sand and sandy clay loam soils infested with AG-8 was 91%, 55% and 28% less than in control uninfested soils. There was greater moisture retention in the loamy sand and sandy clay loam soils as compared to the sand in the upper 10–20 cm. Root penetration resistance was greater in loamy sand and sandy clay loam than in sand. Root growth in the uninfested soil column was faster in the sand than in the loamy sand and sandy clay loam soils, the roots in the sandy soil being thinner than in the other two soils. Radial spread of the pathogen in these soils in seedling trays was twice as fast in the sand in comparison to the loamy sand which in turn was more than twice that in the sandy clay loam soil. There was no evidence that differences among soils in pathogenicity or soil spread of the pathogen was related to their nutrient status. This behaviour may be related to the severity of the disease in fields with sandy soils as compared to those with loam or clay soils. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
Abstract Water flow-innduced transport of Burkholderia cepacia strain P2 and Pseudomonas fluorescens strain R2f cells through intact cores of loamy sand and silt loam field soils was measured for two percolation regimes, 0.9 and 4.4 mm h−1, applied daily during 1 hour. For each strain, transport was generally similar between the two water regimes. Translocation of B. cepacia , with 4.4 mm h−1, did occur initially in both soils. In the loamy sand soil, no change in the bacterial distribution occurred during the experiment (51 days). In the silt loam, B. cepacia cell numbers in the lower soil layers were significantly reduced, to levels at or below the limit of detection. Transport of P. fluorescens in both soils also occurred initially and was comparable to that of B. cepacia . Later in the experiment, P. fluorescens was not detectable in the lower soil layers of the loamy sand cores, due to a large decrease in surviving cell numbers. In the silt loam, the inoculant cell distribution did not change with time. Pre-incubation of the inoculated cores before starting percolation reduced B. cepacia inoculant transport in the loamy sand soil measured after 5 days, but not that determined after 54 days. Delayed percolation in the silt loam soil affected bacterial transport only after 54 days. The presence of growing wheat plants overall enhanced bacterial translocation as compared to that in unplanted soil cores, but only with percolating water. Percolation water from silt loam cores appeared the day after the onset of percolation and often contained inoculant bacteria. With loamy sand, percolation water appeared only 5 days after the start of percolation, and no inoculant bacteria were found. The results presented aid in predicting the fate of genetically manipulated bacteria in a field experiment.  相似文献   

6.
Abstract After the introduction of Rhizobium leguminosarum biovar trifolii into a loamy sand and a silt loam, high recovery percentages were determined using quantitative immunofluorescence. Soil type, but not inoculum density between 104 and 108 cells per gram of soil, significantly influenced the recovery percentage of the immunofluorescence technique. Recovery percentages determined using selective plating were independent of either soil type or inoculum density and exceeded those determined by immunofluorescence.
The serological and genetic markers used for detection were stable during 55 days of incubation in phosphate-buffered saline and soil extract solution. After the introduction of R. leguminosarum biovar trifolii into both sterilized soil types, the population increased to 0.5–1×109 cells per gram of soil, but a decline was demonstrated in non-sterile loamy sand and silt loam during incubation of 90 days at 15°C. Starvation of rhizobial cells in the phosphate-buffered saline and soil extract solution, as well as incubation in both soil types, resulted in a significant decrease in mean cell size.  相似文献   

7.
Spinach plants were grown in pots under controlled conditions in three different soils (a loamy sand, a silt loam at low mineral-N level and a silt loam at the double mineral-N level). The nitrogen uptake pattern varied considerably between the three soil types and was used to validate an equation between the relative growth rate and nitrogen content. This equation is based on the growth response of spinach plants grown hydroponically at equal environmental conditions either at optimum nitrogen supply (complete nutrient solution) or with a relative nitrate addition rate of 0.30 day–1, 0.225 day–1 or 0.15 day–1 effecting an exponential increase in nitrogen uptake. Growth in potted soil was slightly overestimated. Part of this bias was explained by the lower shoot weight ratio observed for the soil grown plants. This was demonstrated by the improvement in growth predictions when using net assimilation rate rather than relative growth rate as the driving variable in the model.  相似文献   

8.
Abstract Transfer of plasmid RP4p from introduced Pseudomonas fluorescens to a co-introduced recipient strain or to members of the indigenous bacterial population was studied in four different soils of varying texture planted with wheat. Donor and recipient strains showed good survival in the four soils throughout the experiment. The numbers of transconjugants found in donor and recipient experiments in two soils, Ede loamy sand and Löss silt loam were significantly higher in the rhizosphere than in corresponding bulk soil. In the remaining two soils, Montrond and Flevo silt loam, transconjugant numbers were not significantly higher in the rhizosphere than in the bulk soil.
The combined utilization of a specific bacteriophage eliminate the donor strain and the pat sequence as a specific marker to detect RP4p was found to be very efficient in detecting indigenous transconjugants under various environmental conditions. The numbers of indigenous transconjugants were consistently higher in rhizosphere than bull soil. A significant rhizosphere effect on transconjugant numbers of transconjugants were recovered from Flevo and Montrond silt loam; these soils possess characteristics such as clay or organic matter contents which may be favorable to conjugation.  相似文献   

9.
Survival of 4 cowpea Rhizobium strains, IRC291, MI-50A, JRW3 and JRC29, in two soil types (bauxitic silt loam and sandy clay loam) undergoing drying at 30°C and 37°C was examined. While all strains except JRW3 showed a general pattern of increase in their numbers during the first 3 weeks in sterile soils, none of the strains showed any increase in their population in non-sterile soils. Cowpea rhizobia showed better survival in non-sterile bauxitic silt loam than in clay loam soils at 30°C. However, the long-term survival (examined up to 6 months) of rhizobia in both soils was poor at 37°C as compared to 30°C. We also found that cowpea rhizobia survived better in soils undergoing drying than in moist soils at 30°C. Our results suggest that (a) cowpea rhizobia survived better in bauxitic silt loam than in clay loam soil and (b) the low indigenous cowpea rhizobial population in Jamaican soils may be due to their poor long-term survival and weak saprophytic competence.  相似文献   

10.
Huang  Y.  Wong  P.T.W. 《Plant and Soil》1998,203(1):103-108
A rifampicin-resistant isolate of Burkholderia (Pseudomonas) cepacia (A3R) reduced crown rot (Fusarium graminearum Group 1) symptoms significantly (P 0.05) in wheat in glasshouse and field experiments and increased grain yield significantly (P 0.05) in one of two field experiments. In glasshouse experiments, applying the bacteria as a soil drench (2.5 × 109 cfu/g soil) was more effective than coating the bacteria on wheat seed (3.4 × 107cfu/seed). In field experiments, the bacteria were applied as a soil drench at the rate of 1.8 x 1010 cfu/m row. In both the glasshouse and the field, disease severity in the bacteria-inoculated treatments was significantly less in a silt loam than in a sandy loam. The silt loam had a large proportion of fine clay and silt particles (51.7%), which may have favoured the biocontrol activity and survival of the introduced B. cepacia. In a glasshouse experiment, control by B. cepacia was significantly greater in the silt loam than in the sandy loam, which in turn was greater than in a loamy sand. The loamy sand appeared to favour crown rot development but not the activity or survival of the bacterial antagonist. The latter was reflected by the relative populations of the rifampicin-resistant bacteria re-isolated from the various soils during a 5-week period after application of the bacteria (silt loam > sandy loam > loamy sand). This study further confirms that soil type can influence the populations and the level of biocontrol activity of some bacterial antagonists.  相似文献   

11.
Successful inoculation of peanuts and cowpeas depends on the survival of rhizobia in soils which fluctuate between wide temperature and moisture extremes. Survival of two cowpea rhizobial strains (TAL309 and 3281) and two peanut rhizobial strains (T-1 and 201) was measured in two soils under three moisture conditions (air-dry, moist (−0.33 bar), and saturated soil) and at two temperatures (25 and 35°C) when soil was not sterilized and at 40°C when soil was sterilized. Populations of rhizobia were measured periodically for 45 days. The results in nonsterilized soil indicated that strain 201 survived relatively well under all environmental conditions. The 35°C temperature in conjunction with the air-dry or saturated soil was the most detrimental to survival. At this temperature, the numbers of strains T-1, TAL309, and 3281 decreased about 2 logs in dry soil and 2.5 logs in saturated soil during 45 days of incubation. In sterilized soil, the populations of all strains in moist soil increased during the first 2 weeks, but decreased rapidly when incubated under dry conditions. The populations did not decline under saturated soil conditions. From these results it appears that rhizobial strains to be used for inoculant production should be screened under simulated field conditions for enhanced survival before their selection for commercial inoculant production.  相似文献   

12.
Summary The soil water potential (inferred from vapor pressure measurements by thermocouple psychrometry) influenced both chlamydospore germination and continuing growth of germlings ofFusarium roseum f. sp.cerealis ‘Culmorum’ the same way in two different soils. Chlamydospore germination in both Ritzville silt loam (RSL) and Palouse silt loam (PSL) amended with about 2,500 ppm C (as glucose) and 250 ppm N (as ammonium sulfate) was 40–50 per cent in 24 hours at water potentials down to −50 to −60 bars. Some germination occurred by 72 hours at −80 to −85 bars in both soils but not at lower potentials. At a potential of −10 bars or higher, germ tubes lysed or converted into new chlamydospores within 48–72 hours after germination, whereas at lower potentials germlings branched and appeared to grow for at least 6 days. Bacterial numbers/g of RSL, 24 and 72 hours after adding nutrients, were 200 to 300 times greater in soil at water potentials of −5 bars or more than in comparably treated soil at about −14 to −17 bars or less. Markedly reduced bacterial activity appeared to coincide with a water potential of about −9 to −10 bars. When streptomycin and neomycin (300 ppm each) were mixed into the soil in addition to nutrients, the survival of germlings of Culmorum was greatly enhanced, even in soil at potentials of less than −1 bar. Indications were that soil water potentials of −10 bars or more favored bacterial activity, and that this in turn repressed growth of germlings of Culmorum. Culmorum infections of below-ground parts of wheat are serious primarily in drier soils, possibly because the fungus escapes bacterial antagonism but can still extract water for growth. Cooperative investigations, Crops Research and the Water and Soil Conservation Research Divisions, Agricultural Research Service, U.S. Department of Agriculture and the Agricultural Experiment Stations of Idaho, Montana, Oregon, Utah, and Washington. Scientific Paper No.3152, College of Agriculture, Washington State University, Pullman.  相似文献   

13.
The influence of cell surface properties on attachment to soil particles and on population dynamics of introduced bacteria was studied in sterilized and nonsterilized loamy sand and silt loam. Rhizobium leguminosarum RBL5523 and three Tn5 mutants (RBL5762, RBL5810, and RBL5811) with altered cell surface properties were used. Cellulose fibrils were not produced by RBL5762. Both RBL5810 and RBL5811 produced 80 to 90% less soluble exopolysaccharides and RBL5811 had, in addition, an altered lipopolysaccharide composition. In sterilized soil the total number of cells as well as the number of particle-associated cells of RBL5523 and RBL5810 were, in general, higher as compared with cell numbers of RBL5762 and RBL5811. Differences between strains in percentage of particle-associated cells in sterilized soil were only found at high inoculum densities, when populations increased little. In the nonsterilized silt loam, final population sizes, as well as numbers of particle-associated cells, of the parental strain (RBL5523) were higher than those of strains with altered cell surface properties after 56 and 112 days of incubation. But in general, differences in survival among the strains were not very marked. The importance of association with soil particles or aggregates for the survival of introduced cells was affirmed by the pronounced increase of the percentage of particle-associated cells during incubation in nonsterilized as well as sterilized soil. However, no clear relation among altered cell surface properties, particle association, and survival was found.  相似文献   

14.
The influence of inoculation with arbuscular mycorrhizal fungi (AM fungi) on soil water characteristics of fast and slowly wetted vertisol samples was studied. Vertisols characteristically have a low stability to wetting, and the disruption of their larger pores when they swell leads to reduced water infiltration and thereby to runoff. The degree of aggregate breakdown determines the ability of the soil to drain. A vertisol was used in this pot experiment with four treatments: T1: Pasteurized soil, T3: Pasteurized soil, with plants, T4: Inoculated, pasteurized soil, with plants, T5: Unpasteurized soil, with plants. A treatment using inoculated, pasteurized soil (T2) was included in a related study (Bearden and Petersen, 2000) comparing aggregate stability, and the present study follows the same numbering to aid in comparison of experiments. After fast, disruptive wetting, the soil inoculated with AM fungi (T4) was found to have a lower soil water content than did the soils from the other treatments at matric potentials lower than –3.92 kPa. This indicates greater drainage from pores smaller than 75 m for the soil inoculated with AM fungi, and the greater drainage appears to be directly related to a characteristic pore range between 67 and 75 m. The soil without plants (T1), when wetted fast, had a lower soil water content at matric potentials higher than –3.92 kPa than soils from the other treatments, which indicates less pore volume due to pores larger than 75 m in the treatment without plants. The pore indexes, calculated as the ratio between the slope of the fast and the slope of the slowly-wetted water characteristics, generally had the highest values for the soil inoculated with AM fungi (T4) from matric potential 0.00 to –0.29 kPa. In this matric potential range, the pore indexes were less than one. The unpasteurized soil with naturally present AM fungi (T5) generally had the highest pore indexes from matric potential –0.49 to –3.92 kPa, and the pore indexes in this matric potential range were above one. These results indicate the smallest loss of very large pores in the soil inoculated with AM fungi (T4) and the largest gain of smaller sized pores in the unpasteurized soil (T5). This suggests that the resistance to breakdown of the largest pores is related to the presence of roots, and that the gain of groups of smaller pores is related to the presence of hyphae.  相似文献   

15.
Surface soil samples to 15 cm depth were taken from replicated plots in an ongoing long-term field experiment involving application of animal manure on three soils in Virginia. The sampled plots had received either no manure or the equivalent of 289,000 kg ha–1 of manure as dry weight. The manure was applied annually at the beginning of each spring for 15 years from 1978 through 1992. The plots were cropped similarly since 1978. Soil textures were a fine sandy loam at Holland in the Atlantic Coastal Plain region, a silt loam at Blacksburg in the Appalachian region, and a clay loam at Orange in the Piedmont region of Virginia. The following measurements were made on subsamples: liquid and plastic limits, wet aggregate stability, aggregate size distribution, dispersible clay percentage, water retention at 0. 03, 0.1, 0.3, 0.5, 1.0, and 1.5 MPa tension, and modulus of rupture of moulded briquettes at a water content corresponding to 0.1 MPa tension. Organic matter content by the Walkley-Black method was significantly higher in the manure-treated soils at all three locations. Increases were 3% for the sandy loam and 25% for the silt loam and clay loam. From these values it was estimated that at least 95% of the total applied manure had been degraded over the 15 years. Results showed that the liquid and plastic limits for all three soils were higher (p<0.05) for the manure-treated samples. However, the differences in the limits were only 2 to 3%. The modulus of rupture values were lowered by addition of the animal manure. Decreases (p<0.05) occurred for the silt loam and clay loam samples. The wet aggregate stability increased and the dispersible clay decreased in the manure-treated soils. Increases (p<0.05) in wet aggregate stability occurred for the sandy loam and silt loam samples. Decreases (p<0.05) in dispersible clay were measured for the sandy loam and clay loam samples. Water retention was consistently, but only slightly, increased by manure addition. The increases, in the order of sample texture, were clay loam > sandy loam silt loam. Increases tended to be higher at the lower values of tension. Manure addition consistently increased the weight percentages of aggregates passing a given mesh size. Increases, in order of sample texture, were silt loam > clay loam > sandy loam. In their entirety, these results show that the manure produced measurable changes in the soil physical properties. The magnitude of the changes, in most cases, were small and depended on the soil texture. Given the high total amount of manure applied, the results indicate that manure-induced physical changes in the soil were small and evidently did not accumulate over time. Rapid microbial degradation of the manure could be responsible for the lack of marked changes in the soil physical properties.  相似文献   

16.
In this study, the effect of concentration (1/2 CMC, at CMC and 2 x CMC) of surfactants, cetyl trimethyl ammonium bromide (cationic), sodium dodecyl sulfate (anionic), and tween ‘20’ (non-ionic) on the movement of carbofuran, chlorpyrifos and en-dosulfan in soils was evaluated by using a soil thin-layer chromatographic technique. The movement of pesticides was detected by spray reagents and expressed in terms of Rf values. The penetrability K was found to increase by decreasing the plate angle and followed the order as: sandy loam > loam > silt loam soils. The penetrability K also decreases in surfactant-free and surfactant-amended soils when developed in distilled water and aqueous surfactant solutions of different CMCs, respectively. The higher movement of pesticides was observed in sandy loam soil followed by loam and silt loam soils. On the basis of Rf values, the movement of pesticides follows the order as: carbofuran > chlorpyrifos > endosulfan, both in surfactant-amended and surfactant-free soils when developed in distilled water and aqueous surfactant solutions of different CMCs. The movement is directly proportional to the aqueous solubilities, polarities, and carbon numbers and inversely related to the molecular weights of pesticides. A significant increase or decrease of pesticides movement in soils was discussed on the basis of adsorption of pesticides on soils, chemical nature of the surfactants, and its concentrations in terms of critical micelle concentrations (CMCs) in soils and eluents. Results obtained may provide insights pertaining to the use of surfactants for solving soil pollution problems posed by pesticides.  相似文献   

17.
Although the role of root hairs (RHs) in nutrient uptake is well documented, their role in water uptake and drought tolerance remains controversial. Maize (Zea mays) wild-type and its hair-defective mutant (Mut; roothairless 3) were grown in two contrasting soil textures (sand and loam). We used a root pressure chamber to measure the relation between transpiration rate (E) and leaf xylem water potential (ψleaf_x) during soil drying. Our hypotheses were: (1) RHs extend root–soil contact and reduce the ψleaf_x decline at high E in dry soils; (2) the impact of RHs is more pronounced in sand; and (3) Muts partly compensate for lacking RHs by producing longer and/or thicker roots. The ψleaf_x(E) relation was linear in wet conditions and became nonlinear as the soils dried. This nonlinearity occurred more abruptly and at less negative matric potentials in sand (ca. −10 kPa) than in loam (ca. −100 kPa). At more negative soil matric potentials, soil hydraulic conductance became smaller than root hydraulic conductance in both soils. Both genotypes exhibited 1.7 times longer roots in loam, but 1.6 times thicker roots in sand. No differences were observed in the ψleaf_x(E) relation and active root length between the two genotypes. In maize, RHs had a minor contribution to soil–plant hydraulics in both soils and their putative role in water uptake was smaller than that reported for barley (Hordeum vulgare). These results suggest that the role of RHs cannot be easily generalized across species and soil textures affect the response of root hydraulics to soil drying.

Root hairs of maize do not show evident contribution to root growth, water uptake, and soil–plant hydraulics, whereas soil textures affect the response of root hydraulics to soil drying.  相似文献   

18.
Anhydrobiotic survival of Pratylenchus penetrans was compared in several soil moisture regimes. Bodies of anhydrobiotic nematodes were coiled. In slow-dried soils, Vineland silt loam (VSL) and Fox loamy sand (FLS), 70 and 58% of the total P. penetrans populations were anhydrobiotic when soil moistures reached ca. 3% and water potential 15 kPa or greater. Coiling began at a much lower water potential in FLS than in VSL. In fast-dried soils, only 31 and 22% of the P. penetrans populations in the same two soil types had entered the anhydrobiotic state at comparable moistures. In the above soils, 76-96% of the P. penetrans were alive immediately after entering the anhydrobiotic state. In slow-dried VSL, some nematodes (1%) survived 770 days. In the other soils, all anhydrobiotic nematodes were dead after 438 days. Anhydrobiosis increased the ability of nematodes to survive subzero temperatures, but it did not increase their ability to survive temperatures above 40 C. Infectivity and reproductivity of rehydrated P. penetrans were not affected by anhydrobiosis.  相似文献   

19.
Sogbedji  J.M.  van Es  H.M.  Hutson  J.L.  Geohring  L.D. 《Plant and Soil》2001,229(1):71-82
Testing of existing agronomic models is needed to ensure their validity and applicability to different soils, cropping systems and environments. Data collected from a 3-year field experiment of maize (zea mays L.) on a loamy sand and a clay loam soil were used to validate the research version of the LEACHMN model for water flow and N fate and transport. Three calibration scenarios with increasing levels of generalization for transformation rate coefficients were used based on: (i) each year, treatment and soil type (ii) 3-year average values for each treatment and soil type, and (iii) average over years and soil types. Model accuracy was tested using both graphical and statistical methods including 1:1 scale plot, root mean square error and normalized root mean square error, and correlation coefficient values. The model accurately predicted drainage water flow rate and volume under both sites. Calibrated N transformation rate constants for each treatment, year and soil type provided satisfactory predictions of growing season cumulative NO3–N leaching losses, and accurate predictions of growing season cumulative maize N uptake at both sites. The use of 3-year average rate constant values for each site resulted in fairly satisfactory predictions of NO3–N leaching losses on the clay loam site, but inaccurate predictions on the loamy sand site. The model provided accurate predictions of cumulative maize N uptake for both sites. Using the rate constant values averaged over years and soil types resulted mostly in inaccurate predictions. Use of year and soil type-specific N rate coefficients results in accurate LEACHMN predictions of N leaching and maize N uptake. When rate coefficients are generalized over years for each soil type, satisfactory model predictions may be expected when N dynamics are not strongly affected by yearly variations in organic N inputs.  相似文献   

20.
Water is a key limiting factor for vegetation restoration in the semi-arid areas of China. Caragana korshinkii Kom is a shrub that is widely planted in this region to control soil erosion and land desertification. The objective of this study was to investigate the fine root distribution of mature C. korshinkii and its water consumption, when grown in either silt loam or sandy soils, in order to understand differences between the water cycles of two such soils found in the transition zone between fertile loess hills and desert of the Northern Loess Plateau. Fine root distributions were measured using the trench-profile method. Soil water dynamics were monitored with a neutron probe during two growing seasons. The results showed that fine root area density (FRAD) declined with increasing soil depth in both soils, with 70.7% and 96.6% of the total fine roots being concentrated in the upper 1-m layer of the silt loam and sandy soils, respectively. Water consumption by C. korshinkii in the silt loam was close to that in the sandy soil. Most water consumption in both soil types was from the upper 1-m layer. Little variation in plant available water (PAW) occurred in the 3–6 m soil layer during the whole study period. However, in this layer, the PAW was significantly lower in the silt loam soil than in the sandy soil. Total actual evapotranspiration (ETa) was slightly higher from the sandy soil plots than from those of the silt loam soil during both growing seasons. Our study indicated that mature C. korshinkii effectively uses about the same amount of water from either the silt loam or sandy soils, but that more soil water at depth was extracted from silt loam soil than from sandy soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号