首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The active component in bovine milk on the proliferation of osteoblastic MC3T3-E1 cells was purified and identified. Growth-promoting activity was measured by [(3)H]thymidine incorporation on the cell. The molecular weight of the purified protein was 10 kDa. The amino-terminal sequence of this 10-kDa protein was identical to bovine high mobility group protein (HMG) 1. This 10-kDa protein is suggested to be a basic protein and to have an HMG box, a consensus sequence motif among the HMG family. From these results, we named this protein HMG-like protein. HMG is a ubiquitous nonhistone component of chromatin and considered to be implicated in DNA replication. We found this protein in milk, and it showed a growth-promoting activity. We propose the possibility that HMG-like protein existed in milk and plays an important role for neonate in bone formation by activating osteoblasts.  相似文献   

2.
When separated and proliferating rat 3T3 cells are treated with butyrate (6 mM), DNA synthesis stops within 24 h, while RNA and protein synthesis proceed unaffected. This gradually converts normal cells into giant ones in the presence of butyrate (volume up to 30-fold greater). The giant cells stop growing when cell to cell contact is established. By studying the rate of synthesis of 300 cell proteins, we have identified two proteins (39 kDa, PI = 6.2, and 60 kDa, pI = 5.6) whose synthesis rises at least 10-fold when DNA replication and mitosis are prevented following intercellular contact or butyrate treatment, and another (64 kDa, pI = 5.6) whose synthesis rises at least 10-fold when cell growth stops by contact, both in the presence of butyrate and in the absence of butyrate (untreated confluent cells). The synthesis of some cellular oncogenes increases when the cell transits from G0 to S phase; the two proteins of 39 and 60 kDa described here are regulated in the opposite direction, their synthesis is enhanced when the cell leaves the proliferation cycle to enter G0.  相似文献   

3.
4.
The active component on the proliferation of osteoblastic MC3T3-E1 cells was purified and identified from bovine milk. The growth-promoting activity was measured by [(3)H]thymidine incorporation on the cell. The purified protein showed a molecular size of 17 kDa on SDS-PAGE. Its amino-terminal amino acid sequence was very similar to the internal sequence of bovine high molecular weight (HMW) kininogen, which comprises fragment 1.2. The promotion of proliferation was specific for osteoblastic MC3T3-E1 cells, not for fibroblast BALB/3T3 cells. In blood coagulation, HMW kininogen is considered to be cleaved by a specific enzyme kallikrein. HMW kininogen then releases two peptides, a biologically active peptide bradykinin and fragment 1.2, but the fate of fragment 1.2 is unknown. This milk-derived protein that comprises to fragment 1.2 showed a growth-promoting activity of osteoblasts. We propose the possibility that milk plays an important role in bone formation by supplying the active agent for osteoblasts as well as supplying calcium.  相似文献   

5.
《FEBS letters》1987,212(1):145-148
SDS gel electrophoresis of microtubule proteins obtained from bovine brain by polymerization cycles revealed a new protein of 18 kDa. This protein was copolymerized with tubulin and its stoichiometry to tubulin remained constant for at least 5 cycles of assembly. Moreover, this protein remained bound to microtubules stabilized with 10 μM taxol and pelleted through a 4 M glycerol cushion. The same 18 kDa protein was found in a purified preparation of the high molecular mass microtubule-associated protein 1 (MAP-1). The 18 kDa protein copurified with the MAP-1 heavy chains during column chromatography on phosphocellulose, DEAE-cellulose, hydroxyapatite and Bio-Gel A-15m. Incubation of the MAP-1 preparation with a mouse monoclonal antibody to the light chain 1 (LC-1) of MAP-1 and with a second precipitating antibody (a rabbit antibody to mouse IgG) immunoprecipitated from the solution all the known components of MAP-1 (heavy chains, LC-1, LC-2), as well as the 18 kDa protein. Immunoblotting showed, however, that this antibody does not interact directly with the 18 kDa protein. These results indicate that the 18 kDa protein forms a complex with all other components of MAP-1. This polypeptide, therefore, is a new light chain (LC-3) of M AP-1.  相似文献   

6.
We describe the purification and intracellular distribution of an antigen present on a subpopulation of murine macrophages and recognized by monoclonal antibody ER-HR3 against bone marrow-derived haemopoietic reticulum cells. Using the ER-HR3 antibody as an immobilizing ligand, two proteins were isolated as determined by SDS polyacrylamide gel electrophoresis. Under non-reducing conditions, there was a major band with an apparent molecular mass of 69 kDa and a minor band of 55 kDa. Under reducing conditions, the apparent molecular mass of each band was estimated as 76 kDa and 67 kDa, respectively. Intracellularly, these proteins occurred in close association with membranous structures, as demonstrated with gold-labelled protein A in an electron-microscopic study of the ER-HR3-positive cell line AP284. Some of the antigen was present in vesicles To gain further insight into the possible function of the ER-HR3 antigen, its tissue distribution was investigated under distinct experimental conditions. In mice infected with Bacillus Calmette Gurèrin, ER-HR3-positive cells were observed in many, but not all, granulomata of the spleen, the lung and the liver. The ER-HR3 reactivity in these mice clearly differed from that of other antimacrophage monoclonal antibodies, such as F4/80, M5/114 and M1/70. Furthermore, phenylhydrazine-induced extramedullary erythropoiesis in the liver was accompanied by ER-HR3 expression on a subpopulation of macrophages. Finally, the addition of ER-HR3 to an antigen-specific T cell proliferation assay did not inhibit T cell proliferation.  相似文献   

7.
Cross-linking of the human homologue of the murine MEL-14 lymph node homing receptor (Selectin-1, LECAM-1, Leu 8) on both T and B cells results in modification of cell function. To investigate this phenomenon, we performed studies to determine if the Leu 8 molecule influences T cell activation via the TCR/CD3 complex. In initial studies, we treated T cells with immobilized anti-CD3 (OKT3 mAb) in the presence or absence of immobilized Leu 8 mAb. We found that although Leu 8 mAb alone had no effect on T cell proliferation, this antibody markedly augmented immobilized OKT3 mAb-induced proliferation. In further studies, we immunoprecipitated surface radioiodinated T cell lysates with OKT3 and Leu 8 mAb to determine if molecules in the TCR/CD3 complex associate with Leu 8 molecules. Although Leu 8 mAb immunoprecipitated only a single protein of approximately 80 kDa from T cell lysates treated with Nonidet P-40 under reducing condition, it coimmunoprecipitated additional proteins of 48, 42, 28, 24, and 22 kDa from T cell lysates treated with 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate. These additional proteins were identified as the alpha-, beta-, gamma-, delta-, and epsilon-chains of the TCR/CD3 complex by one-dimensional and two-dimensional diagonal SDS-PAGE. Densitometric scanning showed that, on average, 18% of the TCR/CD3 complex associates with Leu 8. In a final study, we showed by immunoblotting analysis using anti-zeta peptide antibody that Leu 8 mAb coimmunoprecipitates the zeta-chain of CD3. These results indicate that the human lymph node homing receptor homologue (Leu 8) participates in the activation of T cells, probably via its association with the TCR/CD3 complex.  相似文献   

8.
9.
10.
SPARC, a matricellular protein that affects cellular adhesion and proliferation, is produced in remodeling tissue and in pathologies involving fibrosis and angiogenesis. In this study we have asked whether peptides generated from cleavage of SPARC in the extracellular milieu can regulate angiogenesis. Matrix metalloproteinase (MMP)-3, but not MMP-1 or 9, showed significant activity toward SPARC. Limited digestion of recombinant human (rhu)SPARC with purified catalytic domain of rhuMMP-3 produced three major fragments, which were sequenced after purification by HPLC. Three synthetic peptides (Z-1, Z-2, and Z-3) representing motifs from each fragment were tested in distinct assays of angiogenesis. Peptide Z-1 (3.9 kDa, containing a Cu2+-binding sequence KHGK) exhibited a biphasic effect on [3H]thymidine incorporation by cultured endothelial cells and stimulated vascular growth in the chick chorioallantoic membrane (CAM). In contrast, peptides Z-2 (6.1 kDa, containing Ca2+-binding EF hand-1) and Z-3 (2.2 kDa, containing neither Cu2+-binding motifs nor EF hands), inhibited cell proliferation in a concentration-dependent manner and exhibited no effects on vessel growth in the CAM. Reciprocal results were obtained in a migration assay in native collagen gels: peptide Z-1 was ineffective over a range of concentrations, whereas Z-2 or Z-3 stimulated cell migration. Therefore, proteolysis of SPARC by MMP-3 produced peptides that regulate endothelial cell proliferation and/or migration in vitro in a mutually exclusive manner. One of these peptides containing KHGK also demonstrated a concentration-dependent effect on angiogenesis.  相似文献   

11.
The mitogenic and metabolic activities of insulin-like growth factors (IGF) are modulated by a family of six high-affinity IGF-binding proteins (IGFBPs). This study describes the secretion and purification of the recombinant human IGFBP-6 expressed in methylotrophic yeast Pichia pastoris. In this research, a multicopy expression plasmid pA-O815/3xIGFBP-6 containing 3 copies of human IGFBP-6 expression cassette was constructed and transformed into P. pastoris GS115. The encoding sequence of alpha-factor leading peptide fused in-frame at the 5' end of human IGFBP-6 open reading frame and led expressed IGFBP-6 into the secretory pathway. After transformed cells were induced with methanol, medium supernatant was analyzed by SDS-PAGE and Western blotting. The two major protein bands of approximately 30 and approximately 18kDa were detected. The protein of approximately 30kDa was confirmed to be the glycosylated recombinant human IGFBP-6 (rhIGFBP-6), which was partially proteolyzed by protease Kex2 to produce a approximately 18kDa fragment. Approximately 95% homogeneity of the soluble form of 30kDa rhIGFBP-6 were achieved by two-step purification procedure using ion-exchange chromatography and then hydrophobic-interaction chromatography. The rhIGFBP-6 could be distributed to all of the cell body when cultured MDA-MB-231 cell with rhIGFBP-6 and the activities of rhIGFBP-6 were assayed by [(3)H]thymidine incorporation, which revealed that rhIGFBP-6 inhibited IGF-II-stimulated cell proliferation. Our results demonstrated that functional rhIGFBP-6 can be produced in sufficient quantities by using P. pastoris for further structural and functional studies.  相似文献   

12.
Interleukin 3 (IL-3) is required for the proliferation of growth factor-dependent myeloid cell lines. To determine the possible signal transduction mechanisms involved in IL-3 growth regulation, we have examined the effects of IL-3 on tyrosine phosphorylation. Using a monoclonal antibody against phosphotyrosine, IL-3 was found to specifically and rapidly induce tyrosine phosphorylation of cytoplasmic proteins of 70, 56, and 38 kDa and a membrane-associated glycoprotein of 140 kDa. Minor and/or variable detected phosphoproteins of 120, 85, 51, and 28 kDa were also seen. Oncogenes encoding tyrosine protein kinases abrogate the requirement of factor-dependent myeloid cells for IL-3. We therefore compared the phosphoprotein profiles of a transformed, IL-3-independent cell line with the IL-3-induced profile. In cells transformed with trk, the 56-, 51-, and 38-kDa cytoplasmic phosphoproteins were constitutively phosphorylated, whereas the 140-kDa phosphoprotein was only phosphorylated in the presence of IL-3. Taken together, these results support a role for tyrosine phosphorylation in the IL-3 signal transduction pathway and suggest that growth factor abrogation by oncogenes encoding tyrosine protein kinases may be due to the phosphorylation of substrates which are normally phosphorylated in response to IL-3.  相似文献   

13.
In Trypanosoma brucei the GPI-anchored variant surface glycoprotein (VSG) represents ∼90% of cell surface protein and a major proportion of endoplasmic reticulum (ER) biosynthetic output. We identified four trypanosomatid-specific genes encoding candidate ER-resident proteins; all were required for normal proliferation. For Tb11.01.2640 and Tb11.01.8120, an increase in VSG abundance was found on silencing, while the protein products localized to the ER; we designated these ERAP32 and ERAP18 for ER-associated protein of 32 kDa and 18 kDa. Silencing ERAP32 or ERAP18 did not alter expression levels of ISG65 or ISG75, the major surface trans-membrane domain proteins. Surface biotinylation or immunoflorescence did not identify intracellular VSG accumulation, while FACS and fluorescence microscopy indicated that the cells were not increased in size, arguing for increased VSG density on the cell surface. Therefore, ERAP32 and ERAP18 are trypanosome-specific ER-localized proteins with a major role in VSG protein export and, contrary to current paradigms, VSG is not saturated on the cell surface.  相似文献   

14.
Summary Using a xanthophore cytoskeletal preparation as immunogen, we have produced a monoclonal antibody, A2, which recognized a 160 kDa protein in 3T3 fibroblasts. This protein makes up a cytoplasmic filamentous system, which colocalizes with vimentin filaments. When microtubules and actin filaments are dissolved by high salt extraction, staining with antibody A2 is unaffected. Immunoblot analysis confirms that the 160 kDa protein is co-isolated with vimentin duringin vivo high salt extraction. Following vinblastine treatment, both the 160 kDa protein and vimentin become localized to perinuclear caps, as do other intermediate filaments and their associated proteins; after vinblastine removal, the immunostaining produced by A2 becomes filamentous. Immunoelectron microscopy demonstrates that antibody A2 stains a filament system with a diameter of about 10 nm. Our observations suggest that the 160 kDa protein may be a new vimentin-associated protein which differs from the intermediate filament-associated proteins previously reported, and is widely distributed in several cell types.  相似文献   

15.
Macrophage surface glycoproteins binding to galectin-3 (Mac-2-antigen)   总被引:8,自引:0,他引:8  
Galectin-3 (formerly called Mac-2 antigen) is a ∼30 kDa carbohydrate-binding protein expressed on the surface of inflammatory macrophages and several macrophage cell lines. We have purified from lysates of the murine macrophage cell line WEHI-3 glycoproteins that bind to a galectin-3 affinity column. Several of these receptors are labelled after biotinylation of intact cells showing their location at the cell surface. N-terminal aminoacid sequencing of intact galectin-3-binding glycoproteins isolated from preparative SDS-gels or of chemically derived fragments showed several homologies with known proteins and identification was confirmed by immunoprecipitation with specific antibodies. The glycoproteins were shown to be: the α-subunit(CD11b) of the CD11b/CD18 integrin(Mac-1 antigen); the lysosomal membrane glycoproteins LAMPs 1 and 2 which are known in part to be expressed at cell surfaces; the Mac-3 antigen, a mouse macrophage differentiation antigen defined by the M3/84 monoclonal antibody and related immunochemically to LAMP-2; the heavy chain of CD98, a 125 kDa heterodimeric glycoprotein identified by the 4F2/RL388 monoclonal antibodies respectively on human and mouse monocytes/macrophages and on activated T cells. Further studies showed that CD11b/CD18, CD98 and Mac-3 are major surface receptors for galectin-3 on murine peritoneal macrophages elicited by thioglycollate. Abbreviations: PBS, phosphate buffered saline; CNBR, cyanogen bromide; PMSF, phenyl methyl sulphonyl fluoride This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

16.
This study examined the event of protein phosphorylation in bovine oocytes during germinal vesicle breakdown (GVBD) and formation of pronuclei following fertilisation in vitro. Immature oocytes were obtained from abattoir materials and cultured in vitro. The oocytes were labelled with [32P]orthophosphate at 3 h intervals from 0 to 12 h following maturation in culture or from 3 to 18 h following insemination. One-dimensional gel electrophoresis indicated that levels of protein phosphorylation are low prior to GVBD. However, the levels of protein phosphorylation at approximately 40 kDa, 27 kDa, 23 kDa and 18 kDa increased substantially following GVBD and then decreased gradually as maturation in culture progressed. In contrast, the levels of protein phosphorylation increased gradually in the oocytes following pronucleus formation. Further, two-dimensional gel electrophoresis indicated that the protein at approximately 18 kDa reversibly changed in the oocytes during maturation and fertilisation. These results indicate that the reversible changes of this phosphoprotein may be related to either cell cycle transition or pronucleus formation during maturation and fertilisation in bovine oocytes.  相似文献   

17.
An 18 kDa protein can be metabolically labeled by [3H]putrescine or [3H]spermidine in various mammalian cells. The labeling is due to a post-translational modification of one lysine residue to hypusine using the aminobutyl moiety derived from spermidine. In view of the lack of knowledge of the function of this spermidine-modified protein, we decided to use the radioactivity associated with the [3H]spermidine-labeled 18 kDa protein as a tracer to develop a simple procedure for purifying this protein from cultured cells. We first screened more than 15 different affinity adsorbents for their ability to bind the labeled 18 kDa protein. This approach enabled us to develop a four-step procedure to purify the labeled 18 kDa protein from NB-15 mouse neuroblastoma cells. The procedure, including a Cibacron Blue column, an omega-aminooctyl-agarose, a Sepharose G-50, and a Mono Q column, resulted in an 800-fold purification of the labeled 18 kDa protein. Two-dimensional gel analysis of fractions enriched in the labeled 18 kDa protein revealed (i) the presence of isoforms of hypusine-containing 18 kDa protein, with pI values ranging from 4.7 to 5.2, and (ii) the presence of an additional labeled protein with an apparent molecular mass of 22 kDa and a pI value of 5.0. The labeling intensity of the 22 kDa protein, however, was less than 5% of that of the 18 kDa protein. Peptide map analysis, using the V-8 proteinase digestion method, indicated that the 18 kDa hypusine-containing protein obtained from NB-15 cells was similar to eukaryotic initiation factor 4D isolated from rabbit reticulocytes.  相似文献   

18.
19.
Recombinant human insulin-like growth factor binding protein 3 (hIGFBP-3) stably expressed in chinese hamster ovary cells (CHO cells) has been purified to homogeneity from serum-free culture media. The purified protein migrates as a doublet (45/43 kDa) upon SDS-PAGE. The purified recombinant hIGFBP-3 is fully active and binds one mole of IGF-I per mole of recombinant binding protein. When the transfected CHO cells are treated with tunicamycin a single 29 kDa hIGFBP-3 protein is observed. This expressed hIGFBP-3 protein maintains its ability to bind IGF-I. N-Glycanase treatment of the purified hIGFBP-3 protein results in a protein that migrates similar to E. coli-derived IGFBP-3 upon SDS-PAGE under reducing conditions (30 kDa). Carboxymethylation of hIGFBP-3 suggests that all 18 cysteines are involved in disulfide linkages. These results represent the first purification and characterization of recombinant hIGFBP-3 expressed in CHO cells.  相似文献   

20.
We screened the Arabidopsis cDNA library to identify functional suppressors of AtBI-1, a gene that suppresses cell death induced by Bax gene expression in yeast. Cdf 3 encodes a 118-amino-acid protein with a molecular mass of 25 kDa. This protein has two uncharacterized domains at amino acids residues 5-64 and 74-117. In the present study, CDF3 was found to induce growth defects in yeast and arrested yeast growth, although the cell-growth defect was somewhat less than that of Bax. Its localization in the inner mitochondria was essential for suppression of yeast-cell proliferation. The morphological abnormality of the intracellular network, which is a hallmark of AtBI-1, was attenuated by Cdf 3 expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号