首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In rat hepatocytes, vanadate increases fructose 2,6-bisphosphate (Fru-2,6-P2) in a time- and dose-dependent manner, and counteracts the decrease in this metabolite caused by glucagon, forskolin or exogenous cyclic AMP. Vanadate does not directly modify the activity of 6-phosphofructo-2-kinase, even though it can counteract the inactivation of this enzyme caused by glucagon. Furthermore, vanadate raises the yield of 3H2O from [3-3H]glucose, indicating that it increases the flux through 6-phosphofructo-1-kinase. Moreover, vanadate in hepatocytes incubated in the presence of glucose increases the production of both lactate and CO2. Therefore vanadate has insulin-like effects on the glycolytic pathway in rat hepatocytes. These results clearly contrast with our previous observation that vanadate exerts glycogenolytic non-insulin-like effects on glycogen synthase and phosphorylase.  相似文献   

2.
Some aspects of carbohydrate metabolism were investigated in three non-malignant, glycogen storing, cell lines derived from a primary culture of rat hepatocytes, and in the Morris hepatoma 3924 cells. The three cell lines show biochemical alterations which are, to a large extent, similar to those found in the hepatoma cells: increased activity of glycolytic enzymes and decreased activity of gluconeogenetic enzymes. An increase of glucose-6-phosphate dehydrogenase activity is also found. The three cell lines, as the Morris hepatoma cells, actively convert glucose into lactate under the in vitro conditions of culture. Fructose is not taken up as quickly as glucose and galactose is not metabolized. As compared with normal hepatocytes, the three cell lines have altered metabolism and growth behaviour. They largely resemble the preneoplastic cells appearing in rat liver at the early stages of experimental carcinogenesis.  相似文献   

3.
Extrahepatic cholestasis induced by ligation and transsection of the common bile duct caused a change in the parenchyma/stroma relationship in rat liver. Two weeks after ligation, the periportal zones of the parenchyma were progressively invaded by expanding bile ductules with surrounding connective tissue diverging from the portal areas. Parenchymal disarray developed and small clumps of hepatocytes or isolated hepatocytes were scattered within the expanded portal areas. These cells showed normal activity of lactate, succinate and glutamate dehydrogenase and may, therefore, be considered to be functionally active. After cholestasis the remainder of the liver parenchyma showed adaptational changes with respect to glucose homeostasis, as demonstrated by histochemical means. Glycogen stores disappeared completely whereas glycogen phosphorylase activity increased about ten fold. The increased glycogen phosphorylase activity and glycogen depletion indicate a greater glycogenolytic capacity in liver parenchyma after bile duct ligation to maintain as far as possible a normal plasma glucose concentration. The parenchymal distribution pattern of glucose-6-phosphatase activity did not change significantly after bile duct ligation. The isolated hepatocytes within the expanded portal tracts showed a high activity of this enzyme whereas the pericentral parenchyma was only moderately active. The distribution patterns of glucose-6-phosphate dehydrogenase and lactate dehydrogenase activity in the liver parenchyma were also largely unchanged after bile duct ligation, but the histochemical reaction for glucose-6-phosphate dehydrogenase activity demonstrated infiltration of the remainder of the parenchyma by non-parenchymal cells, possibly Küpffer cells and leucocytes as part of an inflammatory reaction. Under normal conditions the mitochondrial enzymes succinate and glutamate dehydrogenase show an opposite heterogenous distribution pattern in liver parenchyma. Following cholestasis both enzymes became uniformly distributed. The underlying regulatory mechanism for these different changes in distribution patterns of enzyme activities is not yet understood.  相似文献   

4.
The effect of estradiol on lipolysis in blood and in adipose tissue of female rat has been investigated. The hormone was administered to the studied animals subcutaneously during 20 days. The lipid mobilizing activity was determined in blood serum according to the four different experimental protocols: test serum--test tissue, test serum--control tissue, control serum--test tissue, and control serum--control tissue. Blood serum concentrations of triglycerides, free fatty acids and glucose, as well as lipolytic activity against exogenous substrate, were determined in addition. Estradiol administration was found to enhance the activity of factors potentiating lipolysis both in the blood and in adipose tissue of female rats, inasmuch as an increase in free fatty acids and triglyceride concentration, and a decrease in glucose concentration were observed during the period of administration of the hormone.  相似文献   

5.
The hormonal and nutritional regulation of glucose 6-phosphate dehydrogenase (G6PDH; EC 1.1.1.49) was studied in primary cultures of rat hepatocytes maintained in a chemically defined medium. Inoculation of hepatocytes from starved rats into primary cultures resulted in a 4-5-fold increase in G6PDH activity in 48 h in the absence of hormones. Parallel cultures treated simultaneously with glucocorticoids and insulin exhibited a 12-15-fold increase during the same time. Glucocorticoids by themselves did not elevate G6PDH activity, whereas insulin alone significantly stimulated enzyme activity. Thus the glucocorticoids acted in a 'permissive' role to amplify the insulin stimulation of G6PDH. Elevated concentrations of glucose in the culture medium increased enzyme activity in both the control cultures and those treated with hormones. Ethanol was found to potentiate G6PDH activity in cultures treated with glucocorticoids and insulin. The effect of ethanol was time- and dose-dependent. These results establish that insulin, glucocorticoids, glucose and ethanol interact in some undefined manner to regulate hepatic G6PDH activity.  相似文献   

6.
The induction of ferrochelatase activity by phenobarbital and its potentiation by dibutyryl cAMP assayed in normal rat hepatocytes are associated with increased activity of ferrochelatase mRNA. Glucose inhibits this stimulatory effect. This inhibition can be reversed with increasing concentrations of dibutyryl cAMP. The inducing effect exerted by phenobarbital on the activity of ferrochelatase mRNA in diabetic hepatocytes is greater than that observed in normal cells. This enhanced response in diabetic rat hepatocytes is neither potentiated by adding dibutyryl cAMP nor repressed by glucose. The absence of a glucose effect persists even when the endogenous cAMP content is lowered to normal levels. The results obtained in this study are consistent with those reported in other published studies of ferrochelatase activity. This adds more experimental evidence to support the concept that ferrochelatase is inducible. The results obtained suggest that ferrochelatase is more susceptible to induction with phenobarbital in diabetic rat hepatocytes than in normal rat hepatocytes.  相似文献   

7.
The effect of alloxan on glucokinase in isolated rat hepatocytes was studied. Exposure of hepatocytes to alloxan (3 mM) at 30 degrees C for 5 min produced a marked inhibition (77%) of glucokinase activity and altered slightly the phosphofructokinase activity (32% inhibition). Pyruvate kinase and glucose 6-phosphate dehydrogenase, however, were not inhibited at all. Alloxan induced a concentration-dependent inhibition of glucokinase activity with a detectable inhibition at an alloxan concentration of 1 mM. The inhibition of glucokinase activity by alloxan was protected by the simultaneous presence of 15 mM hexose such as D-glucose, 3-O-methylglucose, or D-mannose. D-Galactose showed no protective effect. These results suggest that alloxan may exert its cytotoxic action through the inhibition of glucokinase activity not only in the liver but also in the pancreatic islets, since liver and islet glucokinases are known to be quite similar in various properties.  相似文献   

8.
Ethanol inhibited glucose synthesis from alpha-ketoisovalerate by isolated rat hepatocytes without significant inhibition of flux through the branched-chain alpha-ketoacid dehydrogenase complex. Accumulation of 3-hydroxyisobutyrate, an intermediate in the catabolism of alpha-ketoisovalerate, was increased by ethanol, indicating inhibition of flux at the level of 3-hydroxyisobutyrate dehydrogenase. 3-Hydroxybutyrate caused the same effects as ethanol, suggesting inhibition was a consequence of an increase in the mitochondrial NADH/NAD+ ratio. Flux through the 3-hydroxyisobutyrate dehydrogenase was more sensitive to regulation by the mitochondrial NADH/NAD+ ratio than flux through the branched-chain alpha-ketoacid dehydrogenase. Oleate also inhibited glucose synthesis from alpha-ketoisovalerate, but marked inhibition of flux through the branched-chain alpha-ketoacid dehydrogenase complex was caused by this substrate.  相似文献   

9.
To determine the relative contributions of glucose, insulin, dexamethasone, and triiodothyronine to the induction of hepatic glucose-6-phosphate dehydrogenase, hepatocytes isolated from normal or adrenalectomized rats, either fasted or fed, were examined in culture. Addition of insulin (42 milliunits/ml, 0.9 microM) and dexamethasone (1 microM) to hepatocytes obtained from 3-day-fasted rats and cultured for 48 h in serum-free Dulbecco's medium resulted in a 7- to 11-fold increase in Glc-6-P dehydrogenase specific activity compared with a 2- to 3-fold increase in activity in control cultures incubated without added hormones. The effects of insulin and dexamethasone were independent of DNA synthesis, dose-dependent, and additive; each contributing about one-half of the total response. Medium glucose was neither sufficient nor necessary for the insulin- or dexamethasone-stimulated increase in Glc-6-P dehydrogenase specific activity. Addition of triiodothyronine (10 microM) preferentially blocked the dexamethasone-stimulated increase in Glc-6-P dehydrogenase specific activity. Insulin failed to stimulate the induction of Glc-6-P dehydrogenase in hepatocytes obtained from normal fed rats or from fasted and fed adrenalectomized rats. However, insulin caused a significant increase in the Glc-6-P dehydrogenase specific activity of these cells when dexamethasone was concurrently added to the culture medium.  相似文献   

10.
To investigate the effect of elevation of liver glycogen synthase (GYS2) activity on glucose and glycogen metabolism, we performed adenoviral overexpression of the mutant GYS2 with six serine-to-alanine substitutions in rat primary hepatocytes. Cell-free assays demonstrated that the serine-to-alanine substitutions caused constitutive activity and electrophoretic mobility shift. In rat primary hepatocytes, overexpression of the mutant GYS2 significantly reduced glucose production by 40% and dramatically induced glycogen synthesis via the indirect pathway rather than the direct pathway. Thus, we conclude that elevation of glycogen synthase activity has an inhibitory effect on glucose production in hepatocytes by shunting gluconeogenic precursors into glycogen. In addition, although intracellular compartmentation of glucose-6-phosphate (G6P) remains unclear in hepatocytes, our results imply that there are at least two G6P pools via gluconeogenesis and due to glucose phosphorylation, and that G6P via gluconeogenesis is preferentially used for glycogen synthesis in hepatocytes.  相似文献   

11.
目的了解1,2-二氯乙烷染毒24h对大鼠肝细胞的损伤及其机理。方法运用显微荧光术测定了大鼠肝细胞内游离钙离子浓度,同时,测定了大鼠肝细胞培养上清液乳酸脱氢酶(LDH)活力作为大鼠肝细胞受损的指标。结果所有剂量组的1,2-二氯乙烷的大鼠肝细胞内游离钙离子浓度与对照组比较差异均无显著性(P〉0.05);LDH活力仅在浓度为5mmol/L的1,2-二氯乙烷染毒组与对照组比较差异也无显著性(P〉0.05);而1,2-二氯乙烷其他染毒组(即浓度为10mmol/L和20mmol/L)与对照组比较差异均有显著性(P〈0.01)。结论较高浓度(10mmol/L和20mmol/L)的1,2-二氯乙烷能损伤大鼠肝细胞,损伤的途径不是通过破坏肝细胞内钙稳态机制。  相似文献   

12.
Aldehyde dehydrogenase was measured in primary cultures of hepatocytes obtained with a two-step collagenase perfusion either from human hepatic tissue or from livers of Fisher rats. Basal enzyme activity declines gradually as a function of time in culture, but remains at all times higher when measured with propionaldehyde and NAD (P/NAD) than with benzaldehyde and NADP (B/NADP). Treatment of the cultures with 2 M of 3-methylcholanthrene for four days significantly increased the B-NADP activity of human and rat hepatocytes (tenfold and eightfold respectively). In human hepatocytes 3-methylcholanthrene increases also the P/NAD activity, but to a lesser extent (twofold), compared to the B/NADP activity. Due to the significant enhancement of B/NADP activity in cultures of human and rat hepatocytes after application of 3-methylcholanthrene, the initial difference in the basal activity levels between the P/NAD and B/NADP forms diminishes or, in the case of human hepatocytes, is even inverted. These results show for the first time that aldehyde dehydrogenase activity is increased in cultured human hepatocytes. This biochemical property is preserved in human and rat hepatocyte cultures, despite the rather quick loss of the basal aldehyde dehydrogenase activity.Abbreviations ALDH aldehyde dehydrogenase - B benzaldehyde - p-p-DDT 1,1,1,-trichlo-2,2,bis(p-chlorophenyl)ethane - DMSO dimethylsulfoxide - 3-MC 3-methylcholanthrene - MEM Minimal Essential Medium - P proprionaldehyde - TCDD 2,3,7,8-tetrachlorodibenzo-p-dioxin  相似文献   

13.
Summary Leakage of lactate dehydrogenase and staining by the vital dye trypan blue were investigated in adult rat hepatocytes at the time of isolation, in suspensions up to 3 h and in primary monolayer cultures up to 3 d. These two parameters of plasma membrane integrity were found to correlate closely in hepatocyte suspensions, but to a lesser degree in monolayer cultures. Functional activity was demonstrated in culture by glucose consumption and lactic acid production. There was a balance of total lactate dehydrogenase (LDH) activity over time for both hepatocyte suspensions and cultures. Loss of LDH activity in the cell fraction was accompanied by a corresponding increase in enzyme activity in the media fraction. Lactate dehydrogenase activity per dye-excluding hepatocyte was calculated to be 9.2±1.5×10−6 IU assayed at 37°C for 25 preparations of isolated hepatocytes. The results suggest that leakage of cytoplasmic enzyme and vital dye staining are of comparable sensitivity in evaluating hepatocyte preparations. Measurement of LDH leakage offers a less subjective alternative to cell counting procedures and is applicable to both attached and suspended cells. This study was supported in part by Grants HL-11945-11 and 1-RO1-AM 26520-01A1 from the National Institutes of Health, Bethesda, MD.  相似文献   

14.
Synthetic part sequences of human pituitary growth hormone (hGH 176–191 and hGH 177–191) corresponding to residues 176–191 or 177–191 of the hormone have been tested for their effects on glycogen and pyruvate metabolism in the rat, both in vivo and in vitro. When injected, the peptides caused transient increases in blood glucose and lactate, while decreasing the activity ratio of glycogen synthase in muscle, adipose tissue and liver and of pyruvate dehydrogenase in muscle and adipose tissue, but not in liver. These decreases were associated with the conversion of the enzymes from their active to their inactive forms, since the peptides did not affect the total amount of either the synthase or the dehydrogenase. The time course of the effect on the enzymes was similar to that for the effect on blood metabolites, and responses for synthase were produced over the range 0.07–7 nmols hGH 177–191/kg body weight. Phosphorylase activity was not affected by the peptides, nor was the capacity to dispose of injected L-lactate. Experiments with adipocytes and hepatocytes showed that the peptides also affected glycogen synthase and pyruvate dehydrogenase activities in vitro. The peptides had no effect on the overall rate of gluconeogenesis from lactate by hepatocytes. However, at times corresponding to those at which glycogen synthase was inactivated, the peptides caused increased incorporation of lactate into free glucose and decreased incorporation into glycogen. It was concluded that the peptides acted directly on their target tissues, and that the observed hyperlactataemia was the result of the inactivation of pyruvate dehydrogenase. The addition lactate increased the flux through the gluconeogenic pathway, and appeared as glucose because the peptide also inactivated glycogen synthase. Thus, the hyperglycaemia produced by hGH 177–199 and related peptides is explicable in terms of a modified Cori Cycle.  相似文献   

15.
Automated fluorometric methods for the analysis of DNA, protein, and selected enzyme activities for N-acetyl-β-d-glucosaminidase, glucose 6-phosphate dehydrogenase, and 6-phosphogluconate dehydrogenase are described. Instrumentation for these assays includes a Gilford 3500 computer-directed analyzer in conjunction with a Farrand Ratio Fluorometer-2 modified for flowthrough sampling. Comparisons were made between the automated fluorometric methods described and manual spectrophotometric or fluorometric methods for reproducibility, speed of analysis, and quantitative correlation. Typical values of N-acetyl-β-d-glucosaminidase, glucose 6-phosphate dehydrogenase, and 6-phosphogluconate dehydrogenase activities obtained by these methods in isolated rat hepatocytes and Reuber H-35 hepatoma cells are reported.  相似文献   

16.
The relative substrate specificities of glucose dehydrogenases (E.C. 1.1.1.47) from beef liver and rat liver are very different. The beef enzyme oxidizes glucose more rapidly than either glucose-6-phosphate or galactose-6-phosphate. On the other hand, the dehydrogenase from rat liver prefers the hexose phosphates to glucose.A procedure for estimating the level of glucose dehydrogenase in rat and beef liver is described. The glucose-6-phosphate dehydrogenase activity attributed to glucose dehydrogenases is estimated to be about one-fifth and one-third that of cytoplasmic glucose-6-phosphate dehydrogenase (E.C. 1.1.1.49) in female and male rat liver respectively.A fluorometric adaptation of the less sensitive spectrophotometric assay for glucose dehydrogenase is described.  相似文献   

17.
Hepatocytes in primary culture from fed and 2 month fasted Arctic charr Salvelinus alpinus were exposed to physiological doses of either cortisol, salmon growth hormone (GH), salmon insulin‐like growth factor‐I (IGF‐I) or a combination of salmon GH and salmon IGF‐I. Fasting significantly lowered medium glucose levels compared to the fed fish, but had no significant effects on hepatocyte glycogen content or on the activities of enzymes involved in the intermediary metabolism. Cortisol treatment had no effect on hepatocyte glycogen content or on the enzyme activities investigated, but resulted in a significant increase in medium glucose concentration in hepatocytes isolated from fasted, but not fed fish. GH and IGF‐I treatments, both singly and in combination, significantly increased the glycogen content of hepatocytes isolated from fed fish, with less pronounced effects on hepatocytes isolated from fasted fish. The combination of GH and IGF‐I significantly increased lactate dehydrogenase activity regardless of the feeding state and significantly reduced the phosphenolpyruvate carboxykinase activity and medium glucose concentration in hepatocytes isolated from fed fish. Further, GH and IGF‐I significantly increased the activities of alanine aminotransferase and aspartate aminotransferase in hepatocytes isolated from fasted fish, but not fed fish. There were no effects of GH, IGF‐I, or their combination, on glucose 6‐phosphate dehydrogenase or 3‐hydroxyacyl‐CoA dehydrogenase activities. The results demonstrated that nutritional status of the animal modulates hepatocyte responsiveness to metabolic hormones, and suggested a role for GH and IGF‐I in hepatic glycogen conservation.  相似文献   

18.
Dichloroacetate (2 mm) stimulated the conversion of [1-14C]lactate to glucose in hepatocytes from fed rats. In hepatocytes from rats starved for 24 h, where the mitochondrial NADHNAD+ ratio is elevated, dichloroacetate inhibited the conversion of [1-14C]lactate to glucose. Dichloroacetate stimulated 14CO2 production from [1-14C]lactate in both cases. It also completely activated pyruvate dehydrogenase and increased flux through the enzyme. The addition of β-hydroxybutyrate, which elevates the intramitochondrial NADHNAD+ ratio, changed the metabolism of [1-14C]lactate in hepatocytes from fed rats to a pattern similar to that seen in hepatocytes from starved rats. Thus, the effect of dichloroacetate on labeled glucose synthesis from lactate appears to depend on the mitochondrial oxidation-reduction state of the hepatocytes. Glucagon (10 nm) stimulated labeled glucose synthesis from lactate or alanine in hepatocytes from both fed and starved rats and in the absence or presence of dichloroacetate. The hormone had no effect on pyruvate dehydrogenase activity whether or not the enzyme had been activated by dichloroacetate. Thus, it appears that pyruvate dehydrogenase is not involved in the hormonal regulation of gluconeogenesis. Glucagon inhibited the incorporation of 10 mm [1-14C]pyruvate into glucose in hepatocytes from starved rats. This inhibition has been attributed to an inhibition of pyruvate dehydrogenase by the hormone (Zahlten et al., 1973, Proc. Nat. Acad. Sci. USA70, 3213–3218). However, dichloroacetate did not prevent the inhibition of glucose synthesis. Nor did glucagon alter the activity of pyruvate dehydrogenase in homogenates of cells that had been incubated with 10 mm pyruvate in the absence or presence of dichloroacetate. Thus, the inhibition by glucagon of pyruvate gluconeogenesis does not appear to be due to an inhibition of pyruvate dehydrogenase.  相似文献   

19.
Glucose 6-phosphate dehydrogenase activity in rat liver mitochondria can be released by detergent. The released activity is separated by chromatography into two peaks. One peak has the kinetic behaviour and mobility similar to the soluble sex-linked enzyme, whereas the other peak is similar to the microsomal hexose 6-phosphate dehydrogenase. There is no evidence for the existence of a new glucose 6-phosphate dehydrogenase activity in rat liver mitochondria.  相似文献   

20.
R A Gilissen  J H Meerman 《Life sciences》1992,51(16):1255-1260
Sulfation activity towards N-hydroxy-2-acetylaminofluorene and 4-nitrophenol was determined in male rat liver cytosol at several time points after partial hepatectomy corresponding to G1-, S-, and M-phase. N-hydroxy-2-acetylaminofluorene sulfation activity decreased by 80% when hepatocytes entered the G1-phase. This lower activity was maintained during the S-phase and M-phase, but was restored when hepatocytes entered the G0-phase again. Sulfation activity towards 4-nitrophenol did not alter after hepatectomy. Various other cytosolic enzyme activities were determined after hepatectomy to investigate the specificity of the decrease in sulfation activity. Lactate dehydrogenase and glucose-6-phosphate dehydrogenase activities were increased in the S- and M-phase by maximally 80% and 60%, respectively. Glutathione-S-transferase and glutamate-pyruvate transaminase activity did not alter during the cell cycle. These results indicate that sulfation of N-hydroxy-2-acetylaminofluorene in hepatocytes may depend on the phase of the cell cycle. The relevance of the finding is discussed in relation to the resistance of proliferating (pre)neoplastic hepatocytes to the toxic and mitoinhibitory effects of N-hydroxy-2-acetylaminofluorene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号