首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The incorporation of [2-(14)C]uridine into nucleic acids of bone cells was studied in rat and pig trabecular-bone fragments surviving in vitro. 2. The rapid uptake of uridine into trichloroacetic acid-soluble material, and its subsequent incorporation into a crude nucleic acid fraction of bone or purified RNA extracted from isolated bone cells, was proportional to uridine concentration in the incubation medium over a range 0.5-20.0mum. 3. During continued exposure to radioactive uridine, bulk RNA became labelled in a curvilinear fashion. Radioactivity rapidly entered nuclear RNA, which approached its maximum specific activity by 2hr. of incubation; cytoplasmic RNA, and particularly microsomal RNA, was more slowly labelled. The kinetics of labelling and rapid decline of the nuclear/microsomal specific activity ratio were consistent with a precursor-product relationship. 4. Bulk RNA preparations were resolved by zonal centrifugation in sucrose density gradients into components with approximate sedimentation coefficients 28s, 18s and 4s. 5. Rapidly labelled RNA, predominantly nuclear in location, demonstrated a polydisperse sedimentation pattern that did not conform to the major types of stable cellular RNA. Material of highest specific activity, sedimenting in the 4-18s region and insoluble in 10% (w/v) sodium chloride, rapidly achieved its maximum activity during continued exposure to radioactive precursor and decayed equally rapidly during ;chase' incubation, exhibiting an average half-life of 4.3hr. 6. Ribosomal 28s and 18s RNA were of lower specific activity, which increased linearly for at least 6hr. in the continued presence of radioactive uridine. There was persistent but variable incorporation into ribosomal RNA during ;chase' incubation despite rapid decline in total radioactivity of the acid-soluble pool containing RNA precursors.  相似文献   

2.
1. The effects of various ions on the Mg(2+)- and Mn(2+)/ammonium sulphate-activated RNA polymerase activities of isolated liver nuclei were studied. 2. The Mg(2+)-activated RNA polymerase reaction was inhibited by more than 60% by Cd(2+), SeO(3) (2-), Be(2+), Cu(2+), Co(2+), Ca(2+) and La(3+), all at 1mm concentrations. 3. The Mn(2+)/ammonium sulphate-activated RNA polymerase reaction was strongly inhibited by Hg(2+), Cd(2+), Cu(2+) and Ag(+). The effect of Hg(2+), Cd(2+) and Ag(+) was relieved by cysteine or mercaptoethanol. 4. Inhibition by Cu(2+) was not affected by addition of DNA, and was relieved only partially by EDTA or histidine. 5. No changes of RNA polymerase activities were observed in nuclei isolated from the liver of rats treated with copper albuminate.  相似文献   

3.
4.
1. Native or partially degraded RNA derived from intact rat liver, or from the parenchymal-cell or the non-parenchymatous fraction of liver, has been shown to be transported into rat parenchymal cells in suspension, without prior degradation to acid-soluble components, when the cell suspension is incubated with the RNA at 37 degrees . The amount of RNA of exogenous origin present in the parenchymal cells in an acid-precipitable form increased rapidly up to 30-60min., after which it gradually decreased, indicating intracellular degradation to acid-soluble components of the RNA taken up by the cells. 2. The RNA taken up by the parenchymal cells from the medium, and the acid-soluble products of its degradation within the cells, could be released back into the medium. 3. The RNA of exogenous origin present in acid-precipitable form in the parenchymal cells represented up to 5% of the RNA of the cells after 60min. of incubation. 4. When the concentration of RNA in the medium was less than 200mug./ml., over 10% of the RNA was transported in an acid-precipitable form in 60min. into the parenchymal cells incubated at a concentration of 2.3x10(6)/ml. 5. Ribonuclease inhibited the uptake of exogenous RNA by the parenchymal cells, whereas 2,4-dinitrophenol, sodium azide, protamine sulphate and polyvinyl sulphate had no significant effect. 6. The uptake of exogenous RNA by liver slices proceeded at a rate which was 4-20% of that obtained in the parenchymal-cell suspensions; the RNA taken up did not appear to become degraded, unlike that taken up by the cell suspensions. 7. It is concluded that dispersion of liver tissue to a suspension of single cells increases the permeability of the parenchymal cells to macromolecular RNA and creates conditions that lead to a rapid degradation of the RNA taken up.  相似文献   

5.
1. A study was made of the sedimentation properties of purified preparations of the rapidly labelled RNA in the nucleus and the cytoplasm of the HeLa cell. The sedimentation of the rapidly labelled nuclear RNA was very sensitive to changes in ionic strength and bivalent cation concentration. Under the conditions usually used in sucrose-density-gradient centrifugation the rapidly labelled nuclear RNA showed extreme polydispersity, and much of it sedimented more rapidly than the 28s RNA. At low ionic strength and after removal of Mg(2+), however, the rapidly labelled nuclear RNA sedimented as a single peak at about 16s. The conversion of the polydisperse material into the 16s form did not involve degradation of the RNA, since the effect could be reversed by increasing the ionic strength of the solution. 2. The cytoplasm did not contain any RNA that showed polydisperse sedimentation under the usual conditions of sucrose-density-gradient centrifugation, or that had the same sensitivity as the rapidly labelled nuclear RNA to changes in ionic strength. All the radioactivity in the cytoplasmic RNA sedimented with the 28s, 16s and 4s components over a wide range of physical conditions, but these components did contain a labelled fraction with some of the features of the rapidly labelled nuclear RNA on columns of methylated albumin on kieselguhr. 3. In both nucleus and cytoplasm the RNA detected by ultraviolet absorption could also be converted into a 16s form by removal of bivalent cations at low ionic strength; this effect was again, within certain limits, reversible. The nuclear RNA as a whole was more susceptible to changes in ionic strength than the cytoplasmic RNA. 4. It thus appears that all the RNA in the cell, except the 4s RNA, can be prepared, without degradation, as a single peak sedimenting at about 16s. The relationship of these various 16s components to each other is discussed.  相似文献   

6.
The reasons underlying reported discrepancies in the effects of ATP, ADP, adenosine 5'-[beta gamma-methylene]triphosphate, AMP + PPi, P-chloromercuribenzoate and F- on RNA efflux from isolated rat liver nuclei and on nuclear envelope nucleoside triphosphatase activity were investigated. The stimulatory effect of ADP was attributed to myokinase activity associated with the nuclei; this activity was eluted on repeated washing with nuclear incubation medium. In the absence of Ca2+ and Mn2+, ATP, adenosine 5'[beta gamma-methylene]triphosphate and AMP +PPi were found to promote release of both DNA and RNA. In the presence of 0.5 mM-Ca2+ and 9.3 mM-Mn2+, only ATP promoted RNA efflux to a significant extent. In the absence of spermidine, Ca2+ and Mn2+, nuclei released large quantities of DNA and RNA into the medium; this effect was promoted by p-chloromereuribenzoate. In the presence of the three cations, however, p-chloromercuribenzoate inhibited RNA efflux. F- caused a slight leakage of DNA from nuclei. The results are discussed in terms of models for the effects of ATP and analogues on RNA efflux and nuclear stability.  相似文献   

7.
1. The requirement for bivalent cations in catalysis of NAD formation from ATP and NMN in the presence of NMN adenylyltransferase of pig-liver nuclei was studied. Rates of NAD formation in the presence of the activating cations Cd(2+), Mn(2+), Mg(2+), Zn(2+), Co(2+) and Ni(2+) were approximately a linear function of heats of hydration of the corresponding ions. Ba(2+), Sr(2+), Ca(2+), Cu(2+) and Be(2+) did not activate the enzyme; Be(2+) inhibited the reaction in the presence of Mg(2+) and, to a greater extent, in the presence of Ni(2+). 2. Michaelis constants for NAD formation, measured in a coupled assay with NMN adenylyltransferase and alcohol dehydrogenase at pH8.0 and 25 degrees , in the presence of 3mm concentrations of the unvaried reactants, were 88+/-7mum-ATP, 42+/-4mum-NMN and 85+/-4mum-Mg(2+). The results at this pH and at pH7.5 were consistent with mechanisms in which Mg(2+)-ATP complex is a reactant and free ATP a competitive inhibitor. 3. Formation of nicotinamide-hypoxanthine dinucleotide from NMN and ITP in the presence of the transferase was also more rapid with Ni(2+) and Co(2+) than with Mg(2+).  相似文献   

8.
Inhibition of the growth of Escherichia coli M.R.E. 600 by six different metal salts was accompanied by a greater decrease in the synthesis of RNA than in that of protein. The action of cobalt chloride was exceptional; inhibited cells made an excess of RNA to an extent depending on the concentration of Co(2+), the time of incubation and the concentration of Mg(2+) in the medium. Preferential synthesis of RNA in the presence of cobalt chloride was not confined to E. coli but occurred to various extents in some, but not all, of the other micro-organisms that were tested. Possible reasons for the special effect of Co(2+) are discussed.  相似文献   

9.
Dipeptidyl peptidase IV is an ectopeptidase with multiple physiological roles including the degradation of incretins, and a target of therapies for type 2 diabetes mellitus. Divalent cations can inhibit its activity, but there has been little effort to understand how they act. The intact membrane-bound form of porcine kidney dipeptidyl peptidase IV was purified by a simple and fast procedure. The purified enzyme hydrolyzed Gly-Pro-p-nitroanilide with an average V(max) of 1.397±0.003 μmol min(-1) mL(-1), k(cat) of 145.0±1.2 s(-1), K(M) of 0.138±0.005 mM and k(cat)/K(M) of 1050 mM(-1) s(-1). The enzyme was inhibited by bacitracin, tosyl-L-lysine chloromethyl ketone, and by the dipeptidyl peptidase IV family inhibitor L-threo-Ile-thiazolidide (K(i) 70 nM). The enzyme was inhibited by the divalent ions Ca(2+), Co(2+), Cd(2+), Hg(2+) and Zn(2+), following kinetic mechanisms of mixed inhibition, with K(i) values of 2.04×10(-1), 2.28×10(-2), 4.21×10(-4), 8.00×10(-5) and 2.95×10(-5) M, respectively. According to bioinformatic tools, Ca(2+) ions preferentially bound to the β-propeller domain of the porcine enzyme, while Zn(2+) ions to the α-β hydrolase domain; the binding sites were strikingly conserved in the human enzyme and other homologues. The functional characterization indicates that porcine and human homologues have very similar functional properties. Knowledge about the mechanisms of action of divalent cations may facilitate the design of new inhibitors.  相似文献   

10.
Rat-liver parenchymal cells obtained in suspension by a mecahnical method are shown to contain a cell-surface nuclease(s ) that rapidly degrades exogenously added totalEscherichia coli RNA. However, no acid-soluble products are formed; all the degradation products in the incubation medium sediment in the 4–55 RNA region on a sucrose density gradient. A part of the degraded RNA seems to be taken up by the cells; the uptake of the degradation products, presumably derived from rRNAs, is more than that of purified 4–55 RNA. Most of the RNA taken up by the cell sediments in the 4–55 region; only a small proportion is degraded to acid-soluble material within the cell.  相似文献   

11.
1. Chick intestinal nuclei were isolated, with practically no contamination from other organelles and whole cells, by centrifugation through 2.4m-sucrose. 2. The proportions of RNA, DNA and protein of the isolated nuclei were unaffected by the vitamin D status of the birds. The RNA/DNA ratio was 0.15. 3. The incorporation of [5-(3)H]orotic acid into the rapidly labelled intestinal nuclear RNA, after a 10min. pulse of the orotic acid, was increased in vitamin D-deficient chicks only 10min. after a 125mug. dose of cholecalciferol. 4. There was no stimulation of the DNA-dependent RNA polymerase activity of the isolated nuclei from birds treated with cholecalciferol. 5. The results are discussed in relation to the changes occurring during the lag period, after administration of cholecalciferol and before Ca(2+) transport is detected, and the function of the vitamin.  相似文献   

12.
Dimethylnitrosamine (DMNA) strongly inhibited RNA synthesis in mouse liver under conditions when the nucleotide pattern, rate of nucleotide synthesis and phosphorylation ratio were unaffected. (An unidentified, probably non-nucleotide, component in the acid-soluble liver fraction was selectively reduced.) The inhibition of RNA synthesis was associated with a decrease in the RNA polymerase activity of isolated liver nuclei, well established already 45 min after DMNA administration. The reduced activity included both Mg2+- and Mn2+/(NH4)2SO4-stimulated polymerase functions. The inhibition in vivo involved the whole complement of RNA, including poly (A)-containing RNA and isolated poly(A) sequences. The transfer of labelled RNA from the nucleus to the cytoplasm was not impaired. There was no detachment of poly(A)-containing RNA from the microsomes, and the proportion of tightly membrane-bound microsomal RNA and poly(A) sequences was not reduced as determined by use of a flotation technique. No breakage or shortening of the poly(A) chains was indicated by sedimentation analysis.  相似文献   

13.
Intracellular protein breakdown in non-growing cells of Escherichia coli   总被引:14,自引:3,他引:11  
1. When Escherichia coli leu(-) was incubated at 35 degrees in a medium based on minimal medium, but with the omission of phosphate ions, or glucose, or NH(4) (+) ions and leucine, intracellular protein was degraded at a rate of about 5%/hr. in each case. If Mg(2+) ions were omitted, however, the rate of degradation was 2.9%/hr. 2. Under certain conditions of incubation, protein degradation was inhibited. The inhibitor was neither NH(4) (+) ions nor amino acids, and its properties were not those of a protein, but it might be an unstable species of RNA. 3. Although a large part of the cell protein was degraded at about 5%/hr. during starvation of NH(4) (+) ions and leucine, some proteins were lost at more rapid rates, whereas others were lost at lower rates or not at all. 4. In particular, beta-galactosidase activity was lost at about 8%/hr. during starvation of NH(4) (+) ions and leucine, whereas d-serine-deaminase and alkaline-phosphatase activities were stable. During starvation of Mg(2+) ions, all three enzyme activities were stable.  相似文献   

14.
We demonstrated that mouse spermatozoa cleave their DNA into approximately 50 kb loop-sized fragments with topoisomerase IIB when treated with MnCl(2) and CaCl(2) in a process we term sperm chromatin fragmentation (SCF). SCF can be reversed by EDTA. A nuclease then further degrades the DNA in a process we term sperm DNA degradation (SDD). MnCl(2) alone could elicit this activity, but CaCl(2) had no effect. Here, we demonstrate the existence of a nuclease in the vas deferens that can be activated by ethylene glycol tetraacetic acid (EGTA) to digest the sperm DNA by SDD. Spermatozoa were extracted with salt and dithiothreitol to remove protamines and then incubated with EGTA. Next, the EGTA was removed and divalent cations were added. We found that Mn(2+), Ca(2+), or Zn(2+) could each activate SDD in spermatozoa but Mg(2+) could not. When the reaction was slowed by incubation on ice, EGTA pretreatment followed by incubation in Ca(2+) elicited the reversible fragmentation of sperm DNA evident in SCF. When the reactions were then incubated at 37 degrees C they progressed to the more complete degradation of DNA by SDD. EDTA could also be used to activate the nuclease, but required a higher concentration than EGTA. This EGTA-activatable nuclease activity was found in each fraction of the vas deferens plasma: in the spermatozoa, in the surrounding fluid, and in the insoluble components in the fluid. These results suggest that this sperm nuclease is regulated by a mechanism that is sensitive to EGTA, possibly by removing inhibition of a calcium binding protein.  相似文献   

15.
A systematic study of the degradation of physiological concentrations of 125I-labelled insulin was performed in intact fat-pads, isolated adipocytes and subcellular fractions of isolated adipocytes. The findings indicate that insulin is rapidly degraded to low-molecular-weight peptides and/or amino acids by the intact tissue and isolated cells. Of the total insulin-degradation products present after incubation with an intact fat-pad, 94% is recovered in the medium, indicating that these products are not retained by the cells or tissue. The plasma membranes do not degrade insulin significantly in the absence of reduced glutathione, and over 99% of the cellular degradative capacity is found in the postmicrosomal supernatant (cytosol). The cytosol degrades insulin to several labelled fragments that are intermediate in size between insulin and insulin A chain, as well as to the low-molecular-weight tissue degradation products. Inclusion of plasma membranes with cytosol accelerates the cleavage of the intermediate fragments to the size of the small products seen with the intact tissue. However, plasma membranes do not increase the initial step in the degradation of insulin when incubated with cytosol, suggesting that the insulin receptor is not involved with the direct cleavage of insulin. This study supports the hypothesis that the bulk of insulin degradation occurs in the adipocyte cytosol, where intermediate-sized fragments are generated and rapidly cleaved to smaller products by the plasma membrane and quickly released into the surrounding medium.  相似文献   

16.
The addition of 3'-deoxyadenosine (cordycepin) to cells in culture results in the inhibition of the appearance of mRNA in the cytoplasm through a mechanism thought to involve the inhibition of polyadenylate synthesis. I studied the effect of 3'-deoxyadenosine triphosphate, the physiologically active form of 3'-deoxyadenosine, on RNA release from isolated nuclei. Nuclei were isolated from baby-hamster kidney (BHK) fibroblasts that had been given a short pulse of radioactive uridine or adenosine in the presence of a low concentration of actinomycin D before harvest. RNA release from the isolated nuclei under the appropriate incubation conditions was time-, temperature- and ATP-dependent. 3'-Deoxyadenosine triphosphate inhibited RNA release from the isolated nuclei. However, RNA that was restricted to the nuclei during incubation with the drug could be chased out of the nuclei if the incubation medium was replaced with medium containing only ATP. The chased poly(A)+ (polyadenylated) RNA had shortened poly(A) tracts, indicating that poly(A)+ RNA with shortened poly(A) tracts can be transported out of the nucleus. An experiment was designed to test the effect of 3'-deoxyadenosine triphosphate on the release of poly(A)+ RNA at drug concentrations which caused 33 or 64% inhibition of RNA release. The release of poly(A)+ RNA and poly(A)- RNA (not polyadenylated) was equally inhibited by the drug. Thus, although 3'-deoxyadenosine triphosphate does inhibit release of RNA from the nucleus, it would appear that the drug does so through a mechanism independent of the inhibition of polyadenylation. The process that is inhibited must be one that is common to both poly(A)+ and poly(A)- RNA. The possibility that 3'-deoxyadenosine triphosphate inhibits a reaction at the nuclear membrane or nuclear pore complex is considered.  相似文献   

17.
The effect of proflavine on HeLa cells   总被引:2,自引:2,他引:0       下载免费PDF全文
1. The effect of proflavine on the metabolism of RNA, DNA and protein of HeLa cells was studied. 2. The synthesis of RNA, DNA and protein was progressively inhibited by concentrations of proflavine up to 43mum. 3. There was no simple relationship between the degrees of inhibition of synthesis of RNA, DNA and protein by increasing concentrations of proflavine: the synthesis of RNA was most readily inhibited, and the synthesis of protein was relatively insensitive. 4. A concentration of 22mum-proflavine inhibited synthesis of RNA and DNA and caused a progressive loss of RNA from both nucleus and cytoplasm without any accompanying loss of DNA or dry weight from the cells. 5. The rapidly labelled RNA in the nucleus was preferentially degraded and was not transferred in a stable form to the cytoplasm.  相似文献   

18.
RNA synthesis and ATP-dependent (45)Ca(2+) uptake were measured simultaneously in isolated nuclear fraction of rat liver nuclei. Maximal level of RNA synthesis was obtained under ATP-dependent (45)Ca(2+)-uptake conditions (1 microM free [Ca(2+)] and 1 mM ATP in the bathing solution). This experimental condition was defined as "stimulated nuclei" condition. ATP-dependent (45)Ca(2+) uptake was inhibited using different strategies including: (a) eliminating Ca(2+) (1 mM EGTA); (b) lowering the ATP concentration; (c) modifying nuclear envelope membranes Ca(2+) permeability (Ca(2+) ionophores); or (d) inhibiting the nuclear Ca(2+) pump (thapsigargin and 3',3',5',5'-tetraiodophenolsulfonephthalein). Under all the above conditions, RNA synthesis was lower than in "stimulated nuclei" condition. In the presence of ionomycin, RNA synthesis was significantly higher at 500 nM free [Ca(2+)], as compared with RNA synthesis in a Ca(2+)-free medium or at 1muM free [Ca(2+)]. However, even in such condition (500 nM free [Ca(2+)]), RNA synthesis was lower than RNA synthesis obtained in "stimulated nuclei" condition. We suggest two components for the effect of Ca(2+) on RNA synthesis: (A) a direct effect of nucleoplasmic [Ca(2+)]; and (B) an effect dependent on the accumulation of Ca(2+) in the nuclear envelope store mediated by the SERCA nuclear Ca(2+) pump.  相似文献   

19.
Dahlgren PR  Lyubchenko YL 《Biochemistry》2002,41(38):11372-11378
Atomic force microscopy (AFM) was applied to directly visualize the end-to-end DNA interaction mediated by magnesium cations. We took advantage of the APS-mica, allowing the preparation of samples in a broad range of monovalent and divalent cations to separate the effects of Mg(2+) and Na(+) cations on the interaction of restriction DNA fragments with cohesive end. The AFM data clearly show that DNA restriction fragments with cohesive ends form substantial amount of circles in the presence of Mg(2+) cations, suggesting that Mg(2+) cations stabilize the interaction of cohesive ends. This effect depends on the MgCl(2) concentration, so that the yield of circles approaches 18% in the presence of 50 mM MgCl(2). Furthermore, we demonstrate that this conferred cohesive end stability is specific for divalent cations, as substitution of MgCl(2) with NaCl leads to a near complete loss of cohesive end stability. We further demonstrate that cohesive end stabilization is achieved by substituting Mg(2+) with Ca(2+), Mn(2+), or Zn(2+). The data obtained suggest that the end stabilization mediated by divalent cations is primarily the result of inter-base interactions rather than bridging of phosphate moieties.  相似文献   

20.
1. A sarcolemmal fraction was isolated from hamster hind-leg skeletal muscles by successive treatment with lithium bromide and potassium chloride. The membranous fraction was observed to contain a highly active Ca(2+)-stimulated ATPase (adenosine triphosphatase), a Mg(2+)-stimulated ATPase, and an Na(+)+K(+)-stimulated Mg(2+)-dependent ouabain-sensitive ATPase. 2. The Ca(2+)-stimulated ATPase activity was pH-dependent, the optimum being pH7.6. 3. Optimum activation of this enzyme was obtained with 3-4mm-Ca(2+) when 4mm-ATP was present as a substrate, and was not influenced by Na(+), K(+) or ouabain, whereas 2,4-dinitrophenol, sodium azide, oligomycin, sodium fluoride and ethanedioxybis(ethylamine)tetra-acetate were inhibitory. 4. The Ca(2+)-stimulated ATPase was markedly inhibited by thiol-blocking reagents, and cysteine was able to reverse this inhibition. 5. Various bivalent cations stimulated ATP hydrolysis by the sarcolemmal fraction in the following decreasing order of potency: Mg(2+), Ca(2+), Mn(2+), Co(2+), Sr(2+), Ba(2+), Zn(2+), Cu(2+).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号