首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neuronal Kv3 voltage-gated K+ channels have two absolutely conserved N-glycosylation sites. Here, it is shown that Kv3.1, 3.3, and 3.4 channels are N-glycosylated in rat brain. Digestion of total brain membranes with peptide N glycosidase F (PNGase F) produced faster migrating immunobands than those of undigested membranes. Additionally, partial PNGase F digests showed that both sites are occupied by oligosaccharides. Neuraminidase treatment produced a smaller immunoband shift relative to PNGase F treatment. These results indicate that both sites are highly available and occupied by N-linked oligosaccharides for Kv3.1, 3.3, and 3.4 in rat brain, and furthermore that at least one oligosaccharide is of complex type. Additionally, these results point to an extracytoplasmic S1–S2 linker in Kv3 proteins expressed in native membranes. We suggest that N-glycosylation processing of Kv3 channels is critical for the expression of K+ currents at the surface of neurons, and perhaps contributes to the pathophysiology of congenital disorders of glycosylation.  相似文献   

2.
N-Glycosylation is a cotranslational and post-translational process of proteins that may influence protein folding, maturation, stability, trafficking, and consequently cell surface expression of functional channels. Here we have characterized two consensus N-glycosylation sequences of a voltage-gated K+ channel (Kv3.1). Glycosylation of Kv3.1 protein from rat brain and infected Sf9 cells was demonstrated by an electrophoretic mobility shift assay. Digestion of total brain membranes with peptide N glycosidase F (PNGase F) produced a much faster-migrating Kv3.1 immunoband than that of undigested brain membranes. To demonstrate N-glycosylation of wild-type Kv3.1 in Sf9 cells, cells were treated with tunicamycin. Also, partially purified proteins were digested with either PNGase F or endoglycosidase H. Attachment of simple-type oligosaccharides at positions 220 and 229 was directly shown by single (N229Q and N220Q) and double (N220Q/N229Q) Kv3.1 mutants. Functional measurements and membrane fractionation of infected Sf9 cells showed that unglycosylated Kv3.1s were transported to the plasma membrane. Unitary conductance of N220Q/N229Q was similar to that of the wild-type Kv3.1. However, whole cell currents of N220Q/N229Q channels had slower activation rates, and a slight positive shift in voltage dependence compared to wild-type Kv3.1. The voltage dependence of channel activation for N229Q and N220Q was much like that for N220Q/N229Q. These results demonstrate that the S1-S2 linker is topologically extracellular, and that N-glycosylation influences the opening of the voltage-dependent gate of Kv3.1. We suggest that occupancy of the sites is critical for folding and maturation of the functional Kv3.1 at the cell surface.  相似文献   

3.
The N-glycan pool of mammalian brain contains remarkably high levels of sialylated N-glycans. This study provides the first evidence that voltage-gated K+ channels Kv3.1, Kv3.3, and Kv3.4, possess distinct sialylated N-glycan structures throughout the central nervous system of the adult rat. Electrophoretic migration patterns of Kv3.1, Kv3.3, and Kv3.4 glycoproteins from spinal cord, hypothalamus, thalamus, cerebral cortex, hippocampus, and cerebellum membranes digested with glycosidases were used to identify the various glycoforms. Differences in the migration of Kv3 proteins were attributed to the desialylated N-glycans. Expression levels of the Kv3 proteins were highest in cerebellum, whereas those of Kv3.1 and Kv3.3 were much lower in the other 5 regions. The lowest level of Kv3.1 was expressed in the hypothalamus, whereas the lowest levels of Kv3.3 were expressed in both thalamus and hypothalamus. The other regions expressed intermediate levels of Kv3.3, with spinal cord expressing the highest. The expression level of Kv3.4 in the hippocampus was slightly lower than that in cerebellum, and was closely followed by the other 4 regions, with spinal cord expressing the lowest level. We suggest that novel Kv3 glycoforms may endow differences in channel function and expression among regions throughout the central nervous system.  相似文献   

4.
Mammalian brains contain relatively high amounts of common and uncommon sialylated N-glycan structures. Sialic acid linkages were identified for voltage-gated potassium channels, Kv3.1, 3.3, 3.4, 1.1, 1.2 and 1.4, by evaluating their electrophoretic migration patterns in adult rat brain membranes digested with various glycosidases. Additionally, their electrophoretic migration patterns were compared with those of NCAM (neural cell adhesion molecule), transferrin and the Kv3.1 protein heterologously expressed in B35 neuroblastoma cells. Metabolic labelling of the carbohydrates combined with glycosidase digestion reactions were utilized to show that the N-glycan of recombinant Kv3.1 protein was capped with an oligo/poly-sialyl unit. All three brain Kv3 glycoproteins, like NCAM, were terminated with alpha2,3-linked sialyl residues, as well as atypical alpha2,8-linked sialyl residues. Additionally, at least one of their antennae was terminated with an oligo/poly-sialyl unit, similar to recombinant Kv3.1 and NCAM. In contrast, brain Kv1 glycoproteins consisted of sialyl residues with alpha2,8-linkage, as well as sialyl residues linked to internal carbohydrate residues of the carbohydrate chains of the N-glycans. This type of linkage was also supported for Kv3 glycoproteins. To date, such a sialyl linkage has only been identified in gangliosides, not N-linked glycoproteins. We conclude that all six Kv channels (voltage-gated K+ channels) contribute to the alpha2,8-linked sialylated N-glycan pool in mammalian brain and furthermore that their N-glycan structures contain branched sialyl residues. Identification of these novel and unique sialylated N-glycan structures implicate a connection between potassium channel activity and atypical sialylated N-glycans in modulating and fine-tuning the excitable properties of neurons in the nervous system.  相似文献   

5.
The Kv3.1 glycoprotein, a voltage-gated potassium channel, is expressed throughout the central nervous system. The role of N-glycans attached to the Kv3.1 glycoprotein on conducting and non-conducting functions of the Kv3.1 channel are quite limiting. Glycosylated (wild type), partially glycosylated (N220Q and N229Q), and unglycosylated (N220Q/N229Q) Kv3.1 proteins were expressed and characterized in a cultured neuronal-derived cell model, B35 neuroblastoma cells. Western blots, whole cell current recordings, and wound healing assays were employed to provide evidence that the conducting and non-conducting properties of the Kv3.1 channel were modified by N-glycans of the Kv3.1 glycoprotein. Electrophoretic migration of the various Kv3.1 proteins treated with PNGase F and neuraminidase verified that the glycosylation sites were occupied and that the N-glycans could be sialylated, respectively. The unglycosylated channel favored a different whole cell current pattern than the glycoform. Further the outward ionic currents of the unglycosylated channel had slower activation and deactivation rates than those of the glycosylated Kv3.1 channel. These kinetic parameters of the partially glycosylated Kv3.1 channels were also slowed. B35 cells expressing glycosylated Kv3.1 protein migrated faster than those expressing partially glycosylated and much faster than those expressing the unglycosylated Kv3.1 protein. These results have demonstrated that N-glycans of the Kv3.1 glycoprotein enhance outward ionic current kinetics, and neuronal migration. It is speculated that physiological changes which lead to a reduction in N-glycan attachment to proteins will alter the functions of the Kv3.1 channel.  相似文献   

6.
The multiple roles of voltage-sensitive K(+) channels (Kv1 subfamily) in brain are served by subtypes containing pore-forming alpha (1.1-1.6) and auxiliary beta subunits, usually in an (alpha)(4)(beta)(4) stoichiometry. To facilitate structure/activity analysis, combinations that are prevalent in neurones and susceptible to alpha-dendrotoxin (alphaDTX) were reproduced in mammalian cells, using Semliki Forest virus. Infected Chinese hamster ovary cells expressed N-glycosylated Kv1.1 and 1.2 alpha subunits (M(r) approximately 60 and 62 K) that assembled and bound [(125)I]-alphaDTX with high affinity; an appreciable proportion appeared on the cell surface, with Kv1.2 showing a 5-fold enrichment in a plasma membrane fraction. To obtain 'native-like' alpha/beta complexes, beta1.1 or 2.1 (M(r) approximately 42 and 39 K, respectively) was co-expressed with Kv1.1 or 1.2. This slightly enhanced N-glycosylation and toxin binding, most notable with beta2. 1 and Kv1.2. Solubilization of membranes from cells infected with Kv. 1.2 and beta2.1, followed by Ni(2+) chromatography, gave a purified alpha1.2/beta2.1 complex with a size of approximately 405 K and S(20, W) = 15.8 S. Importantly, these values indicate that four alpha and beta subunits co-assembled as in neurones, a conclusion supported by the size ( approximately 260 K) of the homo-tetramer formed by Kv1.2 alone. Thus, an authentic K(+) channel octomer has been reconstructed; oligomeric species were also found in plasma membranes. To create 'authentic-like' hetero-oligomeric channels, Kv1.1 and 1.2 were co-expressed and shown to have assembled by the precipitation of both with IgGs specific for either. Consistently, confocal microscopy of cells labeled with these antibodies showed that the relatively low surface content of Kv1.1 was increased by Kv1.2. [(125)I]-alphaDTX binding to these complexes was antagonized by DTX(k), a probe selective for Kv1.1, in a manner that mimicks the pattern observed for the Kv1.1/1.2-containing channels in neuronal membranes.  相似文献   

7.
Fujii Y  Fujii K  Nakano K  Tanaka Y 《FEBS letters》2003,536(1-3):45-50
Cancer-induced cachexia affects most advanced cancer patients. It is characterized by anorexia, profound metabolic dysfunctions, and severe neurological disorders. Here we show that voltage-gated potassium channel (Kv) expression is impaired in the brain of tumor-bearing animals. Expression of both delayed rectifier (Kv1.1, Kv1.2, Kv1.3, Kv1.5, Kv1.6, Kv2.1, Kv3.1, Kv4.2) and A-type potassium channels (Kv1.4, Kv3.3, Kv3.4) was greatly down-regulated in brain from animals bearing a Yoshida AH-130 ascites hepatoma. The possible compensatory mechanisms (Kv1.4/Kv4.2), expression of redundant genes (Kv3.1/Kv3.3) and heteromultimeric channel formation (Kv2.1/Kv9.3) were also affected. The high circulating levels of TNFalpha and the reduced expression of the anti-apoptotic protein Bcl-XL found in the brain of tumor-bearing animals indicate that this response could be mediated by an increase in brain cell death due to apoptosis. The results suggest that brain function is impaired during cancer cachexia, and may account for the cancer-induced anorectic response and other neurological alterations.  相似文献   

8.
A proper motor activity relies on a correct cerebellar function. The Kv3.1 and Kv3.3 voltage-gated potassium channels are key proteins involved in cerebellar function and dysfunction, as the lack of these causes severe motor deficits. Both channel subunits are coexpressed in granule cells and are rapidly activated at relatively positive potentials to support the generation of fast action potentials. However, the contribution of each subunit to the molecular architecture of the parallel fibers, the granule cell axons, is so far unknown. The goal of this study was to elucidate the relative distribution of Kv3.1b and Kv3.3 in specific compartments of the rat parallel fibers by using a pre-embedding immunocytochemical method for electron microscopy. Numerous Kv3.1b and Kv3.3 silver-intensified gold particles were associated with membranes of parallel fiber synaptic terminals and their intervaricose segments. Kv3.1b was found in about 85% of parallel fiber synaptic terminals and in about 47% of their intervaricose portions. However, only 28% of intervaricosities and 23% of parallel fiber presynaptic boutons were Kv3.3 immunopositive. The analysis also revealed that 54% of Purkinje cell dendritic spines localized Kv3.3. Although both potassium channel subunits share localization in the same presynaptic parallel fiber compartments, the present results with the method used indicate that there are a higher percentage of parallel fibers labeled for Kv3.1b than for Kv3.3, and that the labeling intensity for each subunit is higher in specific subcompartments analyzed than in others.  相似文献   

9.
The voltage-gated potassium channels Kv3.1 and Kv3.3 are expressed in several distinct neuronal subpopulations in brain areas known to be involved in motor control such as cortex, basal ganglia and cerebellum. Depending on the lack of Kv3.1 or Kv3.3 channel subunits, mutant mice show different Kv3-null allele-dependent behavioral alterations that include constitutive hyperactivity, sleep loss, impaired motor performance and, in the case of the Kv3.1/Kv3.3 double mutant, also severe ataxia, tremor and myoclonus (Espinosa et al. 2001, J Neurosci 21, 6657-6665, Genes, Brain Behav 3, 90-100). The lack of Kv3.1 channel subunits is mainly responsible for the constitutively increased locomotor activity and for sleep loss, whereas the absence of Kv3.3 subunits affects cerebellar function, in particular Purkinje cell discharges and olivocerebellar system properties (McMahon et al. 2004, Eur J Neurosci 19, 3317-3327). Here, we describe two sensitive and non-invasive tests to reliably quantify normal and abnormal motor functions, and we apply these tests to characterize motor dysfunction in Kv3-mutant mice. In contrast to wildtype and Kv3.1-single mutants, Kv3.3-single mutants and Kv3 mutants lacking three and four Kv3 alleles display Kv3-null allele-dependent gait alterations. Although the Kv3-null allele-dependent gait changes correlate with reduced motor performance, they appear to not affect the training-induced improvement of motor performance. These findings suggest that altered cerebellar physiology in the absence of Kv3.3 channels is responsible for impaired motor task execution but not motor task learning.  相似文献   

10.
Differential targeting of Shaker-like potassium channels to lipid rafts   总被引:16,自引:0,他引:16  
Ion channel targeting within neuronal and muscle membranes is an important determinant of electrical excitability. Recent evidence suggests that there exists within the membrane specialized microdomains commonly referred to as lipid rafts. These domains are enriched in cholesterol and sphingolipids and concentrate a number of signal transduction proteins such as nitric-oxide synthase, ligand-gated receptors, and multiple protein kinases. Here, we demonstrate that the voltage-gated K(+) channel Kv2.1, but not Kv4.2, targets to lipid rafts in both heterologous expression systems and rat brain. The Kv2.1 association with lipid rafts does not appear to involve caveolin. Depletion of cellular cholesterol alters the buoyancy of the Kv2.1 associated rafts and shifts the midpoint of Kv2.1 inactivation by nearly 40 mV without affecting peak current density or channel activation. The differential targeting of Kv channels to lipid rafts represents a novel mechanism both for the subcellular sorting of K(+) channels to regions of the membrane rich in signaling complexes and for modulating channel properties via alterations in lipid content.  相似文献   

11.
The intrinsic electrical properties of a neuron depend on expression of voltage gated potassium (Kv) channel isoforms, as well as their distribution and density in the plasma membrane. Recently, we showed that N-glycosylation site occupancy of Kv3.1b modulated its placement in the cell body and neurites of a neuronal-derived cell line, B35 neuroblastoma cells. To extrapolate this mechanism to other N-glycosylated Kv channels, we evaluated the impact of N-glycosylation occupancy of Kv3.1a and Kv1.1 channels. Western blots revealed that wild type Kv3.1a and Kv1.1 α-subunits had complex and oligomannose N-glycans, respectively, and that abolishment of the N-glycosylation site(s) generated Kv proteins without N-glycans. Total internal reflection fluorescence microscopy images revealed that N-glycans of Kv3.1a contributed to its placement in the cell membrane while N-glycans had no effect on the distribution of Kv1.1. Based on particle analysis of EGFP-Kv proteins in the adhered membrane, glycosylated forms of Kv3.1a, Kv1.1, and Kv3.1b had differences in the number, size or density of Kv protein clusters in the cell membrane of neurites and cell body of B35 cells. Differences were also observed between the unglycosylated forms of the Kv proteins. Cell dissociation assays revealed that cell-cell adhesion was increased by the presence of complex N-glycans of Kv3.1a, like Kv3.1b, whereas cell adhesion was similar in the oligomannose and unglycosylated Kv1.1 subunit containing B35 cells. Our findings provide direct evidence that N-glycans of Kv3.1 splice variants contribute to the placement of these glycoproteins in the plasma membrane of neuronal-derived cells while those of Kv1.1 were absent. Further when the cell membrane distribution of the Kv channel was modified by N-glycans then the cell-cell adhesion properties were altered. Our study demonstrates that N-glycosylation of Kv3.1a, like Kv3.1b, provides a mechanism for the distribution of these proteins to the cell body and outgrowths and thereby can generate different voltage-dependent conductances in these membranes.  相似文献   

12.
K+ and Rb+ conductances (GK+ and GRb+) were investigated in two delayed rectifier K+ channels (Kv2.1 and Kv3.1) cloned from rat brain and a chimera (CHM) of the two channels formed by replacing the putative pore region of Kv2.1 with that of Kv3.1. CHM displayed ion conduction properties which resembled Kv3.1. In CHM, GK+ was three times greater than that of Kv2.1 and GRb+/GK+ = 0.3 (compared with 1.5 and 0.7, respectively, in Kv2.1 and Kv3.1). A point mutation in CHM L374V, which restored 374 to its Kv2.1 identity, switched the K+/Rb+ conductance profiles so that GK+ was reduced fourfold, GRb+ was increased twofold, and GRb+/GK+ = 2.8. Quantitative restoration of the Kv2.1 K+/Rb+ profiles, however, required simultaneous point mutations at three nonadjacent residues suggesting the possibility of interactions between residues within the pore. The importance of leucine at position 374 was verified when reciprocal changes in K+/Rb+ conductances were produced by the mutation of V374L in Kv2.1 (GK+ was increased threefold, GRb+ was decreased threefold, and GRb+/GK+ = 0.2). We conclude that position 374 is responsible for differences in GK+ and GRb+ between Kv2.1 and Kv3.1 and, given its location near residues critical for block by internal tetraethylammonium, may be part of a cation binding site deep within the pore.  相似文献   

13.
Voltage-dependent (Kv) outward K(+) currents repolarize beta-cell action potentials during a glucose stimulus to limit Ca(2+) entry and insulin secretion. Dominant-negative "knockout" of Kv2 family channels enhances glucose-stimulated insulin secretion. Here we show that a putative Kv2.1 antagonist (C-1) stimulates insulin secretion from MIN6 insulinoma cells in a glucose- and dose-dependent manner while blocking voltage-dependent outward K(+) currents. C-1-blocked recombinant Kv2.1-mediated currents more specifically than currents mediated by Kv1, -3, and -4 family channels (Kv1.4, 3.1, 4.2). Additionally, C-1 had little effect on currents recorded from MIN6 cells expressing a dominant-negative Kv2.1 alpha-subunit. The insulinotropic effect of acute Kv2.1 inhibition resulted from enhanced membrane depolarization and augmented intracellular Ca(2+) responses to glucose. Immunohistochemical staining of mouse pancreas sections showed that expression of Kv2.1 correlated highly with insulin-containing beta-cells, consistent with the ability of C-1 to block voltage-dependent outward K(+) currents in isolated mouse beta-cells. Antagonism of Kv2.1 in an ex vivo perfused mouse pancreas model enhanced first- and second-phase insulin secretion, whereas glucagon secretion was unaffected. The present study demonstrates that Kv2.1 is an important component of beta-cell stimulus-secretion coupling, and a compound that enhances, but does not initiate, beta-cell electrical activity by acting on Kv2.1 would be a useful antidiabetic agent.  相似文献   

14.
The voltage-gated potassium channels Kv3.1 and Kv3.3 are widely expressed in the brain, including areas implicated in the control of motor activity and in areas thought to regulate arousal states. Although Kv3.1 and Kv3.3-single mutants show some physiological changes, previous studies revealed relatively subtle behavioral alterations suggesting that Kv3.1 and Kv3.3 channel subunits may be encoded by a pair of redundant genes. In agreement with this hypothesis, Kv3.1/Kv3.3-deficient mice display a 'strong' mutant phenotype that includes motor dysfunction (ataxia, myoclonus, tremor) and hyperactivity when exposed to a novel environment. In this paper we report that Kv3.1/Kv3.3-deficient mice are also constitutively hyperactive. Compared to wildtype mice, double mutants display 'restlessness' that is particularly prominent during the light period, when mice are normally at rest, characterized by more than a doubling of ambulatory and stereotypic activity, and accompanied by a 40% sleep reduction. When we reinvestigated both single mutants, we observed constitutive increases of ambulatory and stereotypic activity in conjunction with sleep loss in Kv3.1-single mutants but not in Kv3.3-single mutants. These findings indicate that the absence of Kv3.1-channel subunits is primarily responsible for the increased motor drive and the reduction in sleep time.  相似文献   

15.
Modulation of some Kv3 family potassium channels by protein kinase C (PKC) regulates their amplitude and kinetics and adjusts firing patterns of auditory neurons in response to stimulation. Nevertheless, little is known about the modulation of Kv3.3, a channel that is widely expressed throughout the nervous system and is the dominant Kv3 family member in auditory brainstem. We have cloned the cDNA for the Kv3.3 channel from mouse brain and have expressed it in a mammalian cell line and in Xenopus oocytes to characterize its biophysical properties and modulation by PKC. Kv3.3 currents activate at positive voltages and undergo inactivation with time constants of 150-250 ms. Activators of PKC increased current amplitude and removed inactivation of Kv3.3 currents, and a specific PKC pseudosubstrate inhibitor peptide prevented the effects of the activators. Elimination of the first 78 amino acids of the N terminus of Kv3.3 produced noninactivating currents suggesting that PKC modulates N-type inactivation, potentially by phosphorylation of sites in this region. To identify potential phosphorylation sites, we investigated the response of channels in which serines in this N-terminal domain were subjected to mutagenesis. Our results suggest that serines at positions 3 and 9 are potential PKC phosphorylation sites. Computer simulations of model neurons suggest that phosphorylation of Kv3.3 by PKC may allow neurons to maintain action potential height during stimulation at high frequencies, and may therefore contribute to stimulus-induced changes in the intrinsic excitability of neurons such as those of the auditory brainstem.  相似文献   

16.
Dopamine (DA) release in the CNS is critical for motor control and motivated behaviors. Dysfunction of its regulation is thought to be implicated in drug abuse and in diseases such as schizophrenia and Parkinson's. Although various potassium channels located in the somatodendritic compartment of DA neurons such as G-protein-gated inward rectifying potassium channels (GIRK) have been shown to regulate cell firing and DA release, little is presently known about the role of potassium channels localized in the axon terminals of these neurons. Here we used fast-scan cyclic voltammetry to study electrically-evoked DA release in rat dorsal striatal brain slices. We find that although G-protein-gated inward rectifying (GIRK) and ATP-gated (K(ATP)) potassium channels play only a minor role, voltage-gated potassium channels of the Kv1 family play a major role in regulating DA release. The use of Kv subtype-selective blockers confirmed a role for Kv1.2, 1.3 and 1.6, but not Kv1.1, 3.1, 3.2, 3.4 and 4.2. Interestingly, Kv1 blockers also reduced the ability of quinpirole, a D2 receptor agonist, to inhibit evoked DA overflow, thus suggesting that Kv1 channels also regulate presynaptic D2 receptor function. Our work identifies Kv1 potassium channels as key regulators of DA release in the striatum.  相似文献   

17.
Kv3.3 K+ channels are believed to incorporate an NH2-terminal domain to produce an intermediate rate of inactivation relative to the fast inactivating K+ channels Kv3.4 and Kv1.4. The rate of Kv3.3 inactivation has, however, been difficult to establish given problems in obtaining consistent rates of inactivation in expression systems. This study characterized the properties of AptKv3.3, the teleost homologue of Kv3.3, when expressed in Chinese hamster ovary (CHO) or human embryonic kidney (HEK) cells. We show that the properties of AptKv3.3 differ significantly between CHO and HEK cells, with the largest difference occurring in the rate and voltage dependence of inactivation. While AptKv3.3 in CHO cells showed a fast and voltage-dependent rate of inactivation consistent with N-type inactivation, currents in HEK cells showed rates of inactivation that were voltage-independent and more consistent with a slower C-type inactivation. Examination of the mRNA sequence revealed that the first methionine start site had a weak Kozak consensus sequence, suggesting that the lack of inactivation in HEK cells could be due to translation at a second methionine start site downstream of the NH2-terminal coding region. Mutating the nucleotide sequence surrounding the first methionine start site to one more closely resembling a Kozak consensus sequence produced currents that inactivated with a fast and voltage-dependent rate of inactivation in both CHO and HEK cells. These results indicate that under the appropriate conditions Kv3.3 channels can exhibit fast and reliable inactivation that approaches that more typically expected of "A"-type K+ currents.  相似文献   

18.
19.
K+ activates many inward rectifier and voltage-gated K+ channels. In each case, an increase in K+ current through the channel can occur despite a reduced driving force. We have investigated the molecular mechanism of K+ activation of the inward rectifier K+ channel, Kir3.1/Kir3.4, and the voltage-gated K+ channel, Kv1.4. In the Kir3.1/Kir3.4 channel, mutation of an extracellular arginine residue, R155, in the Kir3.4 subunit markedly reduced K+ activation of the channel. The same mutation also abolished Mg2+ block of the channel. Mutation of the equivalent residue in Kv1.4 (K532) abolished K+ activation as well as C-type inactivation of the Kv1.4 channel. Thus, whereas C-type inactivation is a collapse of the selectivity filter, K+ activation could be an opening of the selectivity filter. K+ activation of the Kv1.4 channel was enhanced by acidic pH. Mutation of an extracellular histidine residue, H508, that mediates the inhibitory effect of protons on Kv1.4 current, abolished both K+ activation and the enhancement of K+ activation at acidic pH. These results suggest that the extracellular positive charges in both the Kir3.1/Kir3.4 and the Kv1.4 channels act as "guards" and regulate access of K+ to the selectivity filter and, thus, the open probability of the selectivity filter. Furthermore, these data suggest that, at acidic pH, protonation of H508 inhibits current through the Kv1.4 channel by decreasing K+ access to the selectivity filter, thus favoring the collapse of the selectivity filter.  相似文献   

20.
Because the neuronal membrane properties and firing characteristics are crucially affected by the depolarization-activated K(+) channel (Kv) subunits, data about the Kv distribution may provide useful information regarding the functionality of the neurons situated in the cochlear nucleus (CN). Using immunohistochemistry in free-floating slices, the distribution of seven Kv subunits was described in the rat CN. Positive labeling was observed for Kv1.1, 1.2, 1.6, 3.1, 3.4, 4.2, and 4.3 subunits. Giant and octopus neurons showed particularly strong immunopositivity for Kv3.1; octopus neurons showed intense Kv1.1- and 1.2-specific reactions also. In the latter case, an age-dependent change of the expression pattern was also documented; although both young and older animals produced definite labeling for Kv1.2, the intensity of the reaction increased in older animals and was accompanied with the translocation of the Kv1.2 subunits to the cell surface membrane. The granule cell layer exhibited strong Kv4.2-specific immunopositivity, and markedly Kv4.2-positive glomerular synapses were also seen. It was found that neither giant nor pyramidal cells were uniform in terms of their Kv expression patterns. Our data provide new information about the Kv expression of the CN and also suggest potential functional heterogeneity of the giant and pyramidal cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号