首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Tattooing is one of a number of DNA delivery methods which results in an efficient expression of an introduced gene in the epidermal and dermal layers of the skin. The tattoo procedure causes many minor mechanical injuries followed by hemorrhage, necrosis, inflammation and regeneration of the skin and thus non-specifically stimulates the immune system. DNA vaccines delivered by tattooing have been shown to induce higher specific humoral and cellular immune responses than intramuscularly injected DNA. In this study, we focused on the comparison of DNA immunization protocols using different routes of administrations of DNA (intradermal tattoo versus intramuscular injection) and molecular adjuvants (cardiotoxin pre-treatment or GM-CSF DNA co-delivery). For this comparison we used the major capsid protein L1 of human papillomavirus type 16 as a model antigen. L1-specific immune responses were detected after three and four immunizations with 50 μg plasmid DNA. Cardiotoxin pretreatment or GM-CSF DNA co-delivery substantially enhanced the efficacy of DNA vaccine delivered intramuscularly by needle injection but had virtually no effect on the intradermal tattoo vaccination. The promoting effect of both adjuvants was more pronounced after three rather than four immunizations. However, three DNA tattoo immunizations without any adjuvant induced significantly higher L1-specific humoral immune responses than three or even four intramuscular DNA injections supported by molecular adjuvants. Tattooing also elicited significantly higher L1-specific cellular immune responses than intramuscularly delivered DNA in combination with adjuvants. In addition, the lymphocytes of mice treated with the tattoo device proliferated more strongly after mitogen stimulation suggesting the presence of inflammatory responses after tattooing. The tattoo delivery of DNA is a cost-effective method that may be used in laboratory conditions when more rapid and more robust immune responses are required.  相似文献   

2.
Adjuvants and the promotion of Th1-type cytokines in tumour immunotherapy   总被引:4,自引:0,他引:4  
Immunotherapy includes both active and passive mechanisms that have the potential to treat many tumour types. Whereas monoclonal antibodies may kill cells by merely binding to them, 'cancer vaccines' involve the induction of an active immune response. The activation of tumour antigen-specific T-helper and cytotoxic T lymphocytes or non-specific macrophages and natural killer (NK) cells using immunotherapeutic approaches may lead to the subsequent destruction of tumour tissue. Administration of a tumour antigen alone is often not sufficient to stimulate an appropriate immune response. However, incorporating an immunological adjuvant into a vaccine regime often improves anti-tumour immunity. There are various types of adjuvants used in immunotherapy, ranging from microbial, chemical, and cellular components to proteins and cytokines. Previous reports have demonstrated that the induction of Th1-promoting cytokines, using specific adjuvants, can enhance anti-tumour immunity and can reduce or even prevent tumour growth. There is also increasing evidence that many adjuvants induce Th1-type cytokines, which correlates with the induction anti-tumour immunity. Th1-type responses which comprise cell-mediated immunity are characterised by the secretion of interferon-gamma by T cells, which is induced by antigen-presenting cell (APC)-derived IL-12. This review describes immunoadjuvants that are currently undergoing preclinical investigation, and emerging clinical data revealing that adjuvants which induce Th1-type responses can improve the efficacy of cancer vaccines. Therefore, the use of Th1-inducing adjuvants may provide an essential strategy for the future success of immunotherapy.  相似文献   

3.
DNA or nucleic acid immunization has been shown to induce both antigen-specific cellular and humoral immune responses in vivo. Moreover, immune responses induced by DNA immunization can be enhanced and modulated by the use of molecular adjuvants. To engineer the immune response in vivo towards more T-helper (Th)1-type cellular responses, we investigated the co-delivery of inteferon (IFN)-gamma, interleukin (IL)-12, and IL-18 genes along with DNA vaccine constructs. We observed that both antigen-specific humoral and cellular immune responses can be modulated through the use of cytokine adjuvants in mice. Most of this work has been performed in rodent models. There has been little confirmation of this technology in primates. We also evaluated the immunomodulatory effects of this approach in rhesus macaques, since non-human primates represent the most relevant animal models for human immunodeficiency virus (HIV) vaccine studies. As in the murine studies, we also observed that each Th1 cytokine adjuvant distinctively regulated the level of immune responses generated. Co-immunization of IFN-gamma and IL-18 in macaques enhanced the level of antigen-specific antibody responses. Similarly, co-delivery of IL-12 and IL-18 also enhanced the level of antigen-specific Th proliferative responses. These results extend this adjuvant strategy in a more relevant primate model and support the potential utility of these molecular adjuvants in DNA vaccine regimens.  相似文献   

4.
Several vaccines have been investigated experimentally in the herpes simplex virus type 2 (HSV-2) model system. While it is believed that CD4+-T-cell responses are important for protection in general, the correlates of protection from HSV-2 infection are still under investigation. Recently, the use of molecular adjuvants to drive vaccine responses induced by DNA vaccines has been reported in a number of experimental systems. We sought to take advantage of this immunization model to gain insight into the correlates of immune protection in the HSV-2 mouse model system and to further explore DNA vaccine technology. To investigate whether the Th1- or Th2-type immune responses are more important for protection from HSV-2 infection, we codelivered the DNA expression construct encoding the HSV-2 gD protein with the gene plasmids encoding the Th1-type (interleukin-2 [IL-2], IL-12, IL-15, and IL-18) and Th2-type (IL-4 and IL-10) cytokines in an effort to drive immunity induced by vaccination. We then analyzed the modulatory effects of the vaccine on the resulting immune phenotype and on the mortality and the morbidity of the immunized animals following a lethal challenge with HSV-2. We observed that Th1 cytokine gene coadministration not only enhanced the survival rate but also reduced the frequency and severity of herpetic lesions following intravaginal HSV challenge. On the other hand, coinjection with Th2 cytokine genes increased the rate of mortality and morbidity of the challenged mice. Moreover, of the Th1-type cytokine genes tested, IL-12 was a particularly potent adjuvant for the gD DNA vaccination.  相似文献   

5.
Langerhans cells in the epidermis of skin are potent antigen-presenting cells that trigger the immune system to respond to invading microorganisms. We have previously shown that epidermal powder immunization with a powdered inactivated influenza virus vaccine, by targeting the Langerhans cell-rich epidermis, was more efficacious than deeper tissue injection using a needle and syringe. We now report enhanced humoral and cellular immune responses to recombinant hepatitis B surface antigen following epidermal powder immunization. We observed that epidermal powder immunization with unadjuvanted hepatitis B surface antigen elicited an antibody titre equivalent to that induced by the alum-adjuvanted vaccine delivered by intramuscular injection, suggesting that epidermal powder immunization can overcome the need for adjuvantation. We demonstrated that synthetic CpG oligonucleotides (CpG DNA) could be coformulated with hepatitis B surface antigen and delivered by epidermal powder immunization to further augment the antibody response and modulate T helper cell activities. Epidermal powder immunization of hepatitis B surface antigen formulated with CpG DNA formulations resulted in 1.5-2.0 logs higher IgG antibody titres than alum-adjuvanted commercial vaccines administered by intramuscular injection. Formulation of hepatitis B surface antigen with CpG DNA elicited an augmented IgG2a antibody response and increased frequency of IFN-gamma secreting cells. In addition, CpG DNA was found to activate epidermal Langerhans cells and stimulate the production of TNF-alpha and IL-12 cytokines by epidermal cells, explaining its strong adjuvant activity following epidermal powder immunization. These results show that epidermal powder immunization is a safe and effective method to deliver hepatitis B surface antigen and the addition of new adjuvants, such as CpG DNA, may further enhance the efficacy of this vaccine.  相似文献   

6.
An important limitation of DNA immunization in nonhuman primates is the difficulty in generating high levels of antigen-specific antibody responses; strategies to enhance the level of immune responses to DNA immunization may be important in the further development of this vaccine strategy for humans. We approached this issue by testing the ability of molecular adjuvants to enhance the levels of immune responses generated by multicomponent DNA vaccines in rhesus macaques. Rhesus macaques were coimmunized intramuscularly with expression plasmids bearing genes encoding Th1 (interleukin 2 [IL-2] and gamma interferon)- or Th2 (IL-4)-type cytokines and DNA vaccine constructs encoding human immunodeficiency virus Env and Rev and simian immunodeficiency virus Gag and Pol proteins. We observed that the cytokine gene adjuvants (especially IL-2 and IL-4) significantly enhanced antigen-specific humoral immune responses in the rhesus macaque model. These results support the assumption that antigen-specific responses can be engineered to a higher and presumably more desirable level in rhesus macaques by genetic adjuvants.  相似文献   

7.
Synthetic oligodeoxynucleotides (ODN) containing immunostimulatory CpG motifs (CpG ODN) are potent adjuvants to protein antigens administered by parenteral or mucosal routes to BALB/c mice. To date, there have been no studies using combined parenteral/mucosal approaches with CpG DNA as adjuvant. In this study we evaluated different parenteral prime-mucosal boost and mucosal prime-parenteral boost strategies using hepatitis B surface antigen (HBsAg) alone or with different adjuvants: aluminum hydroxide (alum), cholera toxin (CT), CpG ODN. In addition, since CpG ODN has previously been shown to act synergistically with other adjuvants after parenteral or mucosal delivery, we also evaluated adjuvant combinations: alum+CpG ODN and CT+CpG ODN. The effects of adjuvant and administration strategy on systemic and mucosal humoral responses were measured, as well as cell-mediated immune responses (cytotoxic T lymphocyte activity). These results were compared to parenteral only or mucosal only strategies. Our findings demonstrate that parenteral immunization can prime for mucosal responses even when different lymph nodes were being targeted. HBsAg-specific immune responses (IgG in plasma, cytotoxic T lymphocytes) induced by parenteral prime could all be significantly enhanced by mucosal boosting and despite the fact that intramuscular immunization alone could not induce mucosal IgA, it could prime for a subsequent mucosal boost. In addition, the presence of adjuvant at time of boosting could influence the nature of subsequent immune responses (Th1 vs. Th2). Mice primed intranasally could have their systemic immune responses boosted with a parenteral administration and it was also possible to enhance mucosal responses induced by intranasal prime with an intramuscular boost.  相似文献   

8.
Synthetic lipopeptides derived from the bacterial cell wall component lipoprotein activate B-lymphocytes and macrophages/monocytes in vitro. In vivo they constitute potent immunoadjuvants for a broad range of different antigens and species comparable or superior to Freund's adjuvant. Here, we demonstrate that P(3)CSK(4), representing a highly active lipopentapeptide derivative in vitro, significantly enhances and accelerates the humoral immune response to tetanus toxoid. P(3)CSK(4) could substitute for up to 90% of the antigen without any decrease in the specific IgG level, and the presence of the lipopeptide resulted in a prolonged production of specific IgG in time. Investigations using P(3)CSK(4) as an adjuvant in genetic immunization confirmed earlier data demonstrating that lipopeptides constitute adjuvants for low-immunogenic DNA constructs and/or for application routes resulting in weak immune responses. We monitored a lipopeptide-dependent shift from a Th1-type to Th2-type response, when DNA immunization was followed by i.p. administration of the lipopeptide adjuvant.  相似文献   

9.
Vaccine adjuvants: current state and future trends   总被引:14,自引:0,他引:14  
The problem with pure recombinant or synthetic antigens used in modern day vaccines is that they are generally far less immunogenic than older style live or killed whole organism vaccines. This has created a major need for improved and more powerful adjuvants for use in these vaccines. With few exceptions, alum remains the sole adjuvant approved for human use in the majority of countries worldwide. Although alum is able to induce a good antibody (Th2) response, it has little capacity to stimulate cellular (Th1) immune responses which are so important for protection against many pathogens. In addition, alum has the potential to cause severe local and systemic side-effects including sterile abscesses, eosinophilia and myofascitis, although fortunately most of the more serious side-effects are relatively rare. There is also community concern regarding the possible role of aluminium in neurodegenerative diseases such as Alzheimer's disease. Consequently, there is a major unmet need for safer and more effective adjuvants suitable for human use. In particular, there is demand for safe and non-toxic adjuvants able to stimulate cellular (Th1) immunity. Other needs in light of new vaccine technologies are adjuvants suitable for use with mucosally-delivered vaccines, DNA vaccines, cancer and autoimmunity vaccines. Each of these areas are highly specialized with their own unique needs in respect of suitable adjuvant technology. This paper reviews the state of the art in the adjuvant field, explores future directions of adjuvant development and finally examines some of the impediments and barriers to development and registration of new human adjuvants.  相似文献   

10.
A safe and potent adjuvant is needed for development of mucosal vaccines against etiological agents, such as influenza virus, that enter the host at mucosal surfaces. Cytokines are potential adjuvants for mucosal vaccines because they can enhance primary and memory immune responses enough to protect against some infectious agents. For this study, we tested 26 interleukin (IL) cytokines as mucosal vaccine adjuvants and compared their abilities to induce antigen (Ag)-specific immune responses against influenza virus. In mice intranasally immunized with recombinant influenza virus hemagglutinin (rHA) plus one of the IL cytokines, IL-1 family cytokines (i.e., IL-1α, IL-1β, IL-18, and IL-33) were found to increase Ag-specific immunoglobulin G (IgG) in plasma and IgA in mucosal secretions compared to those after immunization with rHA alone. In addition, high levels of both Th1- and Th2-type cytokines were observed in mice immunized with rHA plus an IL-1 family cytokine. Furthermore, mice intranasally immunized with rHA plus an IL-1 family cytokine had significant protection against a lethal influenza virus infection. Interestingly, the adjuvant effects of IL-18 and IL-33 were significantly decreased in mast cell-deficient W/W(v) mice, indicating that mast cells have an important role in induction of Ag-specific mucosal immune responses induced by IL-1 family cytokines. In summary, our results demonstrate that IL-1 family cytokines are potential mucosal vaccine adjuvants and can induce Ag-specific immune responses for protection against pathogens like influenza virus.  相似文献   

11.
目的:考查DNA疫苗注射免疫后电脉冲和布吡卡因佐剂化DNA疫苗递送方式对A型肉毒毒素DNA核酸疫苗免疫效果的影响。方法:A型肉毒毒素DNA复制子疫苗和传统DNA疫苗肌肉注射免疫小鼠后电脉冲和布吡卡因佐剂化DNA后再肌肉注射免疫小鼠;检测免疫小鼠的抗体和细胞水平,并分析抗体亚类。结果:电脉冲和布吡卡因这二种递送方式均增强DNA复制子疫苗和传统DNA疫苗的体液免疫和细胞免疫效果;电脉冲提高DNA疫苗免疫效果更为明显,并且电脉冲和布吡卡因组合这种递送方式增强DNA疫苗体液免疫和细胞免疫水平最高;与传统DNA疫苗相比,A型肉毒毒素DNA复制子疫苗在这些递送方式下均诱导产生了更好的特异性体液免疫和细胞免疫应答,并且这些递送方式没有改变DNA疫苗的Th1/Th2免疫应答特性,即DNA复制子疫苗诱导产生Th1/Th2混合免疫应答但偏向于Th2途经,而传统DNA疫苗则完全偏向于Th2途经。结论:电脉冲和布吡卡因增强DNA复制子疫苗和传统DNA疫苗的免疫效果,是提高DNA疫苗免疫原性的良好策略。  相似文献   

12.
TNF superfamily member, TL1A, is a potential mucosal vaccine adjuvant   总被引:1,自引:0,他引:1  
The identification of cytokine adjuvants capable of inducing an efficient mucosal immune response against viral pathogens has been long anticipated. Here, we attempted to identify the potential of tumor necrosis factor superfamily (TNFS) cytokines to function as mucosal vaccine adjuvants. Sixteen different TNFS cytokines were used to screen mucosal vaccine adjuvants, after which their immune responses were compared. Among the TNFS cytokines, intranasal immunization with OVA plus APRIL, TL1A, and TNF-α exhibited stronger immune response than those immunized with OVA alone. TL1A induced the strongest immune response and augmented OVA-specific IgG and IgA responses in serum and mucosal compartments, respectively. The OVA-specific immune response of TL1A was characterized by high levels of serum IgG1 and increased production of IL-4 and IL-5 from splenocytes of immunized mice, suggesting that TL1A might induce Th2-type responses. These findings indicate that TL1A has the most potential as a mucosal adjuvant among the TNFS cytokines.  相似文献   

13.
The immaturity of the immune system increases the susceptibility of young infants to infectious diseases and prevents the induction of protective immune responses by vaccines. We previously reported that Mycobacterium bovis bacillus Calmette-Guérin (BCG) vaccination induces a potent Th1 response to mycobacterial Ags in newborns. In this study, we evaluated the influence of BCG on the response to unrelated vaccines given in early life. Newborns were randomly allocated to one of three study groups receiving BCG at birth, when infants received their first dose of hepatitis B and oral polio vaccines; at 2 mo of age, when infants received their first dose of diphtheria and tetanus vaccines; or at 4.5 mo of age, when immune responses to vaccines were measured. Administration of BCG at the time of priming markedly increased the cellular and Ab responses to the hepatitis B vaccine, but had only a limited influence on the cytokine response to tetanus toxoid and no effect on the Ab responses to tetanus and diphtheria toxoids. Although BCG induced a potent Th1-type response to mycobacterial Ags, it promoted the production of both Th1- and Th2-type cytokines in response to unrelated vaccines. The effect of BCG was apparent at the systemic level, as it increased the Ab response to oral polio vaccine. These results demonstrate that BCG influences the immune response to unrelated Ags in early life, likely through its influence on the maturation of dendritic cells.  相似文献   

14.
Data obtained in animals indicate that neonatal immune responses are biased toward Th2. This could reduce the efficacy of vaccines against viral and mycobacterial diseases. The ability of human newborns to develop a Th1 immune response upon immunization has not been studied. Since the vaccine Mycobacterium bovis bacillus Calmette-Guérin (BCG) triggers a Th1-type response in adults, we investigated whether it induces a similar response in newborns and whether age at vaccination influences immunogenicity. We found that BCG vaccination at birth induces a memory Th1-type response of similar magnitude to that when given later in life. This study demonstrates that human newborns can be immunized against pathogens controlled by a Th1 immune response.  相似文献   

15.
A requisite for vaccines to confer protection against intracellular infections such as Human Immunodeficiency Virus or Mycobacterium tuberculosis is their capacity to induce Th1 immune responses. However, they may fail to do so in Africa and South East Asia, where most individuals have a dominant preexistent Th2 immune profile, due to persistent helminthic parasitic infections, which may undermine any Th1 response. It is well established that DNA vaccines induce strong Th1 biased immune responses against an encoded antigen, depending on the route and mode of immunization. Here, we demonstrate that intradermal immunization with plasmid DNA encoding beta-gal (pCMV-LacZ) of Schistosoma-infected mice, with preexistent dominant Th2 immune background, induce a strong Th1 anti-beta-gal response, as opposed to immunized with beta-gal only. Importantly, the established protective Th2 immune response to schistosomes was not disrupted. These findings strongly support the possibility of using plasmid DNA as a Th1 inducing adjuvant when immunizing populations with a strong preexistent Th2 immune profile.  相似文献   

16.
The anti-biowarfare anthrax and plague vaccines require repeated dosing to achieve adequate protection. To test the hypothesis that this limited immunogenicity results from the nature of vaccine interactions with the host innate immune system, we investigated molecular and cellular interactions between vaccines, dendritic cells (DCs), and T cells and explored the potential for adjuvants (pertussis) to boost induction of host immunity. Human monocyte-derived DCs were matured in the presence of vaccines and analyzed for their ability to induce Th1/Th2 development from naive T cells, expression of cell surface maturation/costimulation molecules, and cytokine production. The vaccines showed different behavior patterns. Although the plague vaccine is equivalent to control maturation factors in maturation and stimulation of DCs and induces strong MLR and Th outgrowth, the anthrax vaccine is a poor inducer of DC maturation, as indicated by low levels of HLA-DR, CD86, and CD83 induction and minimal proinflammatory cytokine production. Interestingly, however, anthrax vaccine-treated DCs stimulate Th1 and Th2 outgrowth and a limited MLR response. There was no sustained negative modulatory effects of the anthrax vaccine on DCs, and its limited stimulatory effects could be overridden by coculture with pertussis. These results were supported by analysis of anthrax vaccine recall responses in subjects vaccinated using pertussis as an adjuvant, who demonstrate anthrax-specific effector T cell responses. These data show that the anthrax vaccine is a suboptimal DC stimulus that may in part explain the observation that it requires repeated administration in vivo and offer a rational basis for the use of complementary DC-maturing adjuvants in combined immunotherapy.  相似文献   

17.
One potential reason for the enhancement of immune responses to DNA vaccines following electroporation is increased gene expression. However, the inflammatory response and accompanying cellular infiltration stimulated by electroporation may also be essential for enhancing immune responses to DNA vaccines. These parameters were investigated in pigs, using different electroporation conditions to induce different levels of gene expression and inflammation. Results indicated that the least effective strategy was conventional intramuscular injection where there was low gene expression and low inflammatory cell infiltration. The most efficacious strategy was plasmid administration immediately followed by electroporation. This latter set of conditions elicited a combination of high gene expression and high cellular infiltration. This indicates that electroporation enhances immune responses to DNA vaccines through increased gene expression and inflammatory cell infiltration.  相似文献   

18.
It has previously been reported that herpes simplex virus (HSV)-2 gD DNA vaccine preferentially induces T-helper (Th) 1-type cellular immune responses, whereas the literature supports the view that subunit vaccines tend to induce potent antibody responses, supporting a Th2 bias. Here, using an HSV gD vaccine model, we investigated whether priming and boosting with a DNA or protein vaccine could induce both potent antibody and Th1-type cellular immune responses. When animals were primed with DNA and boosted with protein, both antibody and Th-cell proliferative responses were significantly enhanced. Furthermore, production of Th1-type cytokines (interleukin-2, interferon-gamma) was enhanced by DNA priming-protein boosting. In contrast, protein priming-DNA boosting produced antibody levels similar to those following protein-protein vaccination but failed to further enhance Th-cell proliferative responses or cytokine production. DNA priming-protein boosting resulted in an increased IgG2a isotype (a Th1 indicator) profile, similar to that induced by DNA-DNA vaccination, whereas protein priming-DNA boosting caused an increased IgG1 isotype (a Th2 indicator) profile similar to that seen after protein-protein vaccination. This result indicates that preferential induction of IgG1 or IgG2a isotype is determined by the type of priming vaccine used. Thus, this study suggests that HSV DNA priming-protein boosting could elicit both potent Th1-type cellular immune responses and antibody responses, both of which likely are important for protection against HSV infection.  相似文献   

19.
Immunization with plasmid DNA, a relatively novel technique, is a promising vaccination technique. To improve the immune response by DNA vaccination various methods have been used, such as chemical adjuvants or immunomodulatory molecules formulated into microparticles or liposomes. The aim of this research is to evaluate the immune responses of sheep immunized with DNA plasmids encoding Toxoplasma gondii dense granule antigen GRA7 formulated into three different adjuvant formulations. Sixty sheep were injected intramuscularly with the DNA plasmids. Twelve received the liposome-formulated plasmid pVAXIgGRA7, 12 Emulsigen P formulated plasmid pVAXIgGRA7 and 12 Emulsigen D formulated plasmid pVAXIgGRA7. Twelve animals were used as a control and received the vector alone. All the animals were inoculated at week 0, and week 4. Immunization of the sheep with plasmids encoding GRA7, with the different adjuvant formulations, effectively primed the immune response. After the first inoculation, moderate to high antibody responses were observed with the three different adjuvant formulations. A significantly elevated specific IgG2 response was observed in the sheep immunized with liposomes and Emulsigen D as adjuvants. In the group immunized with Emulsigen P as an adjuvant, lower IgG1 and IgG2 antibody levels were developed compared to the other treatment groups. In all the immunized groups, DNA immunization stimulated a IFN-γ response. No antibody or IFN-γ responses were detected in the control group immunized with an empty plasmid or not immunized. These results indicate that intramuscular immunization of sheep with a DNA vaccine with the adjuvants liposomes and Emulsigen D induce a significant immune response against T. gondii.  相似文献   

20.
Development of an effective vaccine for controlling H. pylori-associated infection, which is present in about half the people in the world, is a priority. The H. pylori outer inflammatory protein (oipA) has been demonstrated to be a potential antigen for a vaccine. In the present study, use of oipA gene encoded construct (poipA) for C57BL/6 mice vaccination was investigated. Whether co-delivery of IL-2 gene encoded construct (pIL-2) and B subunit heat-labile toxin of Escherichia coli gene encoded construct (pLTB) can modulate the immune response and enhance DNA vaccine efficacy was also explored. Our results demonstrated that poipA administered intradermally ('gene gun' immunization) promoted a strong Th2 immune response, whereas co-delivery of either pIL-2 or pLTB adjuvant elicited a Th1-biased immune response. PoipA administered with both pIL-2 and pLTB adjuvants promoted a strong Th1 immune response. Regardless of the different immune responses promoted by the various vaccination regimes, all immunized mice had smaller bacterial loads after H. pylori challenge than did PBS negative and pVAX1 mock controls. Co-delivery of adjuvant(s) enhances poipA DNA vaccine efficacy by shifting the immune response from being Th2 to being Th1-biased, which results in a greater reduction in bacterial load after H. pylori challenge. Both prophylactic and therapeutic vaccination can achieve sterile immunity in some subjects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号