首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In glasshouse tests, infective sap from plants infected with 17 different isolates of Tomato spotted wilt virus (TSWV) from four Australian states was inoculated to three Capsicum chinense accessions (PI 152225, PI 159236 and C00943) carrying single genes that confer hypersensitive resistance to TSWV. The normal response to inoculation was development of necrotic (hypersensitive) local lesions in inoculated leaves without systemic invasion, but 3/1386 infected plants also developed systemic susceptible reactions in addition to hypersensitive ones. Similarly when two isolates were inoculated to C. chinense backcross progeny plants, 1/72 developed systemic susceptible reactions in addition to localised hypersensitive ones. Using cultures from the four plants with susceptible reactions and following three to five further cycles of serial subculture in TSWV‐resistant C. chinense plants, four isolates were obtained that gave systemic susceptible type reactions in the three TSWV‐resistant accessions, and in TSWV‐resistant cultivated pepper (C. annuum). When three of these isolates were inoculated to tomato (Lycopersicon esculentum) breeding lines with single gene resistance to TSWV, resistance was not overcome. Similarly, none of the four isolates overcame partial resistance to TSWV in Lactuca virosa. When TSWV isolates were inoculated to tomato breeding lines carrying partial resistance from L. chilense, systemic infection developed which was sometimes followed by ‘recovery’. After four successive cycles of serial passage in susceptible cultivated pepper of a mixed culture of a resistance‐breaking isolate with the non resistance‐breaking isolate from which it came, the resistance‐breaking isolate remained competitive as both were still found. However, when the same resistance‐ breaking isolate was cultured alone, evidence of partial reversion to wild‐type behaviour was eventually obtained after five but not four cycles of long term serial subculture in susceptible pepper, as by then the culture had become a mixture of both types of strain. This work suggests that resistance‐breaking strains of TSWV that overcome single gene hypersensitive resistance in pepper are relatively stable. The findings have important implications for situations where resistant pepper cultivars are deployed widely in the field without taking other control measures as part of an integrated TSWV management strategy.  相似文献   

2.
Induced resistance in plants is a systemic response to certain microorganisms or chemicals that enhances basal defense responses during subsequent plant infection by pathogens. Inoculation of chile pepper with zoospores of non-host Phytophthora nicotianae or the chemical elicitor beta-aminobutyric acid (BABA) significantly inhibited foliar blight caused by Phytophthora capsici. Tissue extract analyses by GC/MS identified conserved change in certain metabolite concentrations following P. nicotianae or BABA treatment. Induced chile pepper plants had reduced concentrations of sucrose and TCA cycle intermediates and increased concentrations of specific hexose-phosphates, hexose-disaccharides and amino acids. Galactose, which increased significantly in induced chile pepper plants, was shown to inhibit growth of P. capsici in a plate assay.  相似文献   

3.
4.
Tomato spotted wilt virus (TSWV) causes economically important losses in many crops, worldwide. In pepper (Capsicum annuum), the best method for disease control has been breeding resistant cultivars by introgression of gene Tsw from Capsicum chinense. However, this resistance has two drawbacks: (a) it is not efficient if plants are infected at early growth stages and under prolonged high temperatures, and (b) it is rapidly overcome by TSWV evolution. In this work, we selected and evaluated a new accession from Capsicum baccatum, named PIM26‐1, using a novel approach consisting in measuring how three parameters related to virus infection changed over time, in comparison to a susceptible pepper variety (Negral) and a resistant (with Tsw) accession (PI‐159236): (a) The level of resistance to virus accumulation was estimated as an opposite to absolute fitness, W=er, being r the viral multiplication rate calculated by quantitative RT‐PCR; (b); the level of resistance to virus infection was estimated as the Kaplan–Meier survival time for no infection using DAS‐ELISA to identify TSWV‐infected plants; (c) the level of tolerance was estimated as the Kaplan–Meier survival time for no appearance of severe symptoms. Our results showed that the levels of both resistance parameters against TSWV wild type (WT) and Tsw‐resistance breaking (TBR) isolates were higher in PIM26‐1 than in the susceptible pepper variety Negral and similar to the resistant variety PI‐159236 against the TBR isolate. However, PIM26‐1 showed a very high tolerance (none of the plants developed severe symptoms) to the WT and TBR isolates in contrast to Negral for WT and TBR or PI‐159236 for TBR (most TSWV‐inoculated plants developed severe symptoms). All this indicate that the new accession PIM26‐1 is a good candidate for breeding programmes to avoid damages caused by TSWV TBR isolates in pepper.  相似文献   

5.
The relationship between age-related resistance of peper plants to Phytophthora capsici and contents of carbohydrates, amino acids, phenolics and mineral nutrients in pepper stems was studied using two pepper cultivars, Hanbyul (susceptible) and Kingkun (resistant). With increasing age of pepper plants, the two cultivars, which differ in their susceptibility to Phytophthora blight, became gradually resistant to the disease. The cultivar Kingkun distinctly showed the age-related resistance to Phytophthora blight at the second branch stage. The weight of dry matter in healthy stems of pepper plants at the second branch stage was twice that at the six leaf stage. The resistant cultivar Kingkun contained lower levels of fructose, glucose and sucrose in stems than the susceptible cultivar Hanbyul at the different developmental stages. No consistent differences between the developmental stages of the plants were recognized with regard to their glucose content. However, the contents of fructose and sucrose in the cultivar Hanbyul greatly increased at the second branch stage. The levels of inositol reduced in both pepper cultivars during plant development. In view of the fact that there were only slight changes in the amount of total amino acids, it seems unlikely that there is a relationship between the amino acid metabolism and the retardation of Phytophthora infection during plant development. The amounts of total phenolic compounds in pepper stems were relatively low at the later growth stages of the plants and also in the resistant cultivar Kingkun. The contents of macroelemental nutrients such as nitrogen, phosphorus, potassium, calcium and magnesium were drastically reduced in pepper stems at the later plant growth stage. No significant differences between the cultivars or the plant growth stages were found in the silicon and microelemental nutrients such as sodium, iron, zinc and manganese. These results suggest that the expression of age-related resistance of pepper plants may be due to the morphological and nutritional changes in tissues of pepper stems during ageing, i.e. the pronounced increase in weight of dry matter, the significant decrease in amounts of mineral nutrients such as nitrogen, phosphorus, potassium, calcium and magnesium, and the tow contents of fructose, glucose and sucrose in the stem tissues.  相似文献   

6.
In glasshouse tests, sap from plants infected with 15 different isolates of tomato spotted wilt tospovirus (TSWV) from three Australian states was inoculated to nine genotypes of tomato carrying TSWV resistance gene Sw-5 or one of its alleles. A further two resistant tomato genotypes were inoculated with four isolates each. The normal response in resistant genotypes was development of necrotic local lesions in inoculated leaves without systemic invasion, but 22/752 plants also developed systemic reactions in addition to local hypersensitive ones. Using cultures from two of these systemically infected plants and following four cycles of subculture in TSWV resistant tomato plants, two isolates were obtained that gave susceptible type systemic reactions but no necrotic spots in inoculated leaves of resistant tomatoes. When these two isolates, DaWA-1d and ToTAS-1d, were maintained by repeated subculture for 10 successive cycles in Nicotiana glutinosa or a susceptible tomato genotype, they still induced susceptible type systemic reactions when inoculated to resistant tomato plants. They were therefore stable resistance breaking isolates as regards overcoming gene Sw-5. When resistance-breaking isolate DaWA-1ld multiplied together with original isolate DaWA-l in susceptible tomato, it was fully competitive with the original isolate. However, when DaWA-ld and ToTAS-ld were inoculated to TSWV resistant Lycopersicon peruvianum lines PI 128660R and PI 128660S and to TSWV resistant Capsicum chinense lines PI 152225, PI 159236 and AVRDC CO0943, they failed to overcome the resistance, producing only necrotic local lesions without systemic infection. Thus, although the ease of selection, stability and competitive ability of resistance breaking isolates of TSWV is cause for concern, L. peruvianum and C. chinense lines are available which are effective against them. The effectiveness of the resistance to TSWV in nine tomato genotypes was examined in a field experiment. Spread was substantial in the susceptible control genotype infecting 42% of plants. Resistance was ineffective in cv. Bronze Rebel, 26% of plants developing infection. In contrast, it held up well in the other eight resistant genotypes with only 1–3 or no plants of each becoming infected. Accumulated numbers of Thrips tabaci, Frankliniella occidentalis and F. schultzei were closely correlated with TSWV spread.  相似文献   

7.
Aims: Phytophthora capsici is a major pathogen of black pepper and zoospores play an important role in the infection process. Fluorescent pseudomonads that produce biosurfactants with zoosporicidal activities were isolated from the black pepper rhizosphere in Vietnam, and their genotypic diversity and potential to control Phy. capsici root rot was determined. Methods: Biosurfactant‐producing pseudomonads were genotypically and biochemically characterized by BOX‐polymerase chain reaction (PCR), 16S‐rDNA sequencing, reverse‐phase‐high‐performance liquid chromatography and liquid chromatography‐masss spectrometry analyses. Results: Biosurfactant‐producing fluorescent pseudomonads make up c. 1.3% of the culturable Pseudomonas population in the rhizosphere of black pepper. Although BOX‐PCR revealed substantial genotypic diversity, the isolates were shown to produce the same biosurfactants and were all identified as Pseudomonas putida. When applied to black pepper stem cuttings, several of the biosurfactant‐producing strains provided significant disease control. In absence of the disease, several of the bacterial strains promoted shoot and root growth of black pepper stem cuttings. Conclusions: Biosurfactant‐producing pseudomonads indigenous to the rhizosphere of black pepper plants are genotypically diverse and provide a novel resource for the control of Phy. capsici root rot and growth promotion of black pepper stem cuttings. Significance and Impact of the Study: The results of this study provide a strong basis for further development of supplementary strategies with antagonistic bacteria to control foot and root rot of black pepper and to promote plant growth.  相似文献   

8.
Pepper Phytophthora blight (PPB), caused by Phytophthora capsici, is an important disease of pepper in China. The extensive application of metalaxyl has resulted in widespread resistance to this fungicide in field. This study has evaluated the activities of several fungicides against the mycelial growth and sporangium germination of metalaxyl‐sensitive and metalaxyl‐resistant P. capsici isolates by determination of EC50 values. The results showed that the novel carboxylic acid amide (CAA) fungicide mandipropamid exhibited excellent inhibitory activity against PPB both in vitro and in vivo, with averagely EC50 values of 0.075 and 0.004 μg/ml in mycelial growth and sporangium germination, respectively, and over 88% efficacy in controlling PPB. The other three CAA fungicides also provided over 70% efficacy in controlling PPB. The mycelial growth was less sensitive to quinone outside inhibitor (QoI) fungicides azoxystrobin and trifloxystrobin than that of sporangium germination in P. capsici isolates. However, azoxystrobin and trifloxystrobin provided over 80% efficacy in controlling PPB. It was noted that propamocarb and cymoxanil did not exhibit activity against the mycelial growth or sporangium germination of P. capsici isolates in the in vitro tests, with over 70% efficacy in controlling PPB. The new fungicide mixture 62.5 g/l fluopicolide + 625 g/l propamocarb (trade name infinito, 687.5 g/l suspension concentrate (SC)) produced over 88% efficacy in controlling PPB caused by both metalaxyl‐sensitive and metalaxyl‐resistant isolates. The data of this study also proved that there was obviously no cross‐resistance between metalaxyl and the other tested fungicides. Therefore, these fungicides should be good alternatives to metalaxyl for the control of PPB and management of metalaxyl resistance.  相似文献   

9.
Phytophthora foot rot of black pepper caused by Phytophthora capsici is a major disease of black pepper throughout production areas in Vietnam. The disease causes collar, foot and tap root rots and eventual death of the infected vine. Potassium phosphonate was evaluated for the control of this disease in greenhouse and field trials. In greenhouse trials three-month-old vines treated with phosphonate by soil drenching (10–20 g a.i./l) and then inoculated with P. capsici mycelium (2% v/v soil) had significantly less foot rot compared to vines grown in non-treated soil. In field trials mature vines were treated with phosphonate at 50–100 g a.i/pole soil drenching or 10 g a.i./l by root infusion. After 10 days root, stem and leaf specimens were removed for bioassay by inoculation with 5 ml of P. capsici zoospores suspension (106–108 spores/ml). Soil drenching with phosphonate inhibited the colonisation of pathogen on excised leaf, stem and root tissues, significantly more than phosphonate root infusion. Our study provides further evidence supporting the efficacy of potassium phosphonate in the management of black pepper foot rot caused by P. capsici. The excised leaf and stem bioassay used in this study is a rapid and useful technique for testing the efficacy of systemic fungicides in controlling this disease.  相似文献   

10.
病原物诱导型启动子能精确控制抗病基因在侵染位点的表达,是抗病基因工程的有效工具。prp1-1是来自马铃薯谷胱甘肽巯基转移酶基因启动子的一个273bp的片段,能够快速准确地启动被侵染位点抗病基因的表达;Rs-AFP2是具有对致病性丝状真菌的广谱抗性。该研究构建prp1-1调控Rs-AFP2基因表达的载体,经农杆菌介导转化法导入辣椒。逆转录PCR检测发现,转基因辣椒只在受到疫霉菌孢子侵染时,才由prp1-1启动Rs-AFP2基因的转录。用疫霉菌孢子灌根接种转基因辣椒T1代植株,35株T1代辣椒中有29株表现出明显的疫霉菌抗性。另将23株T1代辣椒种于人工气候箱,发现其形态和发育特征与相同条件下的非转基因植株无明显区别。研究表明,prp1-1调控Rs-AFP2的诱导表达达到了增强辣椒疫霉菌抗性的目的,而且避免了负面效应的发生。  相似文献   

11.
Resistance of plants to arthropods may be lost at low or high temperatures. I tested whether the relative resistance of five genotypes of soybean, Glycine max (L.) Merr., to three isolates of the soybean aphid, Aphis glycines Matsumura, was influenced by three temperatures, 14, 21 and 28°C, in no‐choice tests in the laboratory. The interaction between temperature and the genotype of soybean influenced the population sizes of two isolates of A. glycines. Two genotypes of soybean, LD05‐16611 and PI 567597C, which usually are resistant to isolate 1 and 3, became susceptible: LD05‐16611 at the low temperature and PI 567597C at the high temperature. The genotypes PI 200538 and PI 567541B usually are susceptible to isolate 3 but were resistant at 21 and 28°C. I can only speculate as to the reason why temperature influences resistance of some genotypes of soybean to A. glycines: A. glycines may be directly influenced by temperature or indirectly influenced by changes in the host plant. Nevertheless, my results suggest that temperature may be one factor that influences the expression of resistance of soybean to A. glycines, so genotypes of soybean should be screened for resistance to the aphid at multiple temperatures.  相似文献   

12.
Criollo de Morelos 334 (CM334) is one of the most promising sources of resistance to Phytophthora capsici in pepper. This Mexican accession is distantly related to bell pepper and its resistance displays a complex inheritance. The QTLs involved in resistance to P. capsici were previously mapped. In order to transfer the resistance factors from CM334 into a bell pepper genetic background, a modified, recurrent breeding scheme was initiated. The breeding population was divided into three sub-populations which were screened by distinct phenotypic tests of increasing severity. The plants from the first sub-population were screened with low-severity tests and backcrossed to the susceptible bell pepper; the plants from the second and third sub-populations were screened by more severe resistance tests and crossed with the plants from the first and second sub-populations, respectively. In this study, the phenotypic data for the three sub-populations during five screening/intermating cycles were analysed. In parallel, the changes in allelic frequencies at molecular markers linked to the resistance QTLs were reported. The resistance phenotype and allelic frequencies strongly depended on the sub-population and screening severity. Regarding allelic frequency changes across the selection cycles, a loss of resistant QTL alleles was observed in the first sub-population, particularly for the low-effect QTLs, whereas a better conservation of the resistant QTL alleles was observed in the two other sub-populations. The same trend was observed in the phenotypic data with an increasing resistance level from the first to the third sub-populations. The changes in the allelic frequencies of loci not linked to resistance QTLs and for horticultural traits across the breeding process indicated that the recovery of the recipient parent genome was not significantly affected by the selection for resistance.Communicated by D.A. Hoisington  相似文献   

13.
Employing known susceptible and resistant genotypes and pure bacterial inoculum (0.1 OD; 108 CFU/ml?1), five different inoculation methods were tried to assess the response of tomato genotypes to Ralstonia solanacearum. This included seed‐soaking inoculation, seed‐sowing followed by inoculum drenching, or at 2‐week stage through petiole‐excision inoculation, soaking of planting medium with inoculum either directly or after imparting seedling root‐injury. Seed‐based inoculations or mere inoculum drenching at 2 weeks did not induce much disease in seedlings. Petiole inoculation induced 90–100% mortality in susceptible checks but also 50–60% mortality in normally resistant genotypes within 7–10 days. Root‐injury inoculation at 2‐week seedling stage appeared the best for early and clearer distinction between resistant and susceptible lines. The observations suggest a role played by the root system in governing genotypic resistance to the pathogen. Direct shoot inoculation is to be adopted only for selecting highly resistant lines or to thin down segregating populations during resistance breeding.  相似文献   

14.
The reaction of several cultivated potato varieties (Solarium tuberosum L.) to three strains of tobacco etch potyvirus (TEV-F, TEV-Mex21 and TEV-ATCC) and the reaction of several pepper lines (Capsicum annuum L. and C. chinense L.) to two strains of potato Y potyvirus (PVYO and PVYN) and one strain of potato A potyvirus (PVA-M) was tested. The potato varieties included in this study carried resistance genes against PVY, PVA and potato V potyvirus, but all were susceptible to TEV and developed mottle and mosaic symptoms. TEV was readily transmitted by mechanical inoculation from tobacco and potato to potato, whereas transmission from pepper to potato occurred infrequently. TEV was transmitted through potato tubers, and from pepper to potato plants by aphids. Lack of detectable systemic infection following graft-inoculation indicated extreme resistance to PVYO and PVA in several pepper lines. No pepper line was systemically infected with PVYN following mechanical inoculation (graft-inoculation was not carried out with PVYN). The development of necrotic lesions following mechanical and graft-inoculation indicated hypersensitive response to PVYO in several pepper lines which resembled the resistance responses to these potyvirus strains in potato. Results of this study together with previous work indicate that C. annuum cv. Avelar is resistant to four potyviruses [PVY, PVA, pepper mottle potyvirus (PepMoV) and some isolates of TEV]; C. annuum cv. Criollo de Morelos and C. chinense PI 152225 and PI 159236 are resistant to three potyviruses (PVY, PepMoV and PVA; and PVY, PepMoV and TEV, respectively); C. annuum 9093–1 and 92016–1 are resistant to PVY and PepMoV; and C. annuum cv. Jupiter and C. annuum cv. RNaky are resistant to PVYN and PVA.  相似文献   

15.
Pyrimorph is a novel fungicide with high activity against the plant pathogen Phytophthora capsici. We investigated the risk that P. capsici can develop resistance to pyrimorph. The baseline sensitivities of 226 P. capsici isolates, tested by mycelial growth inhibition, showed a unimodal distribution with a mean EC50 value of 1.4261 (±0.4002) µg/ml. Twelve pyrimorph-resistant mutants were obtained by repeated exposure to pyrimorph in vitro with a frequency of approximately 1×10−4. The resistance factors of the mutants ranged from 10.67 to 56.02. Pyrimorph resistance of the mutants was stable after 10 transfers on pyrimorph-free medium. Fitness in sporulation, cystospore germination, and pathogenicity in the pyrimorph-resistant mutants was similar to or less than that in the parental wild-type isolates. On detached pepper leaves and pepper plants treated with the recommended maximum dose of pyrimorph, however, virulence was greater for mutants with a high level of pyrimorph resistance than for the wild type. The results suggest that the risk of P. capsici developing resistance to pyrimorph is low to moderate. Among mutants with a high level of pyrimorph resistance, EC50 values for pyrimorph and CAA fungicides flumorph, dimethomorph, and mandipropamid were positively correlated. This indicated that point mutations in cellulose synthase 3 (CesA3) may confer resistance to pyrimorph. Comparison of CesA3 in isolates with a high level of pyrimorph resistance and parental isolates showed that an amino acid change from glutamine to lysine at position 1077 resulted in stable, high resistance in the mutants. Based on the point mutations, an allele-specific PCR method was developed to detect pyrimorph resistance in P. capsici populations.  相似文献   

16.
Virulence of entomopathogens is often measured at the individual level using a single host individual or a group of host individuals. To what extent these virulence assessments reflect the impact of an entomopathogen on their host in the field remains largely untested, however. A methodology was developed to induce epizootics of the cassava green mite fungal pathogen Neozygites tanajoae under controlled conditions to evaluate population-level virulence of two (one Beninese and one Brazilian) isolates of the entomopathogen—which had shown similar individual-level virulence but different field impacts. In unrepeated separate experiments we inoculated mite-infested potted cassava plants with either 50 or 25 live mites (high and low inoculum) previously exposed to spores of N. tanajoae and monitored the development of fungal infections for each isolate under the same conditions. Both isolates caused mite infections and an associated decline in host mite populations relative to the control (without fungus) in all experiments, but prevalence of the fungus varied with isolate and increased with inoculum density. Peak infection levels were 90% for the Beninese isolate and 36% for the Brazilian isolate at high inoculum density, and respectively 17% and 25% at low inoculum density. We also measured dispersal from inoculated plants and found that spore dispersal increased with host infection levels, independent of host densities, whereas mite dispersal varied between isolates. These results demonstrate that epizootiology of N. tanajoae can be studied under controlled conditions and suggest that virulence tests at the population level may help to better predict performance of fungal isolates than individual-level tests.  相似文献   

17.
Anthracnose fruit rot is an economically important disease that affects pepper production in Indonesia. Strong resistance to two causal pathogens, Colletotrichum gloeosporioides and C. capsici, was found in an accession of Capsicum chinense. The inheritance of this resistance was studied in an F2 population derived from a cross of this accession with an Indonesian hot pepper variety (Capsicum annuum) using a quantitative trait locus (QTL) mapping approach. In laboratory tests where ripe fruits were artificially inoculated with either C. gloeosporioides or C. capsici, three resistance-related traits were scored: the infection frequency, the true lesion diameter (averaged over all lesions that actually developed), and the overall lesion diameter (averaged over all inoculation points, including those that did not develop lesions). One main QTL was identified with highly significant and large effects on all three traits after inoculation with C. gloeosporioides and on true lesion diameter after inoculation with C. capsici. Three other QTL with smaller effects were found for overall lesion diameter and true lesion diameter after inoculation with C. gloeosporioides, two of which also had an effect on infection frequency. Interestingly, the resistant parent carried a susceptible allele for a QTL for all three traits that was closely linked to the main QTL. The results with C. capsici were based on less observations and therefore less informative. Although the main QTL was shown to have an effect on true lesion diameter after inoculation with C. capsici, no significant QTL were identified for overall lesion diameter or infection frequency.  相似文献   

18.
Developing cultivars carrying effective resistance against destructive pathogens has become a priority for breeders. While little is currently known about the genetic basis of durable resistance, it is generally associated with polygenic and broad-spectrum resistance. In this study, we assessed the spectrum of resistance to Phytophthora capsici conferred by a major effect quantitative trait locus (QTL) that has been detected in all of the resistant pepper accessions studied to date. After adding new markers derived from tomato sequences and those from pepper reported in the literature to three maps of pepper chromosome P5, we detected a QTL cluster involved in P. capsici resistance. By means of meta-analyses, we determined the occurrence of these QTLs in different genetic backgrounds and with different P. capsici isolates. Comparative mapping with tomato and potato highlighted a complex mosaic of Phytophthora resistance loci on colinear chromosome segments. We tested different lines with and without one of these QTLs, Pc5.1, with four isolates that we determined to be genetically distinct. Our data demonstrate that Pc5.1 is active against 12 isolates from different geographical origins and that it is conserved in all of the resistant accessions tested. We propose that this QTL is a key element responsible for the broad-spectrum resistance to P. capsici and, therefore, is a valuable locus for improving the effective resistance of pepper to P. capsici.  相似文献   

19.
When mechanically inoculated to susceptible tobacco (Nicotiana tabacum L.) cultivars, nine isolates of PVY from Umbria (Central Italy) and two from Southern Latium gave rise to rapid systemic infection which developed within 6–8 days after inoculation. Systemic spread of the same isolates was slower, or much slower, in infected pepper (Capsicum annuum L.) cultivars, 8–14 days for Southern Latium isolates and 20 - 35 days for Umbrian ones. Aphid (Myzus persicae)-moculation of pepper and tobacco plants with two of the Umbrian and one of the Southern Latium isolates confirmed the results from sap-transmission and showed that fewer inoculated pepper plants become infected, especially with Umbrian isolates. In agreement with the data on systemic spread, aphid-acquisition trials indicated that tobacco plants became efficient PVY sources for vectors 6–8 days after inoculation with either group of isolates. Peppers became efficient acquisition hosts 8–15 days after inoculation with Southern Latium isolates but not until 22–45 days after inoculation with Umbrian ones. Southern Latium isolates induced more severe symptoms in pepper cultivars than Umbrian isolates did. One of the Southern Latium isolates was able to systemically infect the resistant pepper cv. Yolo Y, which was never infected by the Umbrian isolates. The Umbrian isolates tested seem to be better adapted to tobacco than peppers, while Southern Latium ones are well adapted to both.  相似文献   

20.
Over a 3-yr period 261 isolates of 17 species of Pythium were tested for sensitivity to metalaxyl at concentrations of 5, 50 or 100 μ/ml. A wide range of responses was observed, from isolates where growth ceased at 5 μg/ml to those where growth at 100 μg/ml was similar to that of the untreated controls. In further tests isolates of 11 different species had ED50's < 1 μg/ml. A lower sensitivity was detected in isolates of six Pythium spp. where values in the range 1–10 μg/ml were obtained. This lower sensitivity was not related to previous known use of metalaxyl. Three isolates of Pythium dissotocum from sites where the fungicide had been used repeatedly had ED50's > 100 μg/ml and were considered resistant. The resistance was stable over a 2-yr period and isolates were cross-resistant to furalaxyl, benalaxyl, ofurace, cyprofuram and oxadixyl. Increasing concentrations of metalaxyl reduced or prevented the production of zoospores by four species of Pythium, although when zoospores were produced, this was followed by the normal processes of encystment and germination. Culturing P. dissotocum on different sub-lethal concentrations of metalaxyl for 18 wk did not induce a high level of resistance to the fungicide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号