首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Territorial aggression can influence males’ ability to obtain high‐quality resources and access to mates; however, in many species, the reproductive consequences of variation in aggression are unknown. In this study, we investigated how individual variation in aggressive behavior relates to reproductive success in socially monogamous, genetically polygynous song sparrows (Melospiza melodia). Prior research in this species shows that male song sparrows differ in their willingness to engage in agonistic interactions with territorial intruders and that individual variation in aggression appears to have functional significance. Aggressive males have been shown to obtain territories where females produce larger clutch sizes, suggesting that individuals who display high levels of territorial aggression are defending high‐quality territories or females. Further, aggressive males are considered a greater threat to territory‐holding males than less aggressive males. In this study, we ask whether individual differences in aggression are linked to differences in extra‐pair reproductive success, annual reproductive success, and offspring quality. We did not uncover a relationship between aggression and annual reproductive success or patterns of extra‐pair paternity. However, we found that the nestlings of aggressive males grew at a faster rate than the nestlings of less aggressive males. Future studies should attempt to identify mechanisms to explain the relationship between offspring growth rate and male aggression and investigate whether faster offspring growth rates translate to greater survival and recruitment of offspring.  相似文献   

2.
Mockingbirds (Mimus polyglottos) show intense territorial activity in the autumn as newcomers attempt to establish space within resident populations. Examination of autumnal territorial behavior showed that unmated males sing more and engage in more territorial fights than mated males. Newcomers that have just acquired space also sing more and show more territorial fights than birds resident to the population for at least one prior season. Among established residents, the average number of territorial fights was greater in birds that shared more territory boundaries with new residents. Radioimmunoassay of plasma samples taken from males during the molt and following the onset of territorial defense showed that during both periods plasma concentrations of testosterone (T), dihydrotestosterone (DHT), and estradiol were basal or below the sensitivity of the assay system. Moreover, groups of males that differed in song and territorial aggression did not differ in plasma concentrations of T, DHT, or luteinizing hormone (LH). Hormone analyses confirm measurements on several other avian species suggesting that sex steroid concentrations are low in the fall and winter and that variations in aggressive behavior at this time of year may be unrelated to LH and androgen levels. Our observations contribute to a growing body of work in temperate passerines indicating that the role of androgens in mediating aggressive challenge may be restricted to the breeding season. The possible hormonal basis (if any) of song and territorial aggression in mockingbirds outside the breeding season remains obscure.  相似文献   

3.
In many species, male territorial aggression is tightly coupled with gonadal secretion of testosterone (T). In contrast, in song sparrows (Melospiza melodia morphna), males are highly aggressive during the breeding (spring) and nonbreeding (autumn and early winter) seasons, but not during molt (late summer). In aggressive nonbreeding song sparrows, plasma T levels are basal (< or = 0.10 ng/ml), and castration has no effect on aggression. However, aromatase inhibitors reduce nonbreeding aggression, indicating a role for estrogen in wintering males. In the nonbreeding season, the substrate for brain aromatase is unclear, because plasma T and androstenedione levels are basal. Aromatizable androgen may be derived from plasma dehydroepiandrosterone (DHEA), an androgen precursor. DHEA circulates at elevated levels in wintering males (approximately 0.8 ng/ml) and might be locally converted to T in the brain. Moreover, plasma DHEA is reduced during molt, as is aggression. Here, we experimentally increased DHEA in wild nonbreeding male song sparrows and examined territorial behaviors (e.g., singing) and discrete neural regions controlling the production of song. A physiological dose of DHEA for 15 days increased singing in response to simulated territorial intrusions. In addition, DHEA treatment increased the volume of a telencephalic brain region (the HVc) controlling song, indicating that DHEA can have large-scale neuroanatomical effects in adult animals. The DHEA treatment also caused a slight increase in plasma T. Exogenous DHEA may have been metabolized to sex steroids within the brain to exert these behavioral and neural effects, and it is also possible that peripheral metabolism contributed to these effects. These are the first results to suggest that exogenous DHEA increases male-male aggression and the size of an entire brain region in adults. The data are consistent with the hypothesis that DHEA regulates territorial behavior, especially in the nonbreeding season, when plasma T is basal.  相似文献   

4.
Testosterone (T) mediates a trade-off, or negative correlation, between paternal behavior and aggression in several seasonally breeding avian species. However, the presence or absence of a T-mediated trade-off in mammals has received less attention. We examined the relationship between paternal behavior and territorial aggression in the biparental California mouse, Peromyscus californicus. In contrast to seasonally breeding birds, T maintains paternal behavior in this year-round territorial species. Castration reduced paternal behavior, whereas T replacement maintained high levels of paternal behavior. We hypothesize that T is aromatized in the brain to estradiol, which in turn stimulates paternal behavior. In contrast to paternal behavior, aggressive behavior was not reduced by castration. Interestingly, only sham males showed an increase in aggression across three aggression tests, while no change was detected in castrated or T-replacement males. Overall, trade-offs between aggression and paternal behavior do not appear to occur in this species. Measures of paternal behavior and aggression in a correlational experiment were actually positively correlated. Our data suggest that it may be worth reexamining the role that T plays in regulating mammalian paternal behavior.  相似文献   

5.
The breeding season is very brief for arctic-breeding passerines, and any interruptions of parental care by aggressive interactions over territory may reduce reproductive success. We tested both the "testosterone insensitivity" and "corticosterone insensitivity" hypotheses in the arctic-breeding Gambel's white-crowned sparrow, Zonotrichia leucophrys gambelii. Additionally, we tested whether simulated territorial intrusions (STIs), known to stimulate increases in luteinizing hormone (LH) and testosterone (T) in mid-latitude breeding Z. l. pugetensis, would also be effective in either the early or late phases of the brief breeding season of Z. l. gambelii. Plasma levels of T and LH were high early in the breeding season and declined as egg laying began. Exposure of free-living males to 10 min of STI significantly increased LH but not T secretion. Nonetheless, the pituitary-gonadal axis is sensitive as jugular injection of gonadotrophin-releasing hormone increased plasma T at 10 min relative to saline-challenged controls. T implants failed to increase territorial aggression following STI during incubation. These data are consistent with the T insensitivity hypothesis and contrast sharply with the response of the southerly breeding subspecies, Z. l. pugetensis, in which the territorial response to T administration is retained throughout its relatively long breeding season. However, corticosterone implants during the incubation period decreased territorial aggression during STI. This responsiveness to corticosterone is not consistent with the corticosterone insensitivity hypothesis of stress modulation. Z. l. gambelii retain sensitivity to corticosterone levels that may occur naturally in response to environmental perturbations resulting in suppression of territorial behavior.  相似文献   

6.
We investigated territorial behavior and circulating testosterone (T) levels in a multiple-brooded population of the European stonechat, a socially monogamous passerine bird with biparental care. Between arrival at and departure from the breeding territories, we (1) quantified behavior of both sexes in response to a simulated territorial intrusion (STI) of a male conspecific and (2) measured plasma T concentrations in males and females. Male response scores to a STI and male T concentrations varied with phase, but there was no temporal association between plasma T levels and the intensity of territorial behavior. During both two sexual and two parental phases, at least half of the tested males showed aggressive responses. About 20% of the tested males responded with courtship prior to laying of the first clutch, but none of the males courted during later phases. Age had a positive overall effect on male plasma T. Females also reacted to the STI of a male, but their responses did not vary with breeding phase. Female plasma T varied with phase, being elevated during production of the first but not of the second clutch. As with males, female responses to the STI were not correlated with T levels. Responses of pair partners were positively correlated with each other. We conclude that modulation of male territorial aggression with breeding phase is not regulated by changes of plasma T concentrations. In light of other studies showing reduced male aggression by pharmacological inhibition of cellular actions of T, we propose that T is permissive for male territorial aggression, but does not mediate short-term changes associated with breeding phase. The function of the high female plasma T concentrations during formation of first clutches could be related to the production of eggs with high concentrations of androgens.  相似文献   

7.
We studied a population of rufous whistlers, Pachycephala rufiventris, throughout a single breeding season in central New South Wales, Australia. We evaluated the relation between plasma testosterone (T) and reproductive behaviors using both simulated territorial intrusions (STIs) and subcutaneous T implants. We compared circulating T values to aggression levels of males (using STI) during pair bond and territory establishment and again during incubation. Although plasma T levels were significantly lower in the latter period, male responsiveness to STI, in terms of proximity to decoy, call rate, and number of attacks on the decoy, was indistinguishable between the two breeding stages. T levels of males exposed to STI were not different from the levels of unexposed free-living males at the same breeding stage. The effect of exogenous T on parental behavior was examined by comparing duration of incubation bouts of males and their mates prior to and after T treatment. T males significantly reduced the amount of time they incubated following implantation, whereas Control males maintained their incubation effort. After cessation of breeding activities, T males displayed significantly higher call rates due to increased use of the primary intersexual advertisement call in this species. The reduction of incubation behavior following T implantation emphasises the functional significance of the rapid decline in T in free-living males during incubation. The results from both experiments suggest that intersexual advertisement, rather than territorial aggression, may be dependent on high T levels in this species.  相似文献   

8.
In many birds and mammals, male territorial aggression is modulated by elevated circulating concentrations of the steroid hormone testosterone (T) during the breeding season. However, many species are territorial also during the non-breeding season, when plasma T levels are basal. The endocrine control of non-breeding territorial aggression differs considerably between species, and previous studies on wintering birds suggest differences between migratory and resident species. We investigated the endocrine modulation of territorial aggression during the breeding and non-breeding season in a resident population of European stonechats (Saxicola torquata rubicola). We recorded the aggressive response to a simulated territorial intrusion in spring and winter. Then, we compared the territorial aggression between seasons and in an experiment in which we blocked the androgenic and estrogenic action of T. We found no difference in the aggressive response between the breeding and the non-breeding season. However, similarly to what is found in migratory stonechats, the hormonal treatment decreased aggressive behaviors in resident males in the breeding season, whereas no effects were recorded in the non-breeding season. When we compared the aggressive responses of untreated birds with those obtained from migratory populations in a previous study, we found that territorial aggression of resident males was lower than that of migratory males during the breeding season. Our results show that in a resident population of stonechats T and/or its metabolites control territorial aggression in the breeding but not in the non-breeding season. In addition, our study supports the hypothesis that migratory status does modulate the intensity of aggressive behavior.  相似文献   

9.
In many species, territoriality is expressed only during the breeding season, when plasma testosterone (T) is elevated. In contrast, in song sparrows (Melospiza melodia morphna), males are highly territorial during the breeding (spring) and nonbreeding (autumn) seasons, but not during molt (late summer). In autumn, plasma sex steroids are basal, and castration has no effect on aggression. However, inhibition of aromatase reduces nonbreeding aggression, suggesting that neural steroid metabolism may regulate aggressive behavior. In wild male song sparrows, we examined the neural distribution of aromatase mRNA and seasonal changes in the activities of aromatase, 5 alpha-, and 5 beta-reductase, enzymes that convert T to 17 beta-estradiol, 5 alpha-dihydrotestosterone (5 alpha-DHT, a potent androgen), or 5 beta-DHT (an inactive metabolite), respectively. Enzyme activities were measured in the diencephalon, ventromedial telencephalon (vmTEL, which includes avian amygdala), caudomedial neostriatum (NCM), and the hippocampus of birds captured during spring, molt, or autumn. Aromatase and 5 beta-reductase changed seasonally in a region-specific manner. Aromatase in the diencephalon was higher in spring than in molt and autumn, similar to seasonal changes in male sexual behavior. Aromatase activity in the vmTEL was high in both spring and autumn but significantly reduced at molt, similar to seasonal changes in aggression. 5 beta-Reductase was not elevated during molt, suggesting that low aggression during molt is not a result of increased inactivation of androgens. These data highlight the relevance of neural steroid metabolism to the expression of natural behaviors by free-living animals.  相似文献   

10.
In the protogynous stoplight parrotfish (Sparisoma viride), large males defend territories that encompass the home-ranges of several mature females. However, high-quality habitat is in short supply, such that smaller, competitively inferior males do not defend territories. We investigated the role of 11-ketotestosterone (11KT) and testosterone (T) in the regulation of territorial behavior in a wild population of a protogynous reef fish, the stoplight parrotfish, at Glover's Reef, Belize. Radioimmunoassay of plasma samples from individuals of known social status revealed that nonterritorial males have lower levels of T and 11KT than territorial males. Nonterritorial males allowed access to vacant territories underwent pronounced increases in T and 11KT. When sampled 1 week after territory acquisition, levels of T and 11KT in new territorial males were significantly higher than the levels in established territorial males, but by 3 weeks after territory acquisition, there was no significant difference. We further investigated the hypothesis that such short-term increases in androgen levels are a response to intense male-male interactions during territory establishment. Simulated territorial intrusion promoted increased plasma levels of both T and 11KT while access to vacant territories without neighboring territorial males did not. These findings suggest that the endocrine system plays a role in fine-tuning the levels of territorial aggression exhibited by male stoplight parrotfish. We discuss these results in light of recent theory in behavioral endocrinology.  相似文献   

11.
Our previous research showed that territorial threespine sticklebacks are more aggressive toward a male conspecific placed in their territory if they have been housed adjacent to a gravid female rather than a male or a nongravid female. This study replicated the condition of a territorial male with an adjacently housed male and compared the results with isolated territorial males. This permitted us to contrast explanations for the increased aggression when the neighbor was a gravid female. If the social context determines the level of aggression, then males with no neighbors (isolates) might be less aggressive because there would be no unique reproductive resource to protect nor any neighbor to protect resources from. Alternatively, if aggression is higher in the isolated group it might be because there was no male neighbor to redirect aggression toward. We found that isolated males were more aggressive toward an intruded male stimulus than males with a male neighbor. The study also provided evidence that sensitization produced by the appearance of an intruding male energizes other aggressive behavior, but not those related to feeding, nor does it cause increase in general activation as measured by increased locomotion.  相似文献   

12.
In birds, territorial aggression during the breeding season is regulated by testosterone (T). However, many bird species also express aggressive behavior during the nonbreeding season, when plasma levels of T are low. It has been suggested that during this period estrogens might play a major role in regulating territorial aggression. In the present study we compared the effects of simultaneous blockage of androgenic and estrogenic actions on territorial aggression during the breeding and nonbreeding seasons in free-living male European stonechats (Saxicola torquata rubicola). European stonechats are of particular interest since they establish territories and form pairs during both the breeding and the nonbreeding seasons. Thus territorial aggression and its endocrine control can be compared between reproductive and non-reproductive contexts. Inhibition of androgenic and estrogenic actions by simultaneous application of Flutamide and ATD reduced territorial aggression during the breeding season, but not during the nonbreeding season. Our results show that androgens and/or estrogens are involved in the endocrine control of territorial aggression in stonechats only in a reproductive context, but not in a non-reproductive one.  相似文献   

13.
Plasma testosterone increases during breeding in many male vertebrates and has long been implicated in the promotion of aggressive behaviors relating to territory and mate defense. Males of some species also defend territories outside of the breeding period. For example, the European nuthatch (Sitta europaea) defends an all-purpose territory throughout the year. To contribute to the growing literature regarding the hormonal correlates of non-breeding territoriality, we investigated the seasonal testosterone and corticosterone profile of male (and female) nuthatches and determined how observed hormone patterns relate to expression of territorial aggression. Given that non-breeding territoriality in the nuthatch relates to the reproductive context (i.e., defense of a future breeding site), we predicted that males would exhibit surges in plasma testosterone throughout the year. However, we found that males showed elevated testosterone levels only during breeding. Thus, testosterone of gonadal origin does not appear to be involved in the expression of non-breeding territoriality. Interestingly, territorial behaviors of male nuthatches were stronger in spring than in autumn, suggesting that in year-round territorial species, breeding-related testosterone elevations may upregulate male-male aggression above non-breeding levels. In females, plasma testosterone was largely undetectable. We also examined effects of simulated territorial intrusions (STIs) on testosterone and corticosterone levels of breeding males. We found that STIs did not elicit a testosterone response, but caused a dramatic increase in plasma corticosterone. These data support the hypothesis that corticosterone rather than testosterone may play a role in the support of behavior and/or physiology during acute territorial encounters in single-brooded species.  相似文献   

14.
Territorial aggression, displayed by male vertebrates in a reproductive context, is generally thought to be mediated by testosterone. The challenge hypothesis predicts that in socially monogamous species, territorial challenges should induce an increase in plasma testosterone concentrations, which will enhance aggressive behaviour and territory defence. This hypothesis is based on northern latitude birds and needs to be tested in tropical birds before it can be universally accepted. We tested the challenge hypothesis in an equatorial population of rufous-collared sparrows in Papallacta, Ecuador. This population shows an extended breeding period during which males aggressively guard territories. During the early breeding season, males were challenged with conspecific or heterospecific simulated territorial intrusions (STIs) lasting 10 min. Conspecific-challenged males responded more aggressively than heterospecific-challenged males. However, there was no increase in plasma testosterone in response to the conspecific STI. During the breeding season, males were challenged with conspecific STIs lasting 0, 10 or 30 min. Males behaved aggressively regardless of STI duration, and did not differ in plasma testosterone or luteinizing hormone concentrations. During the breeding season, males were implanted with testosterone-filled or empty silastic tubes and subsequently challenged with a conspecific STI. Testosterone implants significantly raised plasma testosterone concentrations, but testosterone-implanted males were not more aggressive than blank-implanted controls. Combined, these findings suggest that testosterone concentrations above breeding baseline are not related to territorial aggression in this population and therefore do not support the challenge hypothesis.  相似文献   

15.
Male aggressive behavior is generally regulated by testosterone (T). In most temperate breeding males, aggressive behavior is only expressed during the reproductive period. At this time circulating T concentrations, brain steroid receptors, and steroid metabolic enzymes are elevated in many species relative to the nonreproductive period. Many tropical birds, however, display aggressive behavior both during the breeding and the nonbreeding season, but plasma levels of T can remain low throughout the year and show little seasonal fluctuation. Studies on the year-round territorial spotted antbird (Hylophylax n. naevioides) suggest that T nevertheless regulates aggressive behavior in both the breeding and nonbreeding season. We hypothesize that to regulate aggressive behaviors during the nonbreeding season, when T is at its minimum, male spotted antbirds increase brain sensitivity to steroids. This can be achieved by locally up-regulating androgen receptors (ARs), estrogen receptors (ERs), or the enzyme aromatase (AROM) that converts T into estradiol. We therefore compared mRNA expression of AR, ERalpha, and AROM in free- living male spotted antbirds across reproductive and nonreproductive seasons in two brain regions known to regulate both reproductive and aggressive behaviors. mRNA expression of ERalpha in the preoptic area and AR in the nucleus taeniae were elevated in male spotted antbirds during the nonbreeding season when circulating T concentrations were low. This unusual seasonal receptor regulation may represent a means for the year-round regulation of vertebrate aggressive behavior via steroids by increasing the brain's sensitivity to sex steroids during the nonbreeding season.  相似文献   

16.
In many species, territoriality is expressed only during the breeding season, when plasma testosterone (T) is elevated. In contrast, in song sparrows (Melospiza melodia morphna), males are highly territorial during the breeding (spring) and nonbreeding (autumn) seasons, but not during molt (late summer). In autumn, plasma sex steroids are basal, and castration has no effect on aggression. However, inhibition of aromatase reduces nonbreeding aggression, suggesting that neural steroid metabolism may regulate aggressive behavior. In wild male song sparrows, we examined the neural distribution of aromatase mRNA and seasonal changes in the activities of aromatase, 5α‐, and 5β‐reductase, enzymes that convert T to 17β‐estradiol, 5α‐dihydrotestosterone (5α‐DHT, a potent androgen), or 5β‐DHT (an inactive metabolite), respectively. Enzyme activities were measured in the diencephalon, ventromedial telencephalon (vmTEL, which includes avian amygdala), caudomedial neostriatum (NCM), and the hippocampus of birds captured during spring, molt, or autumn. Aromatase and 5β‐reductase changed seasonally in a region‐specific manner. Aromatase in the diencephalon was higher in spring than in molt and autumn, similar to seasonal changes in male sexual behavior. Aromatase activity in the vmTEL was high in both spring and autumn but significantly reduced at molt, similar to seasonal changes in aggression. 5β‐Reductase was not elevated during molt, suggesting that low aggression during molt is not a result of increased inactivation of androgens. These data highlight the relevance of neural steroid metabolism to the expression of natural behaviors by free‐living animals. © 2003 Wiley Periodicals, Inc. J Neurobiol 56: 209–221, 2003  相似文献   

17.
The red hybrid tilapia, Oreochromis niloticus (Linnaeus, 1758) x O. mossambicus (Peters, 1852) is a fertile hybrid used in the semi-intensive level of fish culture in the Northeast of Brazil. It is a territorial cichlid and is highly aggressive towards conspecifics during the breeding season. The purpose of this study was to investigate and describe the aggressive behaviour displayed by the males of this hybrid in non-reproductive and reproductive contexts. Behavioural observations revealed that aggression displayed by the reproductive males of red hybrid tilapia included threatening, undulation, parallel, lateral and frontal attacks, chasing, escape and submission. Possession of a territory influenced male aggressiveness, which was more intense in their own territory than that observed in a neutral situation. The males built nests, irrespective of female presence. All the behavioural patterns were in accordance with those previously described for one parental species, the Nile tilapia, O. niloticus.  相似文献   

18.
In most bird species males compete over access to females and have elevated circulating androgen levels when they establish and defend a breeding territory or guard a mate. Testosterone is involved in the regulation of territorial aggression and sexual display in males. In few bird species the traditional sex-roles are reversed and females are highly aggressive and compete over access to males. Such species represent excellent models to study the hormonal modulation of aggressive behavior in females. Plasma sex steroid concentrations in sex-role reversed species follow the patterns of birds with "traditional" sex-roles. The neural mechanisms modulating endocrine secretion and hormone-behavior interactions in sex-role reversed birds are currently unknown. We investigated the sex differences in the mRNA expression of androgen receptors, estrogen receptor alpha, and aromatase in two brain nuclei involved in reproductive and aggressive behavior in the black coucal, the nucleus taeniae and the bed nucleus of the stria terminalis. In the bed nucleus there were no sex differences in the receptor or aromatase expression. In the nucleus taeniae, however, we show for the first time, that females have a higher mRNA expression of androgen receptors than males. These results suggest that the expression of agonistic and courtship behavior in females does not depend on elevated blood hormone levels, but may be regulated via increased steroid hormone sensitivity in particular target areas in the brain. Hence, aggression in females and males may indeed be modulated by the same hormones, but regulated at different levels of the neuroendocrine cascade.  相似文献   

19.
We measured plasma androgen (combined testosterone and 5alpha-dihydrotestosterone) (A) and corticosterone (B) in the promiscuous green turtle (Chelonia mydas) during courtship in the southern Great Barrier Reef. This study examined if reproductive behaviors and intermale aggression induced behavioral androgen and adrenocortical responses in reproductively active male and female green turtles. Associations between reproductive behavior and plasma steroids were investigated in green turtles across the population and within individuals. Levels across a range of both asocial and social behaviors were compared including (a) free swimming behavior; (b) initial courtship interactions; (c) mounted behavior (male and female turtles involved in copulatory activities); (d) intermale aggression (rival males that physically competed with another male turtle or mounted males recipient to these aggressive interactions); and (e) extensive courtship damage (male turtles that had accumulated excessive courtship damage from rival males). Behavioral androgen responses were detected in male turtles, in that plasma A was observed to increase with both attendant and mounted behavior. Male turtles who had been subjected to intermale aggression or who had accumulated severe courtship damage exhibited significantly lower plasma A than their respective controls. No pronounced adrenocortical response was observed after either intermale aggression or accumulation of extensive courtship damage. Female turtles exhibited a significant increase in plasma B during swimming versus mounted behavior, but no change in plasma A. We discuss our results in terms of how scramble polygamy might influence behavioral androgen interactions differently from more typical combative and territorial forms of male polygamy.  相似文献   

20.
The hormonal control of territorial aggression in male and female vertebrates outside the breeding season is still unresolved. Most vertebrates have regressed gonads when not breeding and do not secrete high levels of sex steroids. However, recent studies implicate estrogens in the regulation of non-breeding territoriality in some bird species. One possible source of steroids during the non-breeding season could be the adrenal glands that are known to produce sex steroid precursors such as dehydroepiandrosterone (DHEA). We studied tropical, year-round territorial spotted antbirds (Hylophylax n. naevioides) and asked (1). whether both males and females are aggressive in the non-breeding season and (2). whether DHEA is detectable in the plasma at that time. We conducted simulated territorial intrusions (STIs) with live decoys to male and female free-living spotted antbirds in central Panama. Non-breeding males and females displayed robust aggressive responses to STIs, and responded more intensely to decoys of their own sex. In both sexes, plasma DHEA concentrations were detectable and higher than levels of testosterone (T) and 17beta-estradiol (E(2)). In males, plasma DHEA concentrations were positively correlated with STI duration. Next, we conducted STIs in captive non-breeding birds. Captive males and females displayed robust aggressive behavior. Plasma DHEA concentrations were detectable in both sexes, whereas T was non-detectable (E(2) was not measured). Plasma DHEA concentrations of males were positively correlated with aggressive vocalizations and appeared to increase with longer STI durations. We conclude that male and female spotted antbirds can produce DHEA during the non-breeding season and DHEA may serve as a precursor of sex steroids for the regulation of year-round territorial behavior in both sexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号