首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
SqCC/Y1, a human malignant squamous cell carcinoma, spontaneously differentiates when grown to confluence in delipidized serum-containing medium, as measured by the capacity to form detergent-insoluble cornified cell envelopes. Thus, 30% of SqCC/Y1 cells spontaneously attained the differentiated state after 6 days in culture. Exposure of SqCC/Y1 cells to 30, 100, or 300 nM hydrocortisone increased the number of mature cells, producing a 25, 100, and 225%, respective, increase in the number of differentiated cells over the spontaneous rate of maturation. Retinoic acid at levels of 3-300 nM was inhibitory, causing a 24-85% decrease in the number of differentiated cells. Simultaneous treatment with hydrocortisone and retinoic acid indicated mutual antagonism of the effects of these agents on the formation of cornified envelopes. Since hydrocortisone possesses antiangiogenic (AG), mineralocorticoid (MC) and glucocorticoid (GC) activities, steroids with different degrees of GC, MC, and AG potency were examined for their capacities to induce terminal differentiation. Only steroids with GC activity, such as dexamethasone, hydrocortisone, and RU-28362, were capable of increasing the degree of SqCC/Y1 differentiation and antagonizing the inhibitory effects of retinoic acid on the maturation process. In addition, the GC antagonist, RU-38486, reversed the stimulation of cellular differentiation produced by the glucocorticoids. The findings indicate that GC activity is required for the steroid-induced terminal differentiation of SqCC/Y1 cells.  相似文献   

4.
Rabbit tracheobronchial epithelial cells (RbTE) can undergo squamous cell differentiation under defined culture conditions and, therefore, have been used as a model to study the regulation of squamous cell differentiation markers. In the present study, we identified a 20-kDa protein, designated rSQ20, in the serum-free growth medium conditioned by RbTE cells undergoing squamous cell differentiation. The protein was also found in extracts of squamous differentiated cells. rSQ20 was labeled by cells incubated with [35S]methionine but not with [3H]glucosamine, suggesting that it is not a glycoprotein. Undifferentiated cells did not produce this protein. rSQ20 was detected in the conditioned medium of RbTE cells after they reached a confluent and growth-arrested state, and thereafter its level increased markedly and concurrently with an increase in type I (epidermal) transglutaminase, an established marker of squamous cell differentiation. rSQ20 found in concentrated conditioned medium of squamous differentiated RbTE cells was eluted from a gel filtration column as a protein of 20 kDa, similar to that found by gel electrophoresis under denaturing conditions, suggesting that it is not a multimeric protein. A protein with an apparent molecular weight of 16 kDa (rSQ16), probably the product of partial proteolysis of rSQ20, was often found in various amounts in the conditioned medium of differentiated RbTE cells. beta-All-trans retinoic acid and other vitamin A analogues (retinoids), which suppress squamous cell differentiation, inhibited the expression of rSQ20 in RbTE cells. RbTE cells immortalized by transfection with SV40 large T antigen as well as malignantly transformed derivatives obtained from the immortalized cells by further transfection with v-Ha-ras secreted SQ20 and SQ16 when grown to high cell densities although their squamous differentiation was impaired. An analogous protein with an apparent molecular weight of 16 kDa, designated hSQ16, was detected in the medium of differentiated normal human bronchial epithelial (NHBE) cells and normal human epidermal keratinocytes (NHEK). No such protein could be detected in the medium in which undifferentiated NHBE or NHEK cells were grown. These results suggest that rSQ20 and hSQ16 are new markers of squamous cell differentiation.  相似文献   

5.
We have recently reported that neolacto series gangliosides (NeuAc-nLc) are increased during granulocytic differentiation of human myelogenous leukemia cell line HL-60 cells induced by retinoic acid and that HL-60 cells are differentiated into mature granulocytes when the cells are cultivated with NeuAc-nLc (Nojiri, H., Kitagawa, S., Nakamura, M., Kirito, K., Enomoto, Y., and Saito, M. (1988) J. Biol. Chem. 263, 7443-7446). In contrast to these wild-type-HL-60 cells, HL-60 cells resistant to differentiation induction by retinoic acid showed a markedly decreased content of gangliosides, especially NeuAc-nLc, and did not show any increase in the content of gangliosides when cultivated with retinoic acid. Neutral glycosphingolipids, the precursors of gangliosides, were not accumulated in these resistant cells. When retinoic acid-resistant HL-60 cells were cultivated in the presence of NeuAc-nLc, the cells were found to be differentiated into mature granulocytes on morphological and functional criteria. The differentiation of cells was dependent on the concentration of gangliosides and was accompanied by inhibition of cell growth. Wild-type HL-60 cells differentiated by NeuAc-nLc showed the changes in ganglioside composition, which were similar to those in wild-type HL-60 cells differentiated by retinoic acid; among the gangliosides changed, 2----3 sialylparagloboside and 2----3 sialylnorhexaosylceramide were increased. These findings suggest (a) that the synthesis of particular NeuAc-nLe molecules is an important step for retinoic acid-induced granulocytic differentiation and this step could be bypassed or replaced by exogenous NeuAc-nLc, and (b) that the defective synthesis of particular NeuAc-nLc molecules is responsible for the failure of differentiation induction in retinoic acid-resistant HL-60 cells by retinoic acid.  相似文献   

6.
Optical measurements from epithelial cells grown on clear solid surfaces (e.g., coverslips, petri dishes) are often compared with other measurements (e.g., short-circuit current; I(sc)) obtained from cells grown on opaque porous surfaces (inserts). However, the relative levels of differentiation of cells grown under the two conditions are usually unknown. To address this issue, we grew primary cultures of human tracheal epithelium on solid surfaces or on porous inserts and compared their total levels of protein and deoxyribonucleic acid, electrical properties in Ussing chambers, and ultrastructure. To measure ion transport across cells grown on solid supports, cells were grown on inserts placed on parafilm. Later, separation of insert from parafilm allowed the cells' I(sc) to be measured in Ussing chambers. Four different media were used. Cells grown in one medium showed very low levels of differentiation on all growth supports. In the other media, growth on inserts markedly enhanced differentiation as compared with solid supports. Baseline I(sc) of cells grown on either clear or opaque inserts was at least 30 times greater than that of cells grown on solid supports, though I(sc) with clear inserts averaged approximately 30% lower than that with opaque inserts. We conclude that though differentiation of cells may vary slightly depending on the insert used, cells on any type of insert are much better differentiated than cells grown on solid surfaces. Thus, it is both possible and desirable to make all functional measurements on cells grown on clear porous supports.  相似文献   

7.
Sodium butyrate (NaB) can induce teratocarcinoma cell differentiation as retinoic acid (RA). However, the function of these two agents seems to be a little different [Kosaka et al., Exp Cell Res, 192:46-51, 1991]. F9 cells treated with NaB synthesize both tissue-type (tPA) and urokinase-type (uPA) plasminogen activator, though RA induces only tPA production. Urokinase-type PA is demonstrated to exist in association with membrane and to localize its activity to the close environment of the cell surface. This may cause the specific cell morphology and characteristics of differentiated F9 cells induced with NaB.  相似文献   

8.
We previously cultured fragments of newt testes in chemically defined media and showed that mammalian follicle-stimulating hormone (FSH) stimulates proliferation of spermatogonia as well as their differentiation into primary spermatocytes (Ji et al., 1992; Abe and Ji, 1994). Next, we indicated in cultures composed of spermatogonia and somatic cells (mainly Sertoli cells) that FSH stimulates germ cell proliferation via Sertoli cells (Maekawa et al., 1995). However, the spermatogonia did not differentiate into primary spermatocytes, but instead died. In the present study, we embedded large reaggregates of spermatogonia and somatic cells (mainly Sertoli cells) within a collagen matrix and cultured the reaggregates on a filter that floated on chemically defined media containing FSH; in this revised culture system, spermatogonia proliferated and differentiated into primary spermatocytes. The viability and percentage of germ cells differentiating into primary spermatocytes were proportional to the percentage of somatic cells in the culture, indicating that differentiation of spermatogonia into primary spermatocytes is mediated by Sertoli cells.  相似文献   

9.
Summary In this study we examined the interplay between serum, leukemia inhibitory factor (LIF), retinoic acid, and dibutyrl cyclic adenosine monophosphate (dbcAMP) in affecting IOUD2 embryonic stem cell self-renewal and differentiation as assessed by Oct4 expression, and cell proliferation as measured by total cell protein. Removal of LIF, reduced levels of fetal calf serum (FCS), and addition of retinoic acid all induced embryonic stem cell differentiation as measured by reduced Oct4 expression. Lower levels of retinoic acid (0.1–10 nM) promoted the formation of epithelial-like cells, whereas higher levels (100–10,000 nM) favored differentiation into fibroblastic-like cells. The effects of dbcAMP varied with the presence or absence of FCS and LIF and the concentration of dbcAMP. In FCS-containing media, a low level of dbcAMP (100 μM) increased self-renewal in the absence of LIF, but it had no effect in its presence. In contrast, at higher concentrations (1000 μM dbcAMP), regardless of LIF, differentiation was promoted. A similar effect of dbcAMP was seen in the presence of retinoic acid. In media without FCS but with serum replacement supplements, there was no effect of dbcAMP. This study shows that the Oct4 expression system of IOUD2 cells provides a novel, simple method for quantifying cellular differentiation.  相似文献   

10.
Rabbit tracheal epithelial (RbTE) cells in primary culture undergo at confluence a multistep program of squamous differentiation. This study examines the expression of keratins in RbTE cells in relation to this differentiation process. During the exponential growth phase RbTE cells are undifferentiated and express three major keratins, K5, K14, and K19, and two minor keratins, K6 and K16. Squamous differentiation is accompanied by increased expression of keratins K6, K16, and K19, and in particular of keratin K13, which reacts specifically with the monoclonal antibody AE8. These changes in keratin synthesis coincide with the commitment to terminal differentiation. Retinoic acid, an inhibitor of the expression of the squamous differentiated phenotype, inhibits the increase in the expression of K6, K16, and K13 and reduces the expression of K5 and K14; however, retinoic acid treatment results in increased levels of keratin K19 and K18. Retinoic acid inhibits the expression of K16 and K13 at concentrations as low as 10(-9)-10(-10) M. At least some of these changes in keratins appear to be related to alterations in the cellular levels of the respective mRNAs. Our results indicate that specific changes in keratin expression, in particular keratin K13, correlate with the onset of squamous differentiation in RbTE cells. Induction of the expression of keratin K13 may function as a marker of squamous differentiation in tracheobronchial epithelial cells.  相似文献   

11.
12.
13.
As a single signal, retinoids induce terminal differentiation. This implies that they activate differentiation and apoptosis in a temporally defined order to allow expression of the differentiated phenotype well before death. We report that two apparently contradictory retinoid-induced programs have the capacity to define cellular life span. Anti-apoptotic factors are activated concomitantly with differentiation, while retinoids induce at the same time also pro-apoptotic signaling. We have assessed the roles of two key factors, Bcl2A1 and TRAIL, in the temporal programming of cell death and differentiation. We demonstrate that PLB985 are type II cells in which TRAIL induces apoptosis through the extrinsic and--via Bid activation--also the intrinsic death pathways. Bcl2A1, ectopically over-expressed, or endogenously induced by retinoic acid receptor agonists, protected cells from apoptosis triggered by TRAIL, whose induction required the activation of both the retinoic acid and retinoid X receptors. Bcl2A1 prevented loss of mitochondrial membrane potential and caspase-9, but not caspase-8, activation. The expression of anti-sense Bcl2A1 sensitized PLB985 cells to TRAIL. Co-culture experiments revealed protection from fraternicide if sister cells were pre-exposed to retinoic acid. Collectively, our data support a model in which retinoids orchestrate a life span-regulatory program comprising Bcl2A1 induction to temporally protect against concomitantly induced TRAIL death signaling. Termination of this life span in presence of Bcl2A1 is most likely a consequence of the Bid-independent TRAIL action. Thus, depending on the retinoic acid and retinoid X receptor activation potential of a ligand and the relative efficacies of the intrinsic and extrinsic death pathways in a given cell, a single retinoid triggers the life span of a differentiated phenotype.  相似文献   

14.
Rabbit tracheal epithelial (RbTE) cells in culture undergo terminal squamous differentiation characterized by enhanced transglutaminase activity, synthesis of specific keratins, and the formation of cross-linked envelopes. The expression of each of these markers of differentiation occurs spontaneously after the cells reach confluency, but this expression can be inhibited by the inclusion of retinoids in the extracellular medium. In the current work, we demonstrate that radioactive sulfate incorporation into the organic phase of a CHCl3/CH3OH (2:1) extract of RbTE cells increases 50- to 100-fold upon differentiation and that this accumulation can be completely blocked by the inclusion of retinoic acid in the culture medium. By the techniques of specific metabolic radiolabeling, thin layer chromatography, gas chromatography-mass spectrometry, and fast atom bombardment-mass spectrometry, the sulfated amphiphile was shown to be cholesterol 3-sulfate. Cholesterol sulfate accumulation begins 1 to 2 days after the RbTE cells reach the stationary phase of growth which is the same time that other differentiated functions begin to be expressed. The inhibition of accumulation by retinoic acid is concentration-dependent and half-maximal at 5 X 10(-11) M. The relative efficacy of a series of synthetic retinoids in inhibiting cholesterol sulfate accumulation correlated with their binding to the cellular retinoic acid-binding protein. These data taken together indicate that cholesterol sulfate is a marker of squamous differentiation in RbTE cells in culture. Possible biochemical mechanisms of the regulation of cholesterol sulfate levels during differentiation are discussed.  相似文献   

15.
Mutations in the APC (adenomatous polyposis coli) tumor suppressor gene cause uncontrolled proliferation and impaired differentiation of intestinal epithelial cells. Recent studies indicate that human colon adenomas and carcinomas lack retinol dehydrogenases (RDHs) and that APC regulates the expression of human RDHL. These data suggest a model wherein APC controls enterocyte differentiation by controlling retinoic acid production. However, the importance of APC and retinoic acid in mediating control of normal enterocyte development and differentiation remains unclear. To examine the relationship between APC and retinoic acid biosynthesis in normal enterocytes, we have identified two novel zebrafish retinol dehydrogenases, termed zRDHA and zRDHB, that show strong expression within the gut of developing zebrafish embryos. Morpholino knockdown of either APC or zRDHB in zebrafish embryos resulted in defects in structures known to require retinoic acid. These defects included cardiac abnormalities, pericardial edema, failed jaw and pectoral fin development, and the absence of differentiated endocrine and exocrine pancreas. In addition, APC or zRDHB morphant fish developed intestines that lacked columnar epithelial cells and failed to express the differentiation marker intestinal fatty acid-binding protein. Treatment of either APC or zRDHB morphant embryos with retinoic acid rescued the defective phenotypes. Downstream of retinoic acid production, we identified hoxc8 as a retinoic acid-induced gene that, when ectopically expressed, rescued phenotypes of APC- and zRDHB-deficient zebrafish. Our data establish a genetic link supporting a critical role for retinoic acid downstream of APC and confirm the importance of retinoic acid in enterocyte differentiation.  相似文献   

16.
Changes in expression of the proto-oncogene Bcl-2 are well known in the developing brain, with a high expression level in young post-mitotic neurons that are beginning the outgrowth of processes. The physiological significance of the Bcl-2 up-regulation in these neurons is not fully understood. We used a differentiation model for human CNS neurons to study the expression and function of Bcl-2. NT2/D1 human neuronal precursor cells differentiated into a neuronal phenotype in the presence of 10 microM retinoic acid for 3-5 weeks. This concentration of retinoic acid was not toxic to undifferentiated NT2/D1 cells but was sufficient to up-regulate the BCL-2 protein in 6 days. The BCL-2 levels increased further after 3 weeks, i.e. when the cells started to show neuronal morphology. Inhibition of the accumulation of endogenous BCL-2 with vectors expressing the antisense mRNA of Bcl-2 caused extensive apoptosis after 3 weeks of the retinoic acid treatment. The loss of neuron-like cells from differentiating cultures indicated that the dead cells were those committed to neuronal differentiation. Death was related to the presence of retinoic acid since withdrawal of retinoic acid after 16 days of treatment dramatically increased cell surviving. The ability of BCL-2 to prevent retinoic acid-induced cell death was also confirmed in undifferentiated NT2/D1 cells that were transfected with a vector containing Bcl-2 cDNA in sense orientation and exposed to toxic doses (40-80 microM) of retinoic acid. Furthermore, down-regulation of BCL-2 levels by an antisense oligonucleotide in neuronally differentiated NT2/D1 cells increased their susceptibility to retinoic acid-induced apoptosis. These results indicate that one function of the up-regulation of endogenous BCL-2 during neuronal differentiation is to regulate the sensitivity of young post-mitotic neurons to retinoic acid-mediated apoptosis.  相似文献   

17.
18.
Pericyte perivascular cells, believed to originate mesenchymal stem cells (MSC), are characterized by their capability to differentiate into various phenotypes and participate in tissue reconstruction of different organs, including the brain. We show that these cells can be induced to differentiation into neural-like phenotypes. For these studies, pericytes were obtained from aorta ex-plants of Sprague-Dawley rats and differentiated into neural cells following induction with trans retinoic acid (RA) in serum-free defined media or differentiation media containing nerve growth and brain-derived neuronal factor, B27, N2, and IBMX. When induced to differentiation with RA, cells express the pluripotency marker protein stage-specific embryonic antigen-1, neural-specific proteins β3-tubulin, neurofilament-200, and glial fibrillary acidic protein, suggesting that pericytes undergo differentiation, similar to that of neuroectodermal cells. Differentiated cells respond with intracellular calcium transients to membrane depolarization by KCl indicating the presence of voltage-gated ion channels and express functional N-methyl-D-aspartate receptors, characteristic for functional neurons. The study of neural differentiation of pericytes contributes to the understanding of induction of neuroectodermal differentiation as well as providing a new possible stem-cell source for cell regeneration therapy in the brain.  相似文献   

19.
Calmodulin (CaM)-dependent enzymes, such as CaM-dependent phosphodiesterase (CaM-PDE), CaM-dependent protein phosphatase (CN), and CaM-dependent protein kinase II (CaM kinase II), are found in high concentrations in differentiated mammalian neurons. In order to determine whether neuroblastoma cells express these CaM-dependent enzymes as a consequence of cellular differentiation, a series of experiments was performed on human SMS-KCNR neuroblastoma cells; these cells morphologically differentiate in response to retinoic acid and phorbol esters [12-O-tetradecanoylphorbol 13-acetate (TPA)]. Using biotinylated CaM overlay procedures, immunoblotting, and protein phosphorylation assays, we found that SMS-KCNR cells expressed CN and CaM-PDE, but did not appear to have other neuronal CaM-binding proteins. Exposure to retinoic acid, TPA, or conditioned media from human HTB-14 glioma cells did not markedly alter the expression of CaM-binding proteins; 21-day treatment with retinoic acid, however, did induce expression of novel CaM-binding proteins of 74 and 76 kilodaltons. Using affinity-purified polyclonal antibodies, CaM-PDE immunoreactivity was detected as a 75-kilodalton peptide in undifferentiated cells, but as a 61-kilodalton peptide in differentiated cells. CaM kinase II activity and subunit autophosphorylation was not evident in either undifferentiated or neurite-bearing cells; however, CaM-dependent phosphatase activity was seen. Immunoblot analysis with affinity-purified antibodies against CN indicated that this enzyme was present in SMS-KCNR cells regardless of their state of differentiation. Although SMS-KCNR cells did not show a complete pattern of neuronal CaM-binding proteins, particularly because CaM kinase II activity was lacking, they may be useful models for examination of CaM-PDE and CN expression. It is possible that CaM-dependent enzymes can be used as sensitive markers for terminal neuronal differentiation.  相似文献   

20.
Abstract. We document the time of appearance and the levels of two markers of differentiation during the formation of embryoid bodies by two embryonal carcinoma (EC) cell lines. Neither of these markers has been described before for EC cells differentiating in aggregate culture, and they further extend the identification and characterization of new cell types. Both F9 and PC13 EC cell lines form embryoid bodies (so-called because they resemble early mouse embryos) with an outer epithelial layer of visceral endoderm cells, after suspension culture in the presence of retinoic acid. However, the two cell lines differ in the procedures needed to initiate the differentiation process. Once floating aggregate cultures have been formed, the time course of the appearance of epidermal growth factor (EGF) receptors and of the secretion of transferrin are similar in both cell lines, although the levels differ. EGF receptors and transferrin are quantified by 125I-EGF binding assays and enzyme-linked immunosorbent assays (ELISA) using specific antibodies, respectively. The expression of EGF receptors increases about two fold while that of transferrin increases up to 40 fold after treating F9 aggregates with retinoic acid. The EGF receptors reach a maximum 4 days after adding retinoic acid and then decline, while transferrin only increases later from a low but detectable level. For PCI 3 cells, EGF receptors increase tenfold, and transferrin synthetic rate increases 40 fold during the time-course. Interestingly, unstimulated F9 cells in monolayer cultures also express low levels of these markers, while the levels in PC13 EC cells are barely detectable above background. A variety of other teratocarcinoma EC cell lines either do not express these markers at detectable levels or express very low levels. One explanation of our finding is that F9 cells, unlike most other EC cell lines, are already partially differentiated along the pathway to endoderm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号