首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Monospecific antibodies have been prepared against cytochrome c2 from Rhodopseudomonas spheroides and Rhodopseudomonas capsulata, and against cytochrome c′ from Rps. capsulata. These antibodies precipitated their respective antigens, but did not cross react with a wide range of procaryotic or eucaryotic cytochromes, or with other bacterial proteins. The cytochromes produced during aerobic growth were immunologically indistinguishable from those produced during photosynthetic growth.Cytochrome c2 is located in vivo in the periplasmic space between the cell wall and the cell membrane, and when chromatophores are prepared from whole cells the cytochrome becomes trapped inside these vesicles. The implications of these results to energy coupling in the photosynthetic bacteria are discussed.  相似文献   

2.
O.T.G. Jones  K.Mary Plewis 《BBA》1974,357(2):204-214
A mutant, O1, of Rhodopseudomonas spheroides has been prepared that is not capable of bacteriochlorophyll synthesis, but excretes pigments spectroscopically similar to green plant chlorophylls. The cytochrome content and respiratory activity of membranes from O1 resemble those of aerobically grown wild type R. spheroides, but the mutant could not adapt to grow photosynthetically. Photosynthetic reaction centres were purified from the blue green mutant, of R. spheroides, added to membranes from O1, and the detergent used in reaction centre preparation removed by carefully controlled reduction. A reaction centre membrane complex was formed in which the ratio of reaction centre to cytochrome b was near 1 : 2. Illumination caused oxidation of the membrane cytochrome c and reduction of cytochrome b. These changes were enhanced in the presence of antimycin A, suggesting that a cyclic electron flow system had been reconstituted. The implication of these results on the formation of the photosynthetic electron flow system is discussed.  相似文献   

3.
1. Glycine decarboxylase and glycine–bicarbonate exchange activities were detected in extracts of Rhodopseudomonas spheroides and in rat liver mitochondria and their properties were studied. 2. The glycine decarboxylase activity from both sources is stimulated when glyoxylate is added to the assay system. 3. Several proteins participate in these reactions and a heat-stable low-molecular-weight protein was purified from both sources. 4. These enzyme activities increase markedly when R. spheroides is grown in the presence of glycine, glyoxylate, glycollate, oxalate or serine. 5. All the enzymes required to catalyse the conversion of glycine into acetyl-CoA via serine and pyruvate were detected in extracts of R. spheroides; of these glycine decarboxylase has the lowest activity. 6. The increase in the activity of glycine decarboxylase on illumination of R. spheroides in a medium containing glycine, and the greater increase when ATP is also present in the medium, probably accounts for the increased incorporation of the methylene carbon atom of glycine into fatty acids found previously under these conditions (Gajdos, Gajdos-Török, Gorchein, Neuberger & Tait, 1968). 7. The results are compared with those obtained by other workers on the glycine decarboxylase and glycine–bicarbonate exchange activities in other systems.  相似文献   

4.
Diazotrophy of Rhodopseudomonas acidophila and Rhodopseudomonas capsulata was not obligatorily linked to photosynthesis. In the dark R. acidophila grew with dinitrogen as sole nitrogen source at a dissolved oxygen tension of 15 Torr (= 2.0 kPa); the doubling time was 8 h. Acetylene reduction by whole cells was more sensitive to oxygen in the light than in the dark. 16.5 mg N2 were fixed per g lactic acid consumed. R. capsulata synthesized nitrogenase and fixed dinitrogen in the dark at a dissolved oxygen tension of less than one Torr (= 0.13 kPa). The doubling time of this bacterium was 16 h and 10.5 mg N2 were fixed per g lactic acid consumed.Abbreviation kPa kilopascal  相似文献   

5.
Cellulomonas sp. strain ATCC 21399 is a facultatively anaerobic, cellulose-degrading microorganism that does not evolve hydrogen but produces organic acids during cellulose fermentation. Rhodopseudomonas capsulata cannot utilize cellulose, but grows photoheterotrophically under anaerobic conditions on organic acids or sugars. This report describes an anaerobic coculture of the Cellulomonas strain with wild-type R. capsulata or a mutant strain lacking uptake hydrogenase, which photoevolves molecular hydrogen by the nitrogenase system of R. capsulata with cellulose as the sole carbon source. In coculture, the hydrogenase-negative mutant produced 4.6 to 6.2 mol of H2 per mol of glucose equivalent, compared with 1.2 to 4.3 mol for the wild type.  相似文献   

6.
1. A simple spectrophotometric method is described for the measurement of various haemoproteins in extracts of photosynthetic and non-photosynthetic bacteria. The method is based on measurements of difference spectra at the Soret maxima. 2. In photosynthetic bacteria of the Athiorhodaceae group the concentration of carbon monoxide-binding haemoprotein and of cytochromes of the b and c types is two to three times as high in anaerobically grown cells as in those grown aerobically. 3. During the adaptation of Rhodopseudomonas spheroides 8253 to form photosynthetic pigments the concentration of each of these haemoproteins increases in parallel with that of the bacteriochlorophyll. 4. The carbon monoxide-binding haemoprotein in aerobically grown Rps. spheroides 8253, in contrast with anaerobically grown cells, is predominantly in the particulate fraction of extracts prepared by ultrasonic vibration. The b- and c-type cytochromes are approximately equally distributed between each fraction in extracts from both types of cell. 5. Extracts of Micrococcus denitrificans grown anaerobically on nitrate contain more cytochromes of the b and c types, as well as of the carbon monoxide-binding pigment, than do those from aerobically grown cells. 6. The activity of ferrochelatase in both Rps. spheroides 8253 and M. denitrificans was similar in extracts from cells grown aerobically and anaerobically, though the haemoprotein content was higher under the latter conditions. Coproporphyrinogen oxidative decarboxylase could not be demonstrated in cell-free extracts of either organism.  相似文献   

7.
Trimethylamine N-oxide (TMAO) can function as an electron acceptor in the anaerobic metabolism of both Rhodopseudomonas capsulata and Escherichia coli. In both bacteria, anaerobic growth in the presence of TMAO induces a system that can reduce TMAO to trimethylamine (TMA). Comparative studies, however, show that TMAO reduction serves different purposes in the organisms noted. In E. coli, anaerobic growth on sugars does not require the presence of TMAO, but in cells induced for TMAO reductase, TMAO can act as the terminal electron acceptor for membrane-associated oxidative phosphorylation. Anaerobic dark growth of R. capsulata is dependent on the presence of TMAO (or an analog) and in this organism a soluble system catalyzes anaerobic oxidation of NADH with TMAO. The mechanism, in R. capsulata, appears to involve a flavoprotein of the flavodoxin type and presumably represents a system for maintenance of redox balance during anaerobic dark fermentation of hexoses and related compounds.  相似文献   

8.
The photosynthetic bacterium, Rhodopseudomonas capsulata, could be cultured anaerobically in the absence of light on a synthetic medium with glucose as the carbon source only when dimethyl sulfoxide (DMSO) was added. The extent of growth was proportional to both DMSO and glucose concentrations. Optimal growth was achieved with 20 mm DMSO and 0.25% glucose. Under the best conditions, cells divided with a doubling time of 12 h. Pyruvate also supported the anaerobic dark growth of R. capsulata when DMSO was present. R. capsulata, R. sphaeroides, and R. palustris strains were all able to grow under anaerobic dark conditions with DMSO. Experiments using [14C]DMSO showed that more than 95% of the 14C was converted by cultures of R. capsulata to a volatile compound, identified as dimethyl sulfide (DMS) by gas chromatography, thus demonstrating that DMSO was being reduced to DMS during growth. These results indicate that R. capsulata requires a terminal electron acceptor for anaerobic dark growth and that DMSO can serve that function.  相似文献   

9.
  1. The disappearance of nitrate from suspensions of intact, washed cells of Rhodopseudomonas capsulata strain N22DNAR+ was measured with an ion selective electrode. In samples taken from phototrophic cultures grown to late exponential phase, nitrate disappearance was partially inhibited by light but was not affected by the presence of ammonium. Nitrate disappearance from samples from low density cultures in the early exponential phase of growth was first inhibited and later stimulated by light. In these cells ammonium ions inhibited the light-dependent but not the dark disappearance of nitrate. It is concluded that cells in the early exponential phase of growth possess both an ammonium-sensitive, assimilatory pathway for nitrate reduction (NRI) and an ammonium-insensitive pathway for nitrate reduction (NRII) which is linked to respiratory electron flow and energy conservation. In cells harvested in late exponential phase only the respiratory pathway for pitrate reduction is detectable.
  2. Nitrate reduction, as judged by the oxidation of reduced methyl viologen by anaerobic cell suspensions, was measured at high rates in those strains of R. capsulata (AD2, BK5, N22DNAR+) which are believed to possess NRII activity but not in those strains (Kbl, R3, N22) which only manifest the ammonium-sensitive NRI pathway. On this basis we have used nitrate-dependent oxidation of reduced methyl viologen as a diagnostic test for the nitrate reductase of NRII in cells harvested from cultures of R. capsulata strain AD2. The activity was readily detectable in cells from cultures grown aerobically in the dark with ammonium nitrate as source of nitrogen. When the oxygen supply to the culture was withdrawn, the level of methyl viologen-dependent nitrate reductase increased considerably and nitrite accumulated in the culture medium. Upon reconnecting the oxygen supply, methyl viologen-dependent nitrate reductase activity decreased and the reduction of nitrate to nitrite in the culture was inhibited. It is concluded that the respiratory nitrate reductase activity is regulated by the availability of electron transport pathways that are linked to the generation of a proton electrochemical gradient.
  相似文献   

10.
Most wild-type isolates of the photosynthetic bacterium Rhodopseudomonas capsulata spontaneously produce nucleoprotein particles that act as vectors of genetic exchange in this species. The low yield of these particles, termed gene transfer agents, has made their characterization difficult. We have utilized a new screening technique to select a mutant, Y262, which produces about three orders of magnitude more GTA2 per culture. The GTA produced by Y262 seem to be identical to those of wild type by immunological, genetic and sedimentation analyses, and they have been further characterized by a variety of techniques. GTA resemble tailed bacteriophage, although GTA with a head diameter of 30 nm are smaller than most morphologically similar viruses. DNA isolated from GTA is in the form of linear duplex molecules of about 3 × 106 molecular weight. There is no phage-like DNA in GTA particles as judged by Cot and restriction endonuclease analyses. Instead, GTA DNA shows the same kinetic complexity and restriction endonuclease digestion pattern as the R. capsulata genome. The GTA of ten independently isolated wild-type strains of R. capsulata show a high degree of immunological cross-reactivity; thus this genetic exchange system, while not a species-wide trait, does seem to be the product of a conservative evolutionary process.  相似文献   

11.
A soluble ferredoxin was purified from the photosynthetic bacterium Rhodopseudomonas capsulata and characterized. Unlike Rhodospirillum rubrum, where two soluble ferredoxins have been found, only a single species was found in Rps. capsulata. The amino acid composition, ultraviolet-visible spectral properties, molecular weight (12000) and biological activity were determined. The ultraviolet-visible spectrum is similar to that of other bacterial ferredoxins, with a maximum when oxidized at 380 nm (? = 26.1 · 103 M-1 · cm-1). The possible roles of this ferredoxin in the cellular metabolism are discussed.  相似文献   

12.
Less than 5% of the protein isolated from Rhodopseudomonas spheroides chromatophores (designated Fraction P1) is insoluble in 2-chloroethanol. Electrophoresis of these proteins on dodecyl sulphate-polyacrylamide gels reveals a gel pattern similar to those obtained from anaerobic and aerobic cell envelope proteins. Chromatophore P1 is shown to be part of the chromatophore structure and its presence in the chromatophore is not due to contamination from the cytoplasmic membrane.Preparative dodecyl sulphate-polyacrylamide gel electrophoresis was performed to purify chromatophore Pll proteins, which comprise 95% of the total chromatophore protein. These proteins contain approximately 60–65 mole% non-polar amino acids. Comparison studies of the amino acid compositions, tryptic and chymotryptic maps, molecular weights, and antigenic reactivity of chromatophore proteins demonstrate the existence of protein heterogeneity in chromatophores. These investigations lead us to suggest that chromatophore-specific proteins do not appear in other particulate or soluble fractions derived from either aerobic or anaerobic-grown cells.  相似文献   

13.
Rhodobacter capsulatus (formerly Rhodopseudomonas capsulata) could be cured of R plasmids of the P1 incompatibility group, including derivatives used as cloning vectors, by repeated subculturing in a growth medium containing only yeast extract and peptone (YP medium). Loss of R plasmid material from the cells was complete, as shown by agarose gel electrophoresis, and by the absence of hybridization between total DNA and radioactively labelled R plasmid DNA. Prolonged subculturing in YP medium often resulted in the accumulation of auxotrophs, and led to the appearance of strains containing chromosomal insertions of plasmid DNA.  相似文献   

14.
Cold lability was found to be responsible for the initial failure to detect pyruvate kinase activity in extracts of the facultative phototroph, Rhodopseudomonas capsulata. Taking advantage of the reversal of cold inactivation by high concentrations of monovalent cations, the enzyme could be partially purified by (NH4)2SO4-precipitation and gelfiltration. In contrast to the enzyme from Rhodospirillum rubrum, the pyruvate kinase from R. capsulata is nearly insensitive to inorganic phosphate. Instead, it is susceptible to allosteric inhibition by fumarate. Adenosinemonophosphate and sugar phosphates as activators prevent the inhibitory action of fumarate.  相似文献   

15.
Extensive washing of chromatophores of Rhodospirillum rubrum and Rhodopseudomonas spheroides with dilute buffer results in a complete loss of the energylinked transhydrogenase activities of Rsp. rubrum but only a partial loss of the light-driven reaction in chromatophores of Rps. spheroides. It was not possible to reactivate the Rps. spheroides transhydrogenation with the Rsp. rubrum transhydrogenase factor nor with a protein fraction of Rps. spheroides isolated by procedures identical to that used for the isolation of the Rsp. rubrum transhydrogenase factor. The Rsp. rubrum factor is highly specific and cannot be replaced by a number of sulfhydryl compounds tested for reconstitution of Rsp. rubrum transhydrogenation. A published procedure for the isolation of a “transhydrogenase factor” from Rps. spheroides chromatophores yields a preparation having energy-dependent transhydrogenation when supplemented with dithiothreitol in the absence of added chromatophores.  相似文献   

16.
The mechanism of purine degradation was studied in the facultative phototrophic bacterium Rhodopseudomonas capsulata. Using tungstate as an inhibitor of synthesis of an active xanthine dehydrogenase it could be shown in growth experiments that purine compounds are transformed to uric acid as central purine intermediate prior to ring cleavage. Because of its rapid degradation, the mechanism of uric acid conversion was investigated using 1-methyluric acid as substrate. The analogue was partially degraded by whole cells yielding 3-methylallantoin and methylurea. This implicated an oxidative degradation of 1-methyluric acid analogous to oxidation of uric acid to allantoin suggesting uric acid degradation via allantoin. In cell-free extracts, allantoinase, allantoicase, ureidoglycolase and urease activities degrading allantoin to NH3, CO2 and glyoxylic acid were detected. Apparently, purine degradation in R. capsulata proceeds in a manner similar to many aerobic microorganisms. It is peculiar to this bacterium, however, that the pathway evidently operates also under anaerobic conditions. In cell extracts, oxidation of uric acid was observed which could be increased by addition of cytochrome c. The basis of this stimulation is still unknown.  相似文献   

17.
Chromatophores from Rhodopseudomonas capsulata cells grown semiaerobically in the dark oxidize NADH, succinate, and dichlorophenolindophenol. In the presence of N3? these activities are inhibited, but light induces oxidation of dichlorophenolindophenol with O2 as a terminal electron acceptor. Cyanide also inhibits electron transport but much higher concentrations are required to inhibit the photooxidation than the dark oxidation. The photooxidation was studied in a mutant strain of Rhodopseudomonas capsulata (YIV) which cannot grow anaerobically in the light, but similarly to the wild type, grows in the presence of oxygen. Chromatophores from YIV mutant catalyze photophosphorylation and dark oxidation activities with the same properties as those of the wild type. However, the rate of photooxidation in the mutant is only one-third that of the wild type. Based on the differential inhibitor sensitivity and on the mutation it is suggested that the photooxidase is different from the two respiratory oxidases and that this photooxidation activity might be essential for growth of the cells under anaerobic conditions in the light.  相似文献   

18.
A chemolithoautotrophic type of metabolism, which was hitherto unknown for purple nonsulfur bacteria, was demonstrated by growth experiments using Rhodopseudomonas capsulata Kb1 and Rhodopseudomonas acidophila 10050. These strains were able to grow in a mineral medium in the dark at the expense of H2, O2, and CO2. A minimum doubling time of 9 h was obtained for R. capsulata under an atmosphere containing less than 15% oxygen; higher oxygen concentrations suppressed autotrophic but not chemoorganotrophic growth. Oxygen sensitivity of chemoautotrophically growing cells of R. acidophila was even more pronounced, whereas cells growing chemotrophically on methanol almost tolerated the oxygen concentration of air. Highest oxygen sensitivity of growth of R. acidophila was observed with formate as substrate. The growth yield of cultures grown semiaerobically in the dark on methanol was 0.23 g dry cell material per g methanol consumed.  相似文献   

19.
1. A low-molecular-weight activator of 5-aminolaevulinate synthetase was detected in extracts of Rhodopseudomonas spheroides. The compound activates the enzyme extracted from oxygenated semi-anaerobically grown organisms by a factor of 6–8. 2. The activator was extensively purified, but owing to the exceedingly small amounts that could be extracted in the active form its structure was not determined. 3. The activator contains an acetylatable amino group; it is more stable at acid than at alkaline pH values; it is stable to treatment with I2–KI or potassium ferricyanide, but irreversibly inactivated by Na2S2O4 or NaBH4. 4. The chromatographic, electrophoretic, chemical and stability properties of the activator are similar to those of pteridines; purified activator preparations contain pteridines, as shown by their fluorescence spectrum. This does not, however, constitute an identification of the activator. 5. The activator enhances the activity of crude and partially purified enzyme and does not appear to require other endogenous factors or a supply of air to produce activation. Activation of the purified enzyme, however, requires the presence of either pyridoxal phosphate or sodium succinate. In the absence of both these factors the activator produces a time- and temperature-dependent decay of activity.  相似文献   

20.
1. Assay of some photosynthetic bacteria for vitamin B12 showed them to be relatively rich in this factor. Rhodopseudomonas spheroides, grown photosynthetically in Co2+-supplemented medium, contained about 100μg./g. dry wt. 2. Extracts of wild-type Rps. spheroides methylated homocysteine by a mechanism similar to the cobalamin-dependent pathway present in Escherichia coli. However, no mechanism similar to the cobalamin-independent N5-methyltetrahydrofolate–homocysteine transmethylase of E. coli could be detected in Rps. spheroides. 3. N5N10-Methylenetetrahydrofolate-reductase activity was found in Rps. spheroides. 4. A methionine-requiring mutant strain of Rps. spheroides (strain 2/33), which does not respond to homocysteine, made the same amount of vitamin B12 as the parent organism. Extracts did not form methionine from N5-methyltetrahydrofolate and homocysteine even in the presence of cofactors shown to be necessary with the parent strain, and it is concluded that the mutant is blocked in the formation of the apoenzyme of a homocysteine-methylating system similar to the vitamin B12-dependent one in E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号