首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Fibroblast growth factors (Fgfs) and their receptors have been implicated in embryonic pancreas development. Recently it was shown that Fgf10, a major ligand for the IIIb isoform of fibroblast growth factor receptor 2 (Fgfr2b), has an important regulatory role in early pancreas development. The aim of our study was to define the role of Fgfr2b in pancreas development by analyzing the phenotype of Fgfr2b (-/-) mice. Pancreases of Fgfr2b (-/-) embryos were noticeably smaller than the wild type littermates during embryogenesis, and pancreatic ductal branching as well as duct cell proliferation was significantly reduced. However, both exocrine and endocrine pancreatic differentiation occurred relatively normally. Exogenous addition of Fgfr2b ligands (Fgf7 and Fgf10) stimulated duct cell proliferation and inhibited endocrine cell differentiation in the ex vivo embryonic organ cultures of wild type pancreas. Our results thus suggest that Fgfr2b-mediated signaling plays a major role in pancreatic ductal proliferation and branching morphogenesis, but has little effect on endocrine and exocrine differentiation.  相似文献   

2.
Pancreatic tissue formation from murine embryonic stem cells in vitro   总被引:4,自引:0,他引:4  
The in vitro formation of organs and/or tissues is a major goal for regenerative medicine that would also provide a powerful tool for analyzing both the mechanisms of development and disease processes for each target organ. Here, we present a method whereby pancreatic tissues can be formed in vitro from mouse embryonic stem (ES) cells. Embryoid body-like spheres (EBSs) induced from ES cell colonies were treated with retinoic acid (RA) and activin, which are candidate regulators of pancreatic development in vivo. These induced tissues had decreased expression of the sonic hedgehog (shh) gene and expressed several pancreatic marker genes. ES cell-derived pancreatic tissue was composed of exocrine cells, endocrine cells, and pancreatic duct-like structures. In addition, the ratio of exocrine to endocrine cells in the induced tissue was found to be sensitive to the concentrations of RA and activin in the present experiment.  相似文献   

3.
4.
The role of the Notch signaling members Notch1, Notch2 and Rbpj in exocrine pancreatic development is not well defined. We therefore analyzed conditional pancreas-specific Rbpj and combined Notch1/Notch2 knockout mice using Ptf1a(+/Cre(ex1)) mice crossed with floxed Rbpj or Notch1/Notch2 mice. Mice were analyzed at different embryonic stages for pancreatic exocrine and endocrine development. The absence of Rbpj in pancreatic progenitor cells impaired exocrine pancreas development up to embryonic day 18.5 and led to premature differentiation of pancreatic progenitors into endocrine cells. In Rbpj-deficient pancreata, amylase-expressing acini and islets formed during late embryonic and postnatal development, suggesting an essential role of Rbpj in early but not late development. Contrary to this severe phenotype, the concomitant inactivation of Notch1 and Notch2 only moderately disturbed the proliferation of pancreatic epithelial cells during early embryonic development, and did not inhibit pancreatic development. Our results show that, in contrast to Rbpj, Notch1 and Notch2 are not essential for pancreatogenesis. These data favor a Notch-independent role of Rbpj in the development of the exocrine pancreas. Furthermore, our findings suggest that in late stages of pancreatic development exocrine cell differentiation and maintenance are independent of Rbpj.  相似文献   

5.
To investigate the precise role of Notch/Rbp-j signaling in the pancreas, we inactivated Rbp-j by crossing Rbp-j floxed mice with Pdx.cre or Rip.cre transgenic mice. The loss of Rbp-j at the initial stage of pancreatic development induced accelerated alpha and PP cell differentiation and a concomitant decrease in the number of Neurogenin3 (Ngn3)-positive cells at E11.5. Then at E15, elongated tubular structures expressing ductal cell markers were evident; however, differentiation of acinar and all types of endocrine cells were reduced. During later embryonic stages, compensatory acinar cell differentiation was observed. The resultant mice exhibited insulin-deficient diabetes with both endocrine and exocrine pancreatic hypoplasia. In contrast, the loss of Rbp-j specifically in beta cells did not affect beta cell number and function. Thus, our analyses indicate that Notch/Rbp-j signaling prevents premature differentiation of pancreatic progenitor cells into endocrine and ductal cells during early development of the pancreas.  相似文献   

6.
Pancreatic organogenesis is promoted or restricted by different signaling pathways. In amniotes, inhibition of hedgehog (Hh) activity in the early embryonic endoderm is a prerequisite for pancreatic specification. However, in zebrafish, loss of Hh signaling leads to a severe reduction of β-cells, leading to some ambiguity as to the role of Hh during pancreas development and whether its function has completely diverged between species. Here, we have employed genetic and pharmacological manipulations to temporally delineate the role of Hh in zebrafish endocrine pancreas development and investigate its relationship with the Bmp and retinoic acid (RA) signaling pathways. We found that Hh is required at the start of gastrulation for the medial migration and differentiation of pdx1-expressing pancreatic progenitors at later stages. This early positive role of Hh promotes β-cell lineage differentiation by restricting the repressive effects of Bmp. Inhibition of Bmp signaling in the early gastrula leads to increased β-cell numbers and partially rescued β-cell formation in Hh-deficient embryos. By the end of gastrulation, Hh switches to a negative role by antagonizing RA-mediated specification of the endocrine pancreas, but continues to promote differentiation of exocrine progenitors. We show that RA downregulates the Hh signaling components ptc1 and smo in endodermal explants, indicating a possible molecular mechanism for blocking axial mesoderm-derived Hh ligands from the prepancreatic endoderm during the specification stage. These results identify multiple sequential roles for Hh in pancreas development and highlight an unexpected antagonistic relationship between Hh and other signaling pathways to control pancreatic specification and differentiation.  相似文献   

7.
Vitamin A deficiency is known to affect 20 million pregnant women worldwide. However, the prenatal effects of maternal vitamin A deficiency on pancreas development have not been clearly determined. The present study examined how maternal vitamin A deficiency affects fetal islet development. Vitamin A-deficient mice were generated by feeding female mice with a chemically defined diet lacking vitamin A prior to mating as well as during pregnancy. We found that maternal vitamin A deficiency during pregnancy affected fetal pancreas development. Although the exocrine differentiation appeared normal, development of islet tissue was impaired. In the pancreas of neonatal mice, only a few endocrine cell clusters were formed, and these cell clusters lacked capillary endothelial cells. To further determine how vitamin A metabolites, such as retinoic acid, regulate vascularized islet development, ex vivo culture of embryonic pancreas either in the presence of 4-diethylaminobenzaldehyde (DEAB; an inhibitor of retinaldehyde dehydrogenase), all-trans retinoic acid (atRA) or retinoic acid receptor agonist (E)-4-[2-(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthylenyl)-1-propenyl] benzoic acid (TTNPB) was carried out. We found that the addition of DEAB blocked vascularization and suppressed β-cell differentiation. Conversely, atRA or TTNPB promoted β-cell differentiation accompanied by enhanced expression of vascular basement component, laminin. We further demonstrated that atRA regulated vascularization via upregulating vascular endothelial growth factor-A (VEGF-A) secretion in embryonic pancreas and treatment with VEGF-A was able to partially rescue vascularization and β-cell differentiation in DEAB-treated embryonic pancreas cultures. The findings explain why maternal vitamin A deficiency affects fetal islet development and support an essential role of retinoid signaling in regulating vascularized islet development.  相似文献   

8.
The major molecular signals of pancreatic exocrine development are largely unknown. We examine the role of fibroblast growth factor 7 (FGF7) in the final induction of pancreatic amylase-containing exocrine cells from induced-pancreatic progenitor cells derived from human embryonic stem (hES) cells. Our protocol consisted in three steps: Step I, differentiation of definitive endoderm (DE) by activin A treatment of hES cell colonies; Step II, differentiation of pancreatic progenitor cells by re-plating of the cells of Step I onto 24-well plates at high density and stimulation with all-trans retinoic acid; Step III, differentiation of pancreatic exocrine cells with a combination of FGF7, glucagon-like peptide 1 and nicotinamide. The expression levels of pancreatic endodermal markers such as Foxa2, Sox17 and gut tube endoderm marker HNF1β were up-regulated in both Step I and II. Moreover, in Step III, the induced cells expressed pancreatic markers such as amylase, carboxypeptidase A and chymotrypsinogen B, which were similar to those in normal human pancreas. From day 8 in Step III, cells immunohistochemically positive for amylase and for carboxypeptidase A, a pancreatic exocrine cell product, were induced by FGF7. Pancreatic progenitor Pdx1-positive cells were localized in proximity to the amylase-positive cells. In the absence of FGF7, few amylase-positive cells were identified. Thus, our three-step culture protocol for human ES cells effectively induces the differentiation of amylase- and carboxypeptidase-A-containing pancreatic exocrine cells.  相似文献   

9.
10.
11.
How and when the vertebrate endoderm is first subdivided into discrete progenitor cell populations that will give rise to the different major organs, including pancreas and liver, are only poorly understood. We have used Xenopus laevis as a model system to characterize these events, since it is particularly suited to study the early embryonic patterning in vertebrates. Our experimental results support the notion that retinoic acid (RA) functions as an essential endodermal patterning signal in Xenopus and that it acts as early as during gastrulation. As a result of RA treatment, the expression of Sonic Hedgehog (Shh), a known inhibitor of pancreas development in other vertebrate systems, is negatively regulated in the dorsal prepancreatic endoderm. Furthermore, RA is found to promote endocrine at the expense of exocrine differentiation in the dorsal pancreas, correlating with a specific inhibition of Notch signaling activities in this territory. Conversely, RA enhances exocrine marker gene expression in the ventral pancreas.  相似文献   

12.
In the present study the morphogenesis and differentiation processes in embryonic pancreatic gland implants into Wistar line rat anterior eye chamber have been investigated. The conditions therein were found to be favourable for the endocrine tissue functioning; a number of morphogenetic changes resulting in the formation of islet structure acting as a morphophysiological unit were noted as well. Endocrine cells possess some selective properties as compared to the exocrine tissue. Alloxan diabetic animals demonstrated the most optimum conditions for the endocrine cells development and functioning.  相似文献   

13.
Mouse embryonic stem cells (ESCs) can be induced to form pancreatic exocrine enzyme-producing cells in vitro in a stepwise fashion that recapitulates the development in vivo. However, there is no protocol for the differentiation of pancreatic-like cells from human ESCs (hESCs). Based upon the mouse ESC model, we have induced the in vitro formation of pancreatic exocrine enzyme-producing cells from hESCs. The protocol took place in four stages. In Stage 1, embryoid bodies (EBs) were formed from dissociated hESCs and then treated with the growth factor activin A, which promoted the expression of Foxa2 and Sox17 mRNAs, markers of definitive endoderm. In Stage 2, the cells were treated with all-trans retinoic acid which promoted the transition to cells that expressed gut tube endoderm mRNA marker HNF1b. In Stage 3, the cells were treated with fibroblast growth factor 7 (FGF7), which induced expression of Pdx1 typical of pancreatic progenitor cells. In Stage 4, treatment with FGF7, glucagon-like peptide 1, and nicotinamide induced the expression amylase (AMY) mRNA, a marker for mature pancreatic exocrine cells. Immunohistochemical staining showed the expression of AMY protein at the edges of cell clusters. These cells also expressed other exocrine secretory proteins including elastase, carboxypeptidase A, chymotrypsin, and pancreatic lipase in culture. Production of these hESC-derived pancreatic enzyme-producing cells represents a critical step in the study of pancreatic organogenesis and in the development of a renewable source of human pancreatic-like exocrine cells.  相似文献   

14.
We have examined factors affecting the in vitro differentiation of Pdx1GFP/w ESCs to pancreatic endocrine cells. Inclusion of Bone Morphogenetic Protein 4 (BMP4) during the first four days of differentiation followed by a 24-hour pulse of retinoic acid (RA) induced the formation of GFP+ embryoid bodies (EBs). GFP expression was restricted to E-cadherin+ tubes and GFP bright (GFPbr) buds, reminiscent of GFP+ early foregut endoderm and GFPbr pancreatic buds observed in Pdx1GFP/w embryos. These organoid structures developed without further addition of exogenous factors between days 5 and 12, suggesting that day 5 EBs contained a template for the subsequent phase of development. EBs treated with nicotinamide after day 12 of differentiation expressed markers of endocrine and exocrine differentiation, but only in cells within the GFPbr buds. Analysis of Pdx1GFP/w ESCs modified by targeting a dsRed1 gene to the Ins1 locus (Pdx1GFP/wIns1RFP/w ESCs) provided corroborating evidence that insulin positive cells arose from GFPbr buds, mirroring the temporal relationship between pancreatic bud development and the formation of endocrine cells in the developing embryo. The readily detectable co-expression of GFP and RFP in grafts derived from transplanted EBs demonstrated the utility of Pdx1GFP/wIns1RFP/w ESCs for investigating pancreatic differentiation in vitro and in vivo.  相似文献   

15.
Differentiation onset in the vertebrate body axis is controlled by a conserved switch from fibroblast growth factor (FGF) to retinoid signalling, which is also apparent in the extending limb and aberrant in many cancer cell lines. FGF protects tail-end stem zone cells from precocious differentiation by inhibiting retinoid synthesis, whereas later-produced retinoic acid (RA) attenuates FGF signalling and drives differentiation. The timing of RA production is therefore crucial for the preservation of stem zone cells and the continued extension of the body axis. Here we show that canonical Wnt signalling mediates the transition from FGF to retinoid signalling in the newly generated chick body axis. FGF promotes Wnt8c expression, which persists in the neuroepithelium as FGF signalling declines. Wnt signals then act here to repress neuronal differentiation. Furthermore, although FGF inhibition of neuronal differentiation involves repression of the RA-responsive gene, retinoic acid receptor beta (RARbeta), Wnt signals are weaker repressors of neuron production and do not interfere with RA signal transduction. Strikingly, as FGF signals decline in the extending axis, Wnt signals now elicit RA synthesis in neighbouring presomitic mesoderm. This study identifies a directional signalling relay that leads from FGF to retinoid signalling and demonstrates that Wnt signals serve, as cells leave the stem zone, to permit and promote RA activity, providing a mechanism to control the timing of the FGF-RA differentiation switch.  相似文献   

16.
17.
During pancreas development, endocrine and exocrine cells arise from a common multipotent progenitor pool. How these cell fate decisions are coordinated with tissue morphogenesis is poorly understood. Here we have examined ductal morphology, endocrine progenitor cell fate and Notch signaling in Ngn3−/− mice, which do not produce islet cells. Ngn3 deficiency results in reduced branching and enlarged pancreatic duct-like structures, concomitant with Ngn3 promoter activation throughout the ductal epithelium and reduced Notch signaling. Conversely, forced generation of surplus endocrine progenitor cells causes reduced duct caliber and an excessive number of tip cells. Thus, endocrine progenitor cells normally provide a feedback signal to adjacent multipotent ductal progenitor cells that activates Notch signaling, inhibits further endocrine differentiation and promotes proper morphogenesis. These results uncover a novel layer of regulation coordinating pancreas morphogenesis and endocrine/exocrine differentiation, and suggest ways to enhance the yield of beta cells from stem cells.  相似文献   

18.
19.
Mice carrying loss-of-function mutations in certain Notch pathway genes display increased and accelerated pancreatic endocrine development, leading to depletion of precursor cells followed by pancreatic hypoplasia. Here, we have investigated the effect of expressing a constitutively active form of the Notch1 receptor (Notch1(ICD)) in the developing pancreas using the pdx1 promoter. At e10.5 to e12.5, we observe a disorganized pancreatic epithelium with reduced numbers of endocrine cells, confirming a repressive activity of Notch1 upon the early differentiation program. Subsequent branching morphogenesis is impaired and the pancreatic epithelium forms cyst-like structures with ductal phenotype containing a few endocrine cells but completely devoid of acinar cells. The endocrine cells that do form show abnormal expression of cell type-specific markers. Our observations show that sustained Notch1 signaling not only significantly represses endocrine development, but also fully prevents pancreatic exocrine development, suggesting that a possible role of Notch1 is to maintain the undifferentiated state of common pancreatic precursor cells.  相似文献   

20.
FGF8, a member of the fibroblast growth factor (FGF) family, has been shown to play important roles in different developing systems. Mouse embryonic carcinoma P19 cells could be induced by retinoic acid (RA) to differentiate into neuroectodermal cell lineages, and this process is cell aggregation dependent. In this report, we show that FGF8 expression is transiently up-regulated upon P19 cell aggregation, and the aggregation-dependent FGF8 elevation is pluripotent stem cell related. Overexpressing FGF8 promotes RA-induced monolayer P19 cell neural differentiation. Inhibition of FGF8 expression by RNA interference or blocking FGF signaling by the FGF receptor inhibitor, SU5402, attenuates neural differentiation of the P19 cell. Blocking the bone morphogenetic protein (BMP) pathway by overexpressing Smad6 in P19 cells, we also show that FGF signaling plays a BMP inhibition-independent role in P19 cell neural differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号