首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
2.
The anionic peroxidase associated with the suberization response in potato (Solanum tuberosum L.) tubers during wound healing has been purified and partially characterized at the biochemical level. It is a 45-kD, class III (plant secretory) peroxidase that is localized to suberizing tissues and shows a preference for feruloyl (o-methoxyphenol)-substituted substrates (order of substrate preference: feruloyl > caffeoyl > p-coumaryl approximately syringyl) such as those that accumulate in tubers during wound healing. There was little influence on oxidation by side chain derivatization, although hydroxycinnamates were preferred over the corresponding hydroxycinnamyl alcohols. The substrate specificity pattern is consistent with the natural substrate incorporation into potato wound suberin. In contrast, the cationic peroxidase(s) induced in response to wound healing in potato tubers is present in both suberizing and nonsuberizing tissues and does not discriminate between hydroxycinnamates and hydroxycinnamyl alcohols. A synthetic polymer prepared using E-[8-(13)C]ferulic acid, H(2)O(2), and the purified anionic enzyme contained a significant amount of cross-linking through C-8, albeit with retention of unsaturation.  相似文献   

3.
It was demonstrated that biogenic elicitors, arachidonic acid and chitosan, locally and systemically stimulated wound healing in potato tuber tissues by increasing the number of wound periderm layers, accelerating the development of cork cambium (phellogen), and inducing proteinase inhibitors. The signal molecules, jasmonic and salicylic acids, had different effects on the development of wound periderm: jasmonic acid locally and systemically stimulated potato wound healing and elevated the level of proteinase inhibitors, whereas salicylic acid did not have any effect on wound healing and even blocked the formation of proteinase inhibitors.  相似文献   

4.
Bernards MA  Lewis NG 《Phytochemistry》1992,31(10):3409-3412
Seven ferulic acid esters of 1-alkanols ranging in carbon length from C16 to C28 were synthesized and an HPLC protocol for their separation developed. Extracts prepared from wound healing potato (Solanum tuberosum) tubers and analysed by HPLC indicated that alkyl ferulate esters begin to accumulate 3-7 days after wound treatment. Of the nine esters identified by EIMS, (including two esters of odd chain length alkanols) hexadecyl and octadecyl ferulates were predominant. Alkyl ferulate esters were restricted to the wound periderm.  相似文献   

5.
Mechanical damage or infection of potatoes with Phytophthora infestans caused an accumulation of only serine protease inhibitors in exudates of potato tubers. Among them, proteins prevailed that are structurally similar to those present in healthy tubers: a 22-kDa trypsin inhibitor, a 21-kDa serine protease inhibitor consisting of two polypeptide chains, and a 8-kDa potato chymotrypsin I inhibitor produced de novo. The accumulated proteins inhibited the growth of hyphae and germination of zoospores of P. infestans. Treatment with elicitors, jasmonic and arachidonic acids, intensified the accumulation of these inhibitors in tubers in response to the wound stress, whereas salicylic acid blocked this process. These results suggest that the lipoxygenase metabolism plays a substantial role in signal transduction of the protective system of resting potato tubers.  相似文献   

6.
A study of biological activity of the derivatives of the chitin-chitosan oligomer with salicylic acid and its fragments showed that chitosan salicylate actively protected potato tubers against Phytophthora infestans but sharply inhibited reparation of potato tissues. N-(2-hydroxybenzyl)chitosan exhibited good protective properties but did not influence wound reparation. N-(2-hydroxy-3-methoxybenzyl)-N-pyridoxchitosan, which contained the pyridoxal and 2-hydroxy-3-methoxy fragments, was the most efficient, stimulating both defense against late blight and wound reparation in potato tissues.  相似文献   

7.
Isoperoxidases induced by wounding in potato tuber tissue were separated by starch gel electrophoresis and found to be distributed in a highly specific spatial pattern. This pattern of molecular differentiation correlates well with the pattern of cell differentiation associated with wound healing. Although wound induced isoperoxidases were found to vary between three varieties of potato, they were distributed in the same spatial pattern. The combination of isozymes extracted from various parts of a potato plant was specific for each of nine organs and tissues, and all combinations were different from the isozymes from wounded tuber tissue. Isoperoxidases can thus be considered as highly specific molecular markers of cell differentiation.  相似文献   

8.
9.
DNA synthesis is induced in potato tuber tissue by wounding and starts after a lag period of about 8 hr. As demonstrated by the incorporation of labeled precursors, it reaches its peak between 14 and 18 hr after cutting, and returns to the initial low level before 24 hr, the time of first cell divisions. DNA synthesis is confined to those 2 or 3 cell layers below the wound, where cell division and starch degradation are observed later. Protein synthesis and increase in respiration extend much deeper into the tissue. Both the time course of DNA synthesis and its spatial distribution show patterns different from those of other wound-induced metabolic activities. As wound healing in potato tuber tissue involves the establishment of specific patterns with respect to the time course of induced metabolic activities as well as their spatial distribution, it should be considered and studied as a developmental process. The practical advantages of the system are discussed.  相似文献   

10.
Mechanical wounding or infection of potatoes with Phytophthora infestans caused an accumulation of only serine protease inhibitors in exudates of potato tubers. Among them, proteins prevailed that are structurally similar to those present in healthy tubers: a 22-kDa trypsin inhibitor, a 21-kDa serine protease inhibitor consisting of two polypeptide chains, and a 8-kDa potato chymotrypsin I inhibitor produced de novo. The accumulated proteins inhibited the growth of hyphae and germination of zoospores of P. infestans. Treatment with elicitors, jasmonic and arachidonic acids, intensified the accumulation of these inhibitors in tubers in response to the wound stress, whereas salicylic acid blocked this process. These results suggest that lipoxygenase metabolism plays a substantial role in signal transduction of the protective system of resting potato tubers.  相似文献   

11.
12.
The time course of suberization in wound periderm from potato (Solanum tuberosum L.) has been monitored by histochemical and high-resolution solid-state nuclear magnetic resonance (NMR) methods. Light microscopy conducted after selective staining of the lipid and double-bonded constituents shows that suberin is deposited at the outermost intact cell-wall surface during the first 7 d of wound healing; suberization forms a barrier to tissue infiltration at later times. Cross polarization-magic angle spinning 13C NMR spectra demonstrate the deposition of a polyester containing all major suberin functional groups after just 4 d of wound healing. Initially the suberin includes a large proportion of aromatic groups and fairly short aliphatic chains, but the spectral data demonstrate the growing dominance of long-chain species during the period 7 to 14 d after wounding. The results of preliminary 13C-labeling experiments with sodium [2-13C]acetate and DL-[1-13C]phenylalanine provide an excellent prospectus for future NMR-based studies of suberin biosynthesis.  相似文献   

13.
Erwinia carotovora is a major cause of potato tuber infection, which results in disastrous failures of this important food crop. There is currently no effective antibiotic treatment against E. carotovora. Recently we reported antibacterial assays of wound tissue extracts from four potato cultivars that exhibit a gradient of russeting character, finding the highest potency against this pathogen for a polar extract from the tissue formed immediately after wounding by an Atlantic cultivar. In the current investigation, antibacterial activity-guided fractions of this extract were analyzed by liquid chromatography-mass spectrometry (LC-MS) utilizing a quadrupole-time-of-flight (QTOF) mass spectrometer. The most active chemical compounds identified against E. carotovora were: 6-O-nonyl glucitol, Lyratol C, n-[2-(4-Hydroxyphenyl)] ethyldecanamide, α-chaconine and α-solanine. Interactions among the three compounds, ferulic acid, feruloyl putrescine, and α-chaconine, representing metabolite classes upregulated during initial stages of wound healing, were also evaluated, offering possible explanations for the burst in antibacterial activity after tuber wounding and a chemical rationale for the temporal resistance phenomenon.  相似文献   

14.
15.
In response to wounding, potato ( Solanum tuberosum L.) tubers generate hydrogen peroxide (H2O2) in association with suberization, a critical phase of the wound-healing process. In the present study, the effect of aminotriazole (AT), a catalase (CAT, EC 1.11.1.6) inhibitor, on cut tubers was investigated using fresh weight (FW) loss and pathogen attack symptoms as indicators of wound-healing efficiency. Seven days after treatment, AT-treated tuber halves lost more FW and developed infection signs compared with the controls. Thiourea, another CAT inhibitor, as well as exogenous H2O2 treatments induced the same effects as AT suggesting that the alteration of the wound healing may be caused by CAT inhibition and the resulting accumulation of H2O2. Using transgenic tubers, FW losses 1 week after wounding were either higher (CAT repression) or lower (CAT overexpression) than those of the wild-type. When tuber halves were allowed to wound heal for different periods before treatment, AT had no effect on the progress of their wound healing if wound-healed for at least 3 days. This implies that AT may affect early wound-healing-related events, especially those occurring before or during suberization. A time-course analysis of the effects of AT treatment on wounded tuber tissues revealed that AT prevented the deposition of the polyphenolic domain of suberin in association with CAT inhibition and H2O2 accumulation. These data are important in identifying factors that may be required to regulate suberization and contribute to a better understanding of this critical process to hasten its rate and limit wound-related losses in stored potato tubers.  相似文献   

16.
In response to wounding, potato tubers generate reactive oxygen species (ROS) in association with suberization. Immediately following wounding, an initial burst of ROS occurs, reaching a maximum within 30 to 60 min. In addition to this initial oxidative burst, at least three other massive bursts occur at 42, 63 and 100 h post-wounding. These latter bursts are associated with wound healing and are probably involved in the oxidative cross-linking of suberin poly(phenolics). The source of ROS is likely to be a plasma membrane NADPH-dependent oxidase immunorelated to the human phagocyte plasma membrane oxidase. The initial oxidative burst does not appear to be dependent on new protein synthesis, but the subsequent bursts are associated with an increase in oxidase protein components. Oxidase activity is enhanced in vitro by hydroxycinnamic acids and conjugates associated with the wound healing response in potato.  相似文献   

17.
D. W. Cullen    I. K. Toth    N. Boonham    K. Walsh    I. Barker    A. K. Lees 《Journal of Phytopathology》2007,155(5):309-315
The diseases pink rot, watery wound rot and gangrene are important storage rot diseases of potato associated predominantly with Phytophthora erythroseptica (P.), Pythium ultimum (Py.) and Phoma exigua (Phoma) var. foveata respectively. Reliable molecular‐based diagnostic tests are required that will not only allow unequivocal identification of symptoms but will further advance epidemiological studies of these potato diseases to increase our understanding and contribute to more effective management and control strategies to the potato industry. Primers and probes were designed in specific regions of the internal transcribed spacer (ITS) regions to develop conventional and real‐time quantitative polymerase chain reaction (PCR) assays able to detect all possible fungal and oomycete pathogens causing pink rot, watery wound rot and gangrene. The specificity of each diagnostic assay was rigorously tested with over 500 fungal/oomycete plant pathogen isolates from potato and reference culture collections, and both conventional and real‐time PCR methods produced similar results. In terms of sensitivity, the detection limits for real‐time PCR went below ag DNA levels compared with pg DNA levels with conventional PCR. The real‐time PCR assays developed to detect Phoma foveata and Py. ultimum on tubers were suitable for the comparative Ct method (ΔΔCt) of quantification using the cytochrome oxidase gene of potato as a normalizer assay; an advantage as the need for a standard curve is eliminated. Each assay detected Phoma species (var. foveata or exigua) from naturally infected tubers showing symptoms of gangrene, and P. erythroseptica or Py. ultimum were also detected following inoculation of Russet Burbank tubers. Each diagnostic assay developed could reliably detect and distinguish between the pink rot, watery wound rot and gangrene‐causing potato pathogens.  相似文献   

18.
Mc Clure , T. T. (Plant Pest Control Division, ARS, USDA, Washington, D. C.) Chlorogenic acid accumulation and wound healing in sweet potato roots . Amer. Jour. Bot. 47(4) : 277—280. Illus. 1960.–Chlorogenic acid accumulation in cells adjacent to a wound occurs before suberization and wound-periderm formation. Suberization during wound healing was highly correlated with chlorogenic acid accumulation and with wound-periderm formation. The possible role of chlorogenic acid as a source of chemical units for suberization is suggested. Histochemical tests indicate that suberization during wound healing may be a form of lignification. Over 5 times as much lignin was found by chemical analysis in the tissues of healed surfaces as in controls.  相似文献   

19.
King RR  Calhoun LA 《Phytochemistry》2005,66(20):2468-2473
Four feruloyl amides, N-trans-feruloyloctopamine (1), N-cis-feruloyloctopamine (2), N-trans-feruloyltyramine (3), N-cis-feruloyltyramine (4), a cross-linked N-trans-feruloyltyramine dimer (5), and a cross-linked N-cis-feruloyltyramine dimer (6) were isolated from potato common scab lesions. The compounds were purified by TLC and characterized by a combination of (1)H and (13)C NMR spectroscopic techniques. The presence of an accompanying minor complex of cross-linked dimers containing both feruloyltyramines and feruloyloctopamines was also demonstrated. This is the first characterization of cross-linked hydroxycinnamic acid amides associated with wound healing in potato (Solanum tuberosum) tubers.  相似文献   

20.
Two forms of glucose-6-phosphate dehydrogenase were separated by disc electrophoresis of potato tuber extracts. The slower moving enzyme has a MW of 260 000 the faster one of 130 000. Wounding of potato tubers enhances the relative activity of the slower moving enzyme. Addition of NADP+ to the cathode buffer during electrophoresis has the same effect as wounding, whereas addition of glucose-6-phosphate has an opposite effect. The role of the wound induced increase of the pyridine nucleotide level in the interconversion of the two forms of glucose-6-phosphate dehydrogenase is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号