首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
鼷鹿云南亚种(Tragulus javanicus williamsoni)的核型分析   总被引:5,自引:1,他引:4  
本文以染色体分带技术,发现鼷鹿云南亚种的染色体数目为2n=32。全部为双胃染色体,NF=64。所有染色体着丝点区分布有C带,多数染色体的端部或两端也有C带。某些染色体还有插入C带。Y染色体C带阳性,有一Ag-NORs。文章对鼷鹿云南亚种染色体独特的C带分布以及和核型进化的关系进行了讨论。  相似文献   

2.
石貂的染色体研究   总被引:1,自引:0,他引:1  
本文对分布在我国的石貂北方亚种染色体进行了较详细的研究。结果表明2n=38,核型为14(M)+4(SM)+18(ST),XY(M,A)。C-带显示该亚种的一些染色体着丝粒区域结构异染色质弱化或消失。No,9染色体的短臂完全异染色质化;X染色体长臂丰出现插入杂色质带;Y为完全结构异染色质组成。  相似文献   

3.
The basic male karyotype of the six Nabis species (Heteroptera, Nabidae) is confirmed as being 2n=16+XY. The chromosomes are holokinetic while male meiosis is achiasmatic. The sex chromosomes undergo postreduction and in second metaphase show distance pairing, registered in all nabid species examined so far. Using C-banding technique for the first time in the family Nabidae, the heterochromatin was revealed on chromosomes of six species. The species showed different amount and distribution of C-heterochromatin. Only in Nabis (Dolichonabis) limbatus did the C-bands distribution make possible the identification of every chromosome pair in the karyotype. In other species, C-bands were found in some of the autosomes and the X, localized either interstitially or at telomeres. Only the Y usually showed relative stability ofthe C-banding pattern. In four of six species, extra (B) chromosomes were observed and their behaviour in meiosis described.  相似文献   

4.
5.
INTRoDUCTIoNlYho1iumrePensL,whiteclover,isaneconomicallyimportantplantspeciesintemperatepastures.Asbrieflyreportedby[1],ithas16pairsofchromosomes(2n=32).Asyet,nodetailedcytologicalexaminationofthisspecies,suchasC-banding,hasbeenrep0rted.Inthelastdecade,thetechnique0fC-bandinghasbeenusedt0examinehighlyrepeatedsequencesinplantchrom0s0mesandhasprovidedausefultoolf0rtheanalysis0fcyt0geneticstructureincr0pplants[2-71.Inplants,thechr0m0s0mall0calizationofhighlyrepeatedDNAsequencesbyinsituhybr…  相似文献   

6.
佴文惠  陈玉泽 《兽类学报》1998,18(3):192-195
采用复制带、C带和硝酸银染色等分带技术研究了水貂的核型和带型。结果表明,2n=30,枝型为10(M)+16(SM)+2(A),XX(M)。C-带显示该水貂的一些染色体的结构异染色质比较丰富,从着丝粒区域延伸到两臂上,No.5染色体着丝粒结构异染色质有些弱化;X染色体的结构异染色质较常染色体的丰富。Ag-NORs有3个,分布在No.8染色体的次缢痕区域和一条No.2染色体长臂接近着丝粒的区域。  相似文献   

7.
Japanese hop (Humulus japonicus Siebold & Zucc.) was karyotyped by chromosome measurements, fluorescence in situ hybridization with rDNA and telomeric probes, and C-banding/DAPI. The karyotype of this species consists of sex chromosomes (XX in female and XY1Y2 in male plants) and 14 autosomes difficult to distinguish by morphology. The chromosome complement also shows a rather monotonous terminal distribution of telomeric repeats, with the exception of a pair of autosomes possessing an additional cluster of telomeric sequences located within the shorter arm. Using C-banding/DAPI staining and 5S and 45S rDNA probes we constructed a fluorescent karyotype that can be used to distinguish all autosome pairs of this species except for the 2 largest autosome pairs, lacking rDNA signals and having similar size and DAPI-banding patterns. Sex chromosomes of H. japonicus display a unique banding pattern and different DAPI fluorescence intensity. The X chromosome possesses only one brightly stained AT-rich terminal segment, the Y1 has 2 such segments, and the Y2 is completely devoid of DAPI signal. After C-banding/DAPI, both Y chromosomes can be easily distinguished from the rest of the chromosome complement by the increased fluorescence of their arms. We discuss the utility of these methods for studying karyotype and sex chromosome evolution in hops.  相似文献   

8.
The Basic Karyotype of Lotus tenuis C-banding and Feulgen Studies   总被引:1,自引:0,他引:1  
The basic karyotype of L. tenuis is illustrated. The study ofFeulgen stained metaphases has shown that the chromosome complementconsists of four pairs of median chromosomes and two pairs ofsubmedian chromosomes. Two nucleolar constrictions characterizethe first homologous pair. The C-banding pattern includes largepericentric bands in each chromosome pair and a terminal bandin the short arm of chromosome 3 Lotus tenuis, chromosome morphology, C-banding  相似文献   

9.
The C-banding technique was used to study flax chromosomes (Linum usitatissimum L., 2n = 30). Heterochromatin was located mainly in pericentromeric regions of chromosomes. In spite of small size (1.5-3.5 microm), all 15 pairs of homologous chromosomes were identified on the basis of the C-banding pattern and morphology. An idiogram of C-banded chromosomes of L usitatissimum L. is presented. Polymorphism of chromosomal heterochromatic regions was studied in karyotypes of three flax samples: L usitatissimum L., accession K-603 (L usitatissimum var. usitatissimum), and accession K-594 (L. usitatissimum var. humile (Mill.)). A common C-banding pattern was observed in all forms studied, although there were some distinctions in the individual band size. The fibre flax (accession K-603) karyotype had the C-banding pattern similar to that of L usitatissimum L., but some intercalary and telomeric C-bands were somewhat larger, and a satellite (NOR) was observed in the short arm of chromosome I. In crown flax, (K-594) chromosomal C-banding pattern exhibited smaller pericentromeric and larger intercalary bands; telomeric bands were present on almost all chromosomes. Thus, the intraspecies polymorphism revealed in the chromosomal C-banding pattern makes possible the use of C-bands as chromosome markers in the studies of genetic and genomic polymorphism of this species.  相似文献   

10.
Summary C-banding patterns were analysed in 19 different accessions of Aegilops caudata (= Ae. markgrafii, = Triticum dichasians) (2n = 14, genomically CC) from Turkey, Greece and the USSR, and a generalized C-banded karyotype was established. Chromosome specific C-bands are present in all C-genome chromosomes, allowing the identification of each of the seven chromosome pairs. While only minor variations in the C-banding pattern was observed within the accessions, a large amount of polymorphic variation was found between different accessions. C-banding analysis was carried out to identify Ae. caudata chromosomes in the amphiploid Triticum aestivum cv Alcedo — Ae. caudata and in six derived chromosome addition lines. The results show that the amphiploid carries the complete Ae. Caudate chromosome complement and that the addition lines I, II, III, IV, V and VIII carry the Ae. caudata chromosome pairs B, C, D, F, E and G, respectively. One of the two SAT chromosome pairs (A) is missing from the set. C-banding patterns of the added Ae. caudata chromosomes are identical to those present in the ancestor species, indicating that these chromosomes are not structurally rearranged. The results are discussed with respect to the homoeologous relationships of the Ae. caudata chromosomes.  相似文献   

11.
The karyotypes ofElymus dentatus from Kashmir andE. glaucescens from Tierra del Fuego, both carrying genomesS andH, were investigated by C- and N-banding. Both taxa had 2n = 4x = 28. The karyotype ofE. dentatus was symmetrical with large chromosomes. It had 18 metacentric, four submetacentric and six satellited chromosomes. The karyotype ofE. glaucescens resembled that ofE. dentatus, but a satellited chromosome pair was replaced by a morphologically similar, non-satellited pair. The C-banding patterns of both species had from one to five conspicuous and a few inconspicuous bands per chromosome. N-banding differentiated the chromosomes of the constituent genomes by producing bands in theH genome only. TheS genomes of both species were similar with five metacentric and two satellited chromosomes having most conspicuous C-bands at telomeric and distal positions. They resembled theS genome of the genusPseudoroegneria. TheH genomes had four similar metacentric and two submetacentric chromosomes. The seventhH genome chromosome ofE. dentatus was satellited, that ofE. glaucescens nonsatellited, but otherwise morphologically similar. The C-bands were distributed at no preferential positions. TheH genome ofE. dentatus resembles theH genomes of some diploidHordeum taxa.  相似文献   

12.
Rozek M  Lachowska D 《Folia biologica》2001,49(3-4):179-182
The C-banding pattern of Bembidion geniculatum, Silpha atrata, Prosternon tesselatum, and Epicometis hirta are presented. All analysed species have pracentromeric C-bands on autosomes and chromosome X but the widest ones are visible in the karyotype of B. geniculatum. In S. atrata, P. tesselatum, and E. hirta sex chromosome y is heterochromatic, only B. geniculatum having the Y chromosome wholly euchromatin. The results indicate that on the chromosomes of the investigated species do not have a terminal and an intercalar segments of heterochromatin.  相似文献   

13.
The metaphase chromosomes of Notophthalmus (Triturus) viridescens have been studied by C-banding and in situ hybridization. The chromosomes show the pericentric C-banding seen in many organisms and in addition have interstitial C-bands located a short distance from the pericentric C-bands on each chromosome arm. A few C-bands are seen in telomeric regions. Regions which hybridize in situ with 18S and 28S ribosomal RNA were found on three chromosome pairs. The animals studied fell into three groups with respect to which of the six possible sites showed detectable hybridization with 18S and 28S RNA. Individual animals differed not only in the pattern of in situ hybridization of ribosomal RNA but also in the number of ribosomal RNA cistrons in the genome as measured by saturation hybridization on purified DNA. In situ hybridization showed five pairs of chromosomes which contained DNA complementary to 5S RNA. The four pairs of subtelocentric chromosomes in the N. viridescens karyotype all have 5S DNA in the pericentric regions. The fifth cluster of 5S DNA is in the middle of one arm of the chromosomes in one of the two smallest submetacentric pairs in the genome. The five sites of 5S DNA differ markedly in the level of in situ hybridization with 5S cRNA.  相似文献   

14.
Karyotypes, constitutive heterochromatin and nucleolar numbers of five recognized taxa and two systematically new populations ofGuizotia have been studied using Giemsa or aceto-orcein staining, C-banding and silver nitrate staining. All accessions have 2n = 30 chromosomes, but satellite chromosome number and nucleolar number varied from four to eight. Centromere positions varied from predominantly median to submedian and subterminal in different materials. The satellites and an interstitial region in the short arm of one chromosome pair were C-banded in all materials. Telomeric and centromeric C-bands were also observed. The material could be classified into three groups, indicating possible phylogenetic relationships.  相似文献   

15.
Based on the cross (Triticum aestivum L. x Secale cereale L.) x T. aestivum L., wheat-rye substitution lines (2n = 42) were produced with karyotypes containing, instead of a pair of homologous wheat chromosomes, a homeologous pair of rye chromosomes. The chromosome composition of these lines was described by GISH and C-banding methods, and SSR analysis. The results of genomic in situ hybridization demonstrated that karyotype of these lines included one pair of rye chromosomes each and lacked wheat--rye translocations. C-banding and SSR markers were used to identify rye chromosomes and determine the wheat chromosomes at which the substitution occurred. The lines were designated 1R(1D), 2R(2D)2, 2R(2D)3, 3R(3B), 6R(6A)2. The chromosome composition of lines IR(1A), 2R(W)1, 5R(W), 5R(5A), and 6R(W)1, which were earlier obtained according to the same scheme for crossing, was characterized using methods of telocentric analysis, GISH, C-banding, and SSR analysis. These lines were identified as 1R(1A), 2R(2D)1, 5R(5D), 5R(5A), and 6R(6A)1, C-banding of chromosomes belonging to line 1R(1A) revealed the presence of two translocated chromosomes (3DS.3DL-del. and 4AL.W) during simultaneous amplification of SSR markers located on 3DL and 4AS arms. The "combined" long arm of the newly derived chromosome 4A is assumed to be formed from the long arm of chromosome 4AS itself and a deleted segment 3DL. All examined lines are cytologically stable, except for 3R(3B), which does not affect the stability of rye 3R chromosome transfer. Chromosome identification and classification of the lines will permit them to be models for genetic studies that can be used thereafter as promising "secondary gene pools" for the purpose of plant breeding.  相似文献   

16.
经甫树蛙的染色体组型、C带和Ag-NORs的研究   总被引:2,自引:0,他引:2  
本文分别用骨髓细胞染色体标本制作法、BSG技术和一种快速、简便的Ag-NORs显带技术,首次研究了经甫树蛙的染色体组型、C带和Ag-NORs。结果表明,经甫树蛙2n=26,有5对大型和8对小型染色体,次缢痕在No.11染色体长臂末端,为C带负染;银染表明,此次缢痕处即是经甫树蛙的“标准NORs”经甫树娃的C带结构异染色质主要是着丝点型和插入型的。文章初步讨论了树蛙属的细胞分类、经甫树蛙次缢痕、Ag-NORs和C带的关系。  相似文献   

17.
The karyotype of Pan paniscus is reexamined by G-banding and examined for the first time by C-banding. In addition, examination of the chromosomes by the use of the fluorochromes adreamycine and 33258 Hoechst is undertaken. C-banding showed a surprising pattern with numerous terminal C-bands, as interstitial C-band, and several chromosomes lacking C-bands. Polymorphic conditions for C-bands are also identified involving several pairs. In a comparison to the chromosomes of man, G-banding revealed two pericentric inversions not previously observed. Only chromosome pairs No. 9,11,12 and the X are similar to man's by all techniques employed.  相似文献   

18.
毛冠鹿种内异染色质变化与染色体多态   总被引:1,自引:0,他引:1  
采用原代和传代培养方法对8头毛冠鹿(Elaphodus cephalophus)的皮肤细胞进行了染色体研究,发现了一种核型与以前所报道的几种核型不一致,确定为一新核型。在该核型中,染色体众数2n=47,2条X染色体异型,一条为端着丝粒,另一条为近端着丝粒。C-带显示该核型中异染色质除了分布在2条X染色体长臂中之外,在第一对大的端着丝粒染色体中的一条近着丝粒区出现一异染色质“柄”。结合C-带及薄层扫描结果对毛冠鹿种内常染色体、性染色体中异染色质的含量和分布与染色体多态的关系进行了探讨。  相似文献   

19.
Huang X  Hu J  Hu X  Zhang C  Zhang L  Wang S  Lu W  Bao Z 《Genes & genetic systems》2007,82(3):257-263
The chromosomes of Argopecten irradians irradians were studied by various cytogenetic approaches. Conventional chromosome characterization built on C-banding, DAPI-staining, and silver staining was complemented by the physical mapping of ribosomal DNA and telomeric sequence (TTAGGG)n by FISH. Results showed that the constitutive heterochromatin revealed by C-banding was mainly distributed at telomeric and centromeric regions. However, interstitial C-bands were also observed. The pattern of DAPI banding was almost consistent with that of C-banding. Silver staining revealed that NORs were located on the short arms of chromosome 3 and 10, and this was further confirmed by FISH using 18S-28S rDNA. 5S rDNA was mapped as two distinguishable loci on the long arm of chromosome 11. 18S-28S and 5S rDNA were located on different chromosomes by sequential FISH. FISH also showed that the vertebrate telomeric sequence (TTAGGG)n was located on both ends of each chromosome and no interstitial signals were detected. Sequential 18S-28S rDNA and (TTAGGG)n FISH demonstrated that repeated units of the two multicopy families were closely associated on the same chromosome pair.  相似文献   

20.
茅舍血厉螨核型及染色体的C带、G带的研究   总被引:4,自引:1,他引:3  
本文首次报道了一种革螨——茅舍血厉螨核型及染色体C带、G带的研究。用剖腹取卵法、玻璃纸压片、Giemsa染色,经分析茅舍血厉螨的核型,单倍体n=7,二倍体2n=14。 用氢氧化钡—吉姆萨技术显示茅舍血厉螨染色体C带。在第1、2、4、5染色体上出现恒定的C带部分,第3、6、7染色体上出现不恒定的C带部分。根据C带带型,茅舍血厉螨着丝点的位置可分为近中区域(sm),近端区域(St),末端区域(t)和末端点(T)四类。 G带分析用胰蛋白酶—吉姆萨技术显示。 本文对茅舍血厉螨的核型、革螨染色体研究中螨卵的收集方法和染液的改进、C带带型与着丝粒位置的确定和G带显带问题进行了讨论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号