首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Action of CAP on the malT promoter in vitro   总被引:19,自引:10,他引:9       下载免费PDF全文
  相似文献   

6.
7.
8.
Osmoregulation of the maltose regulon in Escherichia coli.   总被引:17,自引:14,他引:3       下载免费PDF全文
B Bukau  M Ehrmann    W Boos 《Journal of bacteriology》1986,166(3):884-891
The maltose regulon consists of four operons that direct the synthesis of proteins required for the transport and metabolism of maltose and maltodextrins. Expression of the mal genes is induced by maltose and maltodextrins and is dependent on a specific positive regulator, the MalT protein, as well as on the cyclic AMP-catabolite gene activator protein complex. In the absence of an exogenous inducer, expression of the mal regulon was greatly reduced when the osmolarity of the growth medium was high; maltose-induced expression was not affected, and malTc-dependent expression was only weakly affected. Mutants lacking MalK, a cytoplasmic membrane protein required for maltose transport, expressed the remaining mal genes at a high level, presumably because an internal inducer of the mal system accumulated; this expression was also strongly repressed at high osmolarity. The repression of mal regulon expression at high osmolarity was not caused by reduced expression of the malT, envZ, or crp gene or by changes in cellular cyclic AMP levels. In strains carrying mutations in genes encoding amylomaltase (malQ), maltodextrin phosphorylase (malP), amylase (malS), or glycogen (glg), malK mutations still led to elevated expression at low osmolarity. The repression at high osmolarity no longer occurred in malQ mutants, however, provided that glycogen was present.  相似文献   

9.
The malB region of Escherichia coli is composed of two operons, malEFG and malK-lamB, transcribed divergently from a control region located between the malE and malK genes. Expression of the malB operons is under the positive control of the malT gene product (MalT) and maltose and of the crp gene product (CRP) and cyclic AMP. Strains in which the lac genes have been fused to malE or malK are unable to use lactose as carbon source if they have been deleted for malT or crp. Mutations in the malB region allowing such fusion strains to grow on lactose have been isolated. These and previously isolated mutations were genetically characterized. As regards the malEp promoter mutations, malEp9, malEp1 and malEp6 create new promoters that are MalT and CRP independent. malEp9 and malEp1 change residues -1 and -2, respectively, of malEp without altering its activity. malEp6 duplicates six base-pairs between residues -22 and -23. malEp3 improves the -10 region hexamer. malEp5 deletes residues -29 to -62. It creates a new promoter that is MalT independent, CRP dependent, likely by fusing together functional regions of malEp that are normally apart. malEp5 also reduces the expression of malK-lamB, suggesting the existence of a link between the malEp and malKp promoters. As regards the malKp mutations, malKp6 changes residue -81 of malKp without altering its activity. It creates a new promoter, which is MalT independent, CRP dependent, likely by using a pre-existing cyclic AMP/CRP binding site. malKp102 changes residue -36, two bases upstream of the -35 region hexamer. It decreases the activity of malKp by at least four orders of magnitude and likely alters the MalT binding site. These results are discussed in terms of regulatory interactions within the malB control region.  相似文献   

10.
11.
12.
Selection for High Mutation Rates in Chemostats   总被引:36,自引:3,他引:33       下载免费PDF全文
Complementation and polarity suppression data are interpreted in terms of the genetic structure of the maltose B region. It is proposed that this region comprises two divergent operons. One operon includes malK, a cistron involved in maltose permeation, and lamB the only known cistron specifically involved in lambda receptor synthesis. The other operon includes malJ(1) and malJ(2) which are most probably two different cistrons, both involved in maltose permeation*. It is further assumed that expression of the two operons is controlled by malT, the positive regulatory gene of the maltose system, located in the malA region. The target(s) for the action of the malT product is (are) most likely to be located between malJ(1) and malK. There is an indication that the two operons might overlap in the region of their promoters. The structure of such an overlap as well as the possible function of the products of the different cistrons in malB are briefly discussed.  相似文献   

13.
W Klein  W Boos 《Journal of bacteriology》1993,175(6):1682-1686
Trehalose transport in Escherichia coli after growth at low osmolarity is mediated by enzyme IITre of the phosphotransferase system (W. Boos, U. Ehmann, H. Forkl, W. Klein, M. Rimmele, and P. Postma, J. Bacteriol. 172:3450-3461, 1990). The apparent Km (16 microM) of trehalose uptake is low. Since trehalose is a good source of carbon and the apparent affinity of the uptake system is high, it was surprising that the disaccharide trehalose [O-alpha-D-glucosyl(1-1)-alpha-D-glucoside] has no problems diffusing through the outer membrane at high enough rates to allow full growth, particularly at low substrate concentrations. Here we show that induction of the maltose regulon is required for efficient utilization of trehalose. malT mutants that lack expression of all maltose genes, as well as lamB mutants that lack only the lambda receptor (maltoporin), still grow on trehalose at the usual high (10 mM) trehalose concentrations in agar plates, but they exhibit the half-maximal rate of trehalose uptake at concentrations that are 50-fold higher than in the wild-type (malT+) strain. The maltose system is induced by trehalose to about 30% of the fully induced level reached when grown in the presence of maltose in a malT+ strain or when grown on glycerol in a maltose-constitutive strain [malT(Con)]. The 30% level of maximal expression is sufficient for maximal trehalose utilization, since there is no difference in the concentration of trehalose required for the half-maximal rate of uptake in trehalose-grown strains with the wild-type gene (malT+) or with strains constitutive for the maltose system [malT(Con)]. In contrast, when the expression of the lambda receptor is reduced to less than 20% of the maximal level, trehalose uptake becomes less efficient. Induction of the maltose system by trehalose requires metabolism of trehalose. Mutants lacking amylotrehalase, the key enzyme in trehalose utilization, accumulate trehalose but do not induce the maltose system.  相似文献   

14.
15.
Deletion of the Escherichia coli crp Gene   总被引:41,自引:35,他引:6       下载免费PDF全文
Spontaneous crp mutants Escherichia coli were selected from a strain that does not require 3',5'-cyclic adenosine monophosphate for CAP activity. Several deletions of the crp gene were characterized. The crp gene was not essential for growth of E. coli. crp mutations reduced the donor ability of Hfr strains.  相似文献   

16.
Phenotypic characterization and mapping of more than 50 Mal(-) mutations located in the malB region lead one to divide the site for Mal(-)lambdas mutations (formerly called gene malB) in that region, into two adjacent genetic segments malJ and malK. malJ and malK are both involved in maltose permeation. It is suggested that (i) malK and lamB, the only known gene specifically involved in phage lambda adsorption (20), constitute an operon of polarity malK lamB. (ii) malJ and malK correspond to two different genes, and (iii) a promoter for the malK lamB operon is located between malJ and malK. Since lambda receptors and maltose permease are inducible by maltose and absent in malT mutants, it is likely that the expression of the malK lamB operon is controlled by the product of gene malT, the positive regulatory gene of the maltose system.  相似文献   

17.
18.
On Some Genetic Aspects of Phage λ Resistance in E. COLI K12   总被引:12,自引:0,他引:12  
J. P. Thirion  M. Hofnung 《Genetics》1972,71(2):207-216
Most mutations rendering E. coli K12 resistant to phage lambda, map in two genetic regions malA and malB.-The malB region contains a gene lamB specifically involved in the lambda receptor synthesis. Twenty-one independent lamB mutations studied by complementation belonged to a single cistron. This makes it very likely that lamB is monocistronic. Among the lamB mutants some are still sensitive to a host range mutant of phage lambda. Mutations mapping in a proximal gene essential for maltose metabolism inactivate gene lamB by polarity confirming that both genes are part of the same operon. Because cases of intracistronic complementation have been found, the active lamB product may be an oligomeric protein.-Previously all lambda resistant mutations in the malA region have been shown to map in the malT cistron. malT is believed to be a positive regulatory gene necessary for the induction of the "maltose operons" in the malA region and in the malB region of the E. coli K12 genetic map. No trans dominant malT mutation have been found. Therefore if they exist, they occur at a frequency of less than 10(-8), or strongly reduce the growth rate of the mutants.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号