首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In contrast to peripheral lymphoid organs, a high percentage of T cells in the liver are CD4+NKT cells. We asked whether adhesion molecules play any role in the accumulation of CD4+NKT cells in the liver. Liver CD4+NKT cells expressed ICAM-1 and high levels of LFA-1. In the livers of LFA-1-deficient mice, the number of CD4+NKT cells was markedly decreased. This reduction was restricted to the liver, and no reduction was found in the other organs analyzed. In contrast, the number of liver CD4+NKT cells in ICAM-1-deficient mice was only marginally reduced. In a reciprocal radiation thymocyte reconstitution system with LFA-1-deficient and wild-type mice, LFA-1 expressed on liver cells other than CD4+NKT cells was required for an accumulation of CD4+NKT cells in the liver. These results demonstrate a crucial role for LFA-1 in the accumulation of CD4+NKT cells in the liver.  相似文献   

2.
A sizable fraction of T cells expressing the NK cell marker NK1.1 (NKT cells) bear a very conserved TCR, characterized by homologous invariant (inv.) TCR V alpha 24-J alpha Q and V alpha 14-J alpha 18 rearrangements in humans and mice, respectively, and are thus defined as inv. NKT cells. Because human inv. NKT cells recognize mouse CD1d in vitro, we wondered whether a human inv. V alpha 24 TCR could be selected in vivo by mouse ligands presented by CD1d, thereby supporting the development of inv. NKT cells in mice. Therefore, we generated transgenic (Tg) mice expressing the human inv. V alpha 24-J alpha Q TCR chain in all T cells. The expression of the human inv. V alpha 24 TCR in TCR C alpha(-/-) mice indeed rescues the development of inv. NKT cells, which home preferentially to the liver and respond to the CD1d-restricted ligand alpha-galactosylceramide (alpha-GalCer). However, unlike inv. NKT cells from non-Tg mice, the majority of NKT cells in V alpha 24 Tg mice display a double-negative phenotype, as well as a significant increase in TCR V beta 7 and a corresponding decrease in TCR V beta 8.2 use. Despite the forced expression of the human CD1d-restricted TCR in C alpha(-/-) mice, staining with mCD1d-alpha-GalCer tetramers reveals that the absolute numbers of peripheral CD1d-dependent T lymphocytes increase at most by 2-fold. This increase is accounted for mainly by an increased fraction of NK1.1(-) T cells that bind CD1d-alpha-GalCer tetramers. These findings indicate that human inv. V alpha 24 TCR supports the development of CD1d-dependent lymphocytes in mice, and argue for a tight homeostatic control on the total number of inv. NKT cells. Thus, human inv. V alpha 24 TCR-expressing mice are a valuable model to study different aspects of the inv. NKT cell subset.  相似文献   

3.
In contrast to peripheral lymphoid organs, in the liver a high proportion of T cells are CD4+NKT cells. We have previously reported that LFA-1 plays a pivotal role in the homing of thymic CD4+NKT cells to the liver. In the present study, we further assessed which cell type participates in the homing of thymic CD4+NKT cells to the liver. The accumulation of donor thymocyte-derived CD4+NKT cells in the liver of SCID mice that had been reconstituted with thymocytes from C57BL/6 mice was severely impaired by in vivo depletion of NK cells, but not Kupffer cells in recipients. These results suggest that NK cells participate in the homing of thymic CD4+NKT cells to the liver. We assume that LFA-1 expressed on NK cells is involved in this mechanism.  相似文献   

4.
We previously reported that the major expanding lymphocytes were intermediate TCR (TCR(int)) cells (mainly NK1.1(-)) during malarial infection in mice. Cell transfer experiments of TCR(int) cells indicated that these T cells mediated resistance to malaria. However, TCR(int) cells always contain NK1.1(+)TCR(int) cells (i.e., NKT cells) and controversial results (NKT cells were effective or not for resistance to malaria) have been reported by different investigators. In this study, we used CD1d((-/-)) mice, which almost completely lack NKT cells in the liver and other immune organs. Parasitemia was prolonged in the blood of CD1d((-/-)) mice and the expansion of lymphocytes in the liver of these mice was more prominent after an injection of Plasmodium yoelii-infected erythrocytes. However, these mice finally recovered from malaria. In contrast to B6 mice, CD4(-)8(-) NKT cells as well as NK1.1(-)CD3(int) cells expanded in CD1d((-/-)) mice after malarial infection, instead of CD4(+) (and CD8(+)) NKT cells. These newly generated CD4(-)8(-)NKT cells in CD1d((-/-)) mice did not use an invariant chain of Valpha14Jalpha281 for TCRalpha. Other evidence was that severe thymic atrophy and autoantibody production were accompanied by malarial infection, irrespective of the mice used. These results suggest that both NK1.1(-) and NK1.1(+) subsets of TCR(int) cells (i.e., constituents of innate immunity) are associated with resistance to malaria and that an autoimmune-like state is induced during malarial infection.  相似文献   

5.
The majority of T lymphocytes carrying the NK cell marker NK1.1 (NKT cells) depend on the CD1d molecule for their development and are distinguished by their potent capacity to rapidly secrete cytokines upon activation. A substantial fraction of NKT cells express a restricted TCR repertiore using an invariant TCR Valpha14-Jalpha281 rearrangement and a limited set of TCR Vbeta segments, implying recognition of a limited set of CD1d-associated ligands. A second group of CD1d-reactive T cells use diverse TCR potentially recognizing a larger diversity of ligands presented on CD1d. In TCR-transgenic mice carrying rearranged TCR genes from a CD1d-reactive T cell with the diverse type receptor (using Valpha3. 2/Vbeta9 rearrangements), the majority of T cells expressing the transgenic TCR had the typical phenotype of NKT cells. They expressed NK1.1, CD122, intermediate TCR levels, and markers indicating previous activation and were CD4/CD8 double negative or CD4+. Upon activation in vitro, the cells secreted large amounts of IL-4 and IFN-gamma, a characteristic of NKT cells. In mice lacking CD1d, TCR-transgenic cells with the NKT phenotype were absent. This demonstrates that a CD1d-reactive TCR of the "non-Valpha 14" diverse type can, in a ligand-dependent way, direct development of NK1.1+ T cells expressing expected functional and cell-surface phenotype characteristics.  相似文献   

6.
As a consequence of the peptide specificity of intrathymic positive selection, mice transgenic for a rearranged TCR beta-chain derived from conventional alphabeta T lymphocytes frequently carry mature T cells with significant skewing in the repertoire of the companion alpha-chain. To assess the generality of such an influence, we generated transgenic (Tg) mice expressing a beta-chain derived from nonclassical, NK1.1+ alphabeta T cells, the thymus-derived, CD1. 1-specific DN32H6 T cell hybridoma. Results of the sequence analysis of genomic DNA from developing DN32H6 beta Tg thymocytes revealed that the frequency of the parental alpha-chain sequence, in this instance the Valpha14-Jalpha281 canonical alpha-chain, is specifically and in a CD1.1-dependent manner, increased in the postselection thymocyte population. In accordance, we found phenotypic and functional evidence for an increased frequency of thymic, but interestingly not peripheral, NK1.1+ alphabeta T cells in DN32H6 beta Tg mice, possibly indicating a thymic determinant-dependent maintenance. Thus, in vivo expression of the rearranged TCR beta-chain from a thymus-derived NK1.1+ Valpha14+ T cell hybridoma promotes positive selection of thymic NK1.1+ alphabeta T cells. These observations indicate that the strong influence of productive beta-chain rearrangements on the TCR sequence and specificity of developing thymocytes, which operates through positive selection on self-determinants, applies to both classical and nonclassical alphabeta T cells and therefore represents a general phenomenon in intrathymic alphabeta T lymphocyte development.  相似文献   

7.
NKT cells express both NK cell-associated markers and TCR. Classically, these NK1.1+TCRalphabeta+ cells have been described as being either CD4+CD8- or CD4-CD8-. Most NKT cells interact with the nonclassical MHC class I molecule CD1 through a largely invariant Valpha14-Jalpha281 TCR chain in conjunction with either a Vbeta2, -7, or -8 TCR chain. In the present study, we describe the presence of significant numbers of NK1.1+TCRalphabeta+ cells within lymphokine-activated killer cell cultures from wild-type C57BL/6, CD1d1-/-, and Jalpha281-/- mice that lack classical NKT cells. Unlike classical NKT cells, 50-60% of these NK1.1+TCRalphabeta+ cells express CD8 and have a diverse TCR Vbeta repertoire. Purified NK1.1-CD8alpha+ T cells from the spleens of B6 mice, upon stimulation with IL-2, IL-4, or IL-15 in vitro, rapidly acquire surface expression of NK1.1. Many NK1.1+CD8+ T cells had also acquired expression of Ly-49 receptors and other NK cell-associated molecules. The acquisition of NK1.1 expression on CD8+ T cells was a particular property of the IL-2Rbeta+ subpopulation of the CD8+ T cells. Efficient NK1.1 expression on CD8+ T cells required Lck but not Fyn. The induction of NK1.1 on CD8+ T cells was not just an in vitro phenomenon as we observed a 5-fold increase of NK1.1+CD8+ T cells in the lungs of influenza virus-infected mice. These data suggest that CD8+ T cells can acquire NK1.1 and other NK cell-associated molecules upon appropriate stimulation in vitro and in vivo.  相似文献   

8.
Human V alpha 24+ NKT cells with an invariant TCR (V alpha 24-J alpha Q) have been shown to be specifically activated by synthetic glycolipids such as alpha-galactosylceramide and alpha-glucosylceramide in a CD1d-restricted and V alpha 24 TCR-mediated manner. We recently characterized V alpha 24+ CD4- CD8- double negative (DN) NKT cells using alpha-galactosylceramide-pulsed monocyte-derived dendritic cells. Here, we compare V alpha 24+ CD4+ NKT cells with human V alpha 24+ DN NKT cells from the same donor using alpha-galactosylceramide-pulsed monocyte-derived dendritic cells. Human V alpha 24+ CD4+ NKT cells were phenotypically and functionally similar to the human V alpha 24+ DN NKT cells characterized previously. Both of them use V alpha 24-J alpha Q-V beta 11 TCR and express CD161 (NKR-P1A), but not the other NK receptors tested so far. They also produce cytokines such as IL-4 and IFN-gamma, and, in regard to IL-4 production, V alpha 24+ CD4+ NKT cells produce more IL-4 than V alpha 24+ DN NKT cells. The cells exhibit marked cytotoxic activity against the U937 tumor cell line, but not against the NK target cell line, K562. Although at least some of the factors responsible for the stimulation of V alpha 24+ NKT cells have been clarified, little is known regarding the killing phase of these cells. Here we show that the cytotoxic activity of V alpha 24+ NKT cells against U937 cells is mediated mainly through the perforin pathway and that ICAM-1/LFA-1 as well as CD44/hyaluronic acid interactions are important for the effector phase of V alpha 24+ NKT cell-mediated cytotoxicity against U937 cells.  相似文献   

9.
Experimental infection of C57BL/6 mice by Plasmodium yoelii sporozoites induced an increase of CD4-CD8- NK1.1+ TCR alpha beta int cells and a down-regulation of CD4+ NK1.1+ TCR alpha beta int cells in the liver during the acute phase of the infection. These cells showed an activated CD69+, CD122+, CD44high, and CD62Lhigh surface phenotype. Analysis of the expressed TCRV beta segment repertoire revealed that most of the expanded CD4-CD8- (double-negative) T cells presented a skewed TCRV beta repertoire and preferentially used V beta 2 and V beta 7 rather than V beta 8. To get an insight into the function of expanded NK1.1+ T cells, experiments were designed in vitro to study their activity against P. yoelii liver stage development. P. yoelii-primed CD3+ NK1.1+ intrahepatic lymphocytes inhibited parasite growth within the hepatocyte. The antiplasmodial effector function of the parasite-induced NK1.1+ liver T cells was almost totally reversed with an anti-CD3 Ab. Moreover, IFN-gamma was in part involved in this antiparasite activity. These results suggest that up-regulation of CD4-CD8- NK1.1+ alpha beta T cells and down-regulation of CD4+ NK1.1+ TCR alpha beta int cells may contribute to the early immune response induced by the Plasmodium during the prime infection.  相似文献   

10.
We developed a nonmyeloablative host conditioning regimen in a mouse model of MHC-mismatched bone marrow transplantation that not only reduces radiation toxicity, but also protects against graft-vs-host disease. The regimen of fractionated irradiation directed to the lymphoid tissues and depletive anti-T cell Abs results in a marked change in the residual host T cells, such that NK1.1+ or DX5+asialo-GM1+ T cells become the predominant T cell subset in the lymphoid tissues of C57BL/6 and BALB/c mice, respectively. The latter "natural suppressor" T cells protect hosts from graft-vs-host disease after the infusion of allogeneic bone marrow and peripheral blood cells that ordinarily kill hosts conditioned with sublethal or lethal total body irradiation. Protected hosts become stable mixed chimeras, but fail to show the early expansion and infiltration of donor T cells in the gut, liver, and blood associated with host tissue injury. Cytokine secretion and adoptive transfer studies using wild-type and IL-4(-/-) mice showed that protection afforded by NK1.1+ and DX5+asialo-GM1+ T cells derived from either donors or hosts conditioned with lymphoid irradiation is dependent on their secretion of high levels of IL-4.  相似文献   

11.
NK1.1+ T cells in the mouse thymus and bone marrow were compared because some marrow NK1.1+ T cells have been reported to be extrathymically derived. Almost all NK1.1+ T cells in the thymus were depleted in the CD1-/-, beta2m-/-, and Jalpha281-/- mice as compared with wild-type mice. CD8+NK1.1+ T cells were not clearly detected, even in the wild-type mice. In bone marrow from the wild-type mice, CD8+NK1.1+ T cells were easily detected, about twice as numerous as CD4+NK1.1+ T cells, and were similar in number to CD4-CD8-NK1.1+ T cells. All three marrow NK1.1+ T cell subsets were reduced about 4-fold in CD1-/- mice. No reduction was observed in CD8+NK1.1+ T cells in the bone marrow of Jalpha281-/- mice, but marrow CD8+NK1.1+ T cells were markedly depleted in beta2m-/- mice. All NK1.1+ T cell subsets in the marrow of wild-type mice produced high levels of IFN-gamma, IL-4, and IL-10. Although the numbers of marrow CD4-CD8-NK1.1+ T cells in beta2m-/- and Jalpha281-/- mice were similar to those in wild-type mice, these cells had a Th1-like pattern (high IFN-gamma, and low IL-4 and IL-10). In conclusion, the large majority of NK1.1+ T cells in the bone marrow are CD1 dependent. Marrow NK1.1+ T cells include CD8+, Valpha14-Jalpha281-, and beta2m-independent subsets that are not clearly detected in the thymus.  相似文献   

12.
Dendritic cell (DC)-dependent activation of liver NKT cells triggered by a single i.v. injection of a low dose (10-100 ng/mouse) of alpha-galactosyl ceramide (alphaGalCer) into mice induces liver injury. This response is particularly evident in HBs-tg B6 mice that express a transgene-encoded hepatitis B surface Ag in the liver. Liver injury following alphaGalCer injection is suppressed in mice depleted of NK cells, indicating that NK cells play a role in NK T cell-initiated liver injury. In vitro, liver NKT cells provide a CD80/86-dependent signal to alphaGalCer-pulsed liver DC to release IL-12 p70 that stimulates the IFN-gamma response of NKT and NK cells. Adoptive transfer of NKT cell-activated liver DC into the liver of nontreated, normal (immunocompetent), or immunodeficient (RAG(-/-) or HBs-tg/RAG(-/-)) hosts via the portal vein elicited IFN-gamma responses of liver NK cells in situ. IFN-beta down-regulates the pathogenic IL-12/IFN-gamma cytokine cascade triggered by NKT cell/DC/NK cell interactions in the liver. Pretreating liver DC in vitro with IFN-beta suppressed their IL-12 (but not IL-10) release in response to CD40 ligation or specific (alphaGalCer-dependent) interaction with liver NKT cells and down-regulated the IFN-gamma response of the specifically activated liver NKT cells. In vivo, IFN-beta attenuated the NKT cell-triggered induction of liver immunopathology. This study identifies interacting subsets of the hepatic innate immune system (and cytokines that up- and down-regulate these interactions) activated early in immune-mediated liver pathology.  相似文献   

13.
14.
NK T cells are an unusual subset of T lymphocytes. They express NK1. 1 Ag, are CD1 restricted, and highly skewed toward Vbeta8 for their TCR usage. They express the unique potential to produce large amounts of IL-4 and IFN-gamma immediately upon TCR cross-linking. We previously showed in the thymus that the NK T subset requires IL-7 for its functional maturation. In this study, we analyzed whether IL-7 was capable of regulating the production of IL-4 and IFN-gamma by the discrete NK T subset of CD4+ cells in the periphery. Two hours after injection of IL-7 into mice, or after a 4-h exposure to IL-7 in vitro, IL-4 production by CD4+ cells in response to anti-TCR-alphabeta is markedly increased. In contrast, IFN-gamma production remains essentially unchanged. In beta2-microglobulin- and CD1-deficient mice, which lack NK T cells, IL-7 treatment does not reestablish normal levels of IL-4 by CD4+ T cells. Moreover, we observe that in wild-type mice, the memory phenotype (CD62L-CD44+) CD4+ T cells responsible for IL-4 production are not only NK1.1+ cells, but also NK1.1- cells. This NK1.1-IL-4-producing subset shares three important characteristics with NK T cells: 1) Vbeta8 skewing; 2) CD1 restriction as demonstrated by their absence in CD1-deficient mice and relative overexpression in MHC II null mice; 3) sensitivity to IL-7 in terms of IL-4 production. In conclusion, the present study provides evidence that CD4+MHC class I-like-dependent T cell populations include not only NK1.1+ cells, but also NK1.1- cells, and that these two subsets are biased toward IL-4 production by IL-7.  相似文献   

15.
Rat invariant TCR alpha-chains and NKT cells were investigated to clarify whether CD1d-mediated recognition by NKT cells is conserved further in evolution. Rats had multiple-copies of TRAV14 genes, which can be categorized into two types according to the diversity accumulated in the CDR2 region. Rats retained invariant TCR alpha forms with the homogeneous junctional region similar to mouse invariant TRAV14-J281. The proportion of invariant TCR among V alpha 14+ clones was 12.9% in the thymus and increased in the periphery, 31% in the spleen and 95% in hepatic sinusoidal cells. The invariant TRAV14-J281 was expressed by liver sinusoidal and splenic NKT cells with CD8, CD44high, and TCR V beta 8. Type 1 invariant TCR alpha was expressed more frequently in hepatic lymphocytes, while type 2 invariant TCR alpha was expressed predominantly in the spleen. Both types of cells cytolyzed to and were stimulated to proliferate by CD1d-expressing cells in a CD1d-restricted manner. These results suggested that rat NKT cells bearing distinct V alpha 14 chains are distributed in a tissue-specific pattern. NKT cell populations in rats were more variable than those in mice, indicating that they play novel roles in nature. The implication of the molecular interaction between the structurally diverse invariant TCR alpha and CD1d/ligand complex in different organs is discussed.  相似文献   

16.
Using a class-I-restricted T cell receptor (TCR) transgenic mice (Tgm), 2C (Valpha3.1/Vbeta 8.2, specific for L(d) + LSPFPFDL), the development and cytokine production of tg-TCR(+) NKT cells were analyzed. We found that CD8(+) or double negative (DN) NKT cells constituted a major population of NKT cells in the H-2(b/b) 2C Tgm (positive selecting background) or the H-2(b/d) 2C Tgm (negative selecting background), respectively. Virtually no NKT cells were generated in the H-2(k/k) 2C Tgm (neutral selecting background). CD8(+) NKT cells in the H-2(b/b) 2C Tgm expressed CD8alphabeta heterodimers, whereas those in the H-2(b/d) 2C Tgm expressed CD8alphaalpha homodimers. These findings suggest that development of a subpopulation of NKT cells is influenced by the H-2 molecules. Upon stimulation with anti-CD3 mAb, tg-TCR(+) NKT cells generated in the H-2(b/b) and H-2(b/d) backgrounds produced IFN-gamma, but not IL-4.  相似文献   

17.
Interaction between commensal bacteria and intestinal epithelial cells (i-ECs) via TLRs is important for intestinal homeostasis. In this study, we found that the numbers of CD8alphaalpha TCRalphabeta and TCRgammadelta intestinal intraepithelial lymphocytes (i-IELs) were significantly decreased in MyD88-deficient (-/-) mice. The expression of IL-15 by i-ECs was severely reduced in MyD88(-/-) mice. Introduction of IL-15 transgene into MyD88(-/-) mice (MyD88(-/-) IL-15 transgenic mice) partly restored the numbers of CD8alphaalpha TCRalphabeta and TCRgammadelta i-IELs. The i-IEL in irradiated wild-type (WT) mice transferred with MyD88(-/-) bone marrow (BM) cells had the same proportions of i-IEL as WT mice, whereas those in irradiated MyD88(-/-) mice transferred with WT BM cells showed significantly reduced proportions of CD8alphaalpha TCRalphabeta and TCRgammadelta i-IELs, as was similar to the proportions found in MyD88(-/-) mice. However, irradiated MyD88(-/-) IL-15 transgenic mice transferred with WT BM cells had increased numbers of CD8alphaalpha TCRalphabeta and TCRgammadelta subsets in the i-IEL. These results suggest that parenchymal cells such as i-ECs contribute to the maintenance of CD8alphaalpha TCRalphabeta and gammadelta i-IELs at least partly via MyD88-dependent IL-15 production.  相似文献   

18.
Splenic NK1.1+CD4+ T cells that express intermediate levels of TCR alpha beta molecules (TCRint) and the DX5 Ag (believed to identify an equivalent population in NK1.1 allelic negative mice) possess the ability to rapidly produce high quantities of immunomodulatory cytokines, notably IL-4 and IFN-gamma, upon primary TCR activation in vivo. Indeed, only T cells expressing the NK1.1 Ag appear to be capable of this function. In this study, we demonstrate that splenic NK1.1-negative TCRintCD4+ T cells, identified on the basis of Fc gamma R expression, exist in naive NK1.1 allelic positive (C57BL/6) and negative (C3H/HeN) mice with the capacity to produce large amounts of IL-4 and IFN-gamma after only 8 h of primary CD3 stimulation in vitro. Furthermore, a comparison of the amounts of early cytokines produced by Fc gamma R+CD4+TCRint T cells with NK1. 1+CD4+ or DX5+CD4+TCRint T cells, simultaneously isolated from C57BL/6 or C3H/HeN mice, revealed strain and population differences. Thus, Fc gamma R defines another subpopulation of splenic CD4+TCRint cells that can rapidly produce large concentrations of immunomodulatory cytokines, suggesting that CD4+TCRint T cells themselves may represent a unique family of immunoregulatory CD4+ T cells whose members include Fc gamma R+CD4+ and NK1.1/DX5+CD4+ T cells.  相似文献   

19.
NK1.1+ T cells represent a specialized T cell subset specific for CD1d, a nonclassical MHC class I-restricting element. They are believed to function as regulatory T cells. NK1.1+ T cell development depends on interactions with CD1d molecules presented by hematopoietic cells rather than thymic epithelial cells. NK1.1+ T cells are found in the thymus as well as in peripheral organs such as the liver, spleen, and bone marrow. The site of development of peripheral NK1.1+ T cells is controversial, as is the nature of the CD1d-expressing cell that selects them. With the use of nude mice, thymectomized mice reconstituted with fetal liver cells, and thymus-grafted mice, we provide direct evidence that NK1.1+ T cells in the liver are thymus dependent and can arise in the thymus from fetal liver precursor cells. We show that the class I+ (CD1d+) cell type necessary to select NK1.1+ T cells can originate from TCRalpha-/- precursors but not from TCRbeta-/- precursors, indicating that the selecting cell is a CD4+CD8+ thymocyte. 5-Bromo-2'-deoxyuridine-labeling experiments suggest that the thymic NK1.1+ T cell population arises from proliferating precursor cells, but is a mostly sessile population that turns over very slowly. Since liver NK1.1+ T cells incorporate 5-bromo-2'-deoxyuridine more rapidly than thymic NK1.1+ T cells, it appears that liver NK1.1+ T cells either represent a subset of thymic NK1.1+ T cells or are induced to proliferate after having left the thymus. The results indicate that NK1.1+ T cells, like conventional T cells, arise in the thymus where they are selected by interactions with restricting molecules.  相似文献   

20.
Two major populations of extrathymically differentiated T cells exist in the liver and intestine. Such T cells in the liver have TCR of intermediate intensity (i.e., intermediate TCR cells) and constitutively express IL-2 receptor β-chain (IL-2Rβ), whereas those in the intestine, especially intraepithelial lymphocytes, have TCR of bright intensity, consisting of a mixture of IL-2Rβ+ and IL-2Rβ. All mature thymocytes and thymus-derived T cells seen in the peripheral immune organs are TCR-bright+IL-2Rβ under resting conditions. When the expression pattern of adhesion molecules, including CD44, L-selectin, LFA-1 and ICAM-1, was compared among these T-cell populations, they displayed quite unique patterns of expression. All extrathymic T cells in the liver, intestine, and even other organs were CD44+L-selectin LFA-1++ICAM-1+, whereas thymocytes and thymus-derived T cells were CD44 L-selectin+LFA-1+ICAM-1. This inverted expression of adhesion molecules between extrathymic T cells and thymus-derived T cells might be associated with their unique tissue-localization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号