首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As a consequence of the peptide specificity of intrathymic positive selection, mice transgenic for a rearranged TCR beta-chain derived from conventional alphabeta T lymphocytes frequently carry mature T cells with significant skewing in the repertoire of the companion alpha-chain. To assess the generality of such an influence, we generated transgenic (Tg) mice expressing a beta-chain derived from nonclassical, NK1.1+ alphabeta T cells, the thymus-derived, CD1. 1-specific DN32H6 T cell hybridoma. Results of the sequence analysis of genomic DNA from developing DN32H6 beta Tg thymocytes revealed that the frequency of the parental alpha-chain sequence, in this instance the Valpha14-Jalpha281 canonical alpha-chain, is specifically and in a CD1.1-dependent manner, increased in the postselection thymocyte population. In accordance, we found phenotypic and functional evidence for an increased frequency of thymic, but interestingly not peripheral, NK1.1+ alphabeta T cells in DN32H6 beta Tg mice, possibly indicating a thymic determinant-dependent maintenance. Thus, in vivo expression of the rearranged TCR beta-chain from a thymus-derived NK1.1+ Valpha14+ T cell hybridoma promotes positive selection of thymic NK1.1+ alphabeta T cells. These observations indicate that the strong influence of productive beta-chain rearrangements on the TCR sequence and specificity of developing thymocytes, which operates through positive selection on self-determinants, applies to both classical and nonclassical alphabeta T cells and therefore represents a general phenomenon in intrathymic alphabeta T lymphocyte development.  相似文献   

2.
A sizable fraction of T cells expressing the NK cell marker NK1.1 (NKT cells) bear a very conserved TCR, characterized by homologous invariant (inv.) TCR V alpha 24-J alpha Q and V alpha 14-J alpha 18 rearrangements in humans and mice, respectively, and are thus defined as inv. NKT cells. Because human inv. NKT cells recognize mouse CD1d in vitro, we wondered whether a human inv. V alpha 24 TCR could be selected in vivo by mouse ligands presented by CD1d, thereby supporting the development of inv. NKT cells in mice. Therefore, we generated transgenic (Tg) mice expressing the human inv. V alpha 24-J alpha Q TCR chain in all T cells. The expression of the human inv. V alpha 24 TCR in TCR C alpha(-/-) mice indeed rescues the development of inv. NKT cells, which home preferentially to the liver and respond to the CD1d-restricted ligand alpha-galactosylceramide (alpha-GalCer). However, unlike inv. NKT cells from non-Tg mice, the majority of NKT cells in V alpha 24 Tg mice display a double-negative phenotype, as well as a significant increase in TCR V beta 7 and a corresponding decrease in TCR V beta 8.2 use. Despite the forced expression of the human CD1d-restricted TCR in C alpha(-/-) mice, staining with mCD1d-alpha-GalCer tetramers reveals that the absolute numbers of peripheral CD1d-dependent T lymphocytes increase at most by 2-fold. This increase is accounted for mainly by an increased fraction of NK1.1(-) T cells that bind CD1d-alpha-GalCer tetramers. These findings indicate that human inv. V alpha 24 TCR supports the development of CD1d-dependent lymphocytes in mice, and argue for a tight homeostatic control on the total number of inv. NKT cells. Thus, human inv. V alpha 24 TCR-expressing mice are a valuable model to study different aspects of the inv. NKT cell subset.  相似文献   

3.
4.
We developed a nonmyeloablative host conditioning regimen in a mouse model of MHC-mismatched bone marrow transplantation that not only reduces radiation toxicity, but also protects against graft-vs-host disease. The regimen of fractionated irradiation directed to the lymphoid tissues and depletive anti-T cell Abs results in a marked change in the residual host T cells, such that NK1.1+ or DX5+asialo-GM1+ T cells become the predominant T cell subset in the lymphoid tissues of C57BL/6 and BALB/c mice, respectively. The latter "natural suppressor" T cells protect hosts from graft-vs-host disease after the infusion of allogeneic bone marrow and peripheral blood cells that ordinarily kill hosts conditioned with sublethal or lethal total body irradiation. Protected hosts become stable mixed chimeras, but fail to show the early expansion and infiltration of donor T cells in the gut, liver, and blood associated with host tissue injury. Cytokine secretion and adoptive transfer studies using wild-type and IL-4(-/-) mice showed that protection afforded by NK1.1+ and DX5+asialo-GM1+ T cells derived from either donors or hosts conditioned with lymphoid irradiation is dependent on their secretion of high levels of IL-4.  相似文献   

5.
TCR alpha beta+ intestinal intraepithelial lymphocytes (IEL) can express either the typical CD8 alpha beta heterodimer or an unusual CD8 alpha alpha homodimer. Both types of CD8+ IEL require class I molecules for their differentiation, since they are absent in beta2m-/- mice. To gain insight into the role of class I molecules in forming TCR alpha beta+ CD8+ IEL populations, we have analyzed the IEL in mice deficient for either TAP, beta 2m, CD1, or K and D. We find that K-/-D-/- mice have TCR alpha beta+ CD8 alpha alpha+ IEL, although they are deficient for TCR alpha beta+ CD8 alpha beta+ cells. This indicates that at least some TCR alpha beta+ CD8 alpha alpha+ IEL require only nonclassical class I molecules for their development. Surprisingly, the TCR alpha beta+ CD8 alpha alpha+ IEL are significantly increased in K-/-D-/- mice, suggesting a complex interaction between CD8+ IEL and class I molecules that might include direct or indirect negative regulation by K and D, as well as positive effects mediated by nonclassical class I molecules.  相似文献   

6.
To clarify the role of IL-15 at local sites, we engineered a transgenic (Tg) mouse (T3(b)-IL-15 Tg) to overexpress human IL-15 preferentially in intestinal epithelial cells by the use of T3(b)-promoter. Although IL-15 was expressed in the entire small intestine (SI) and large intestines of the Tg mice, localized inflammation developed in the proximal SI only. Histopathologic study revealed reduced villus length, marked infiltration of lymphocytes, and vacuolar degeneration of the villus epithelium, beginning at approximately 3-4 mo of age. The numbers of CD8(+) T cells, especially CD8alphabeta(+) T cells expressing NK1.1, were dramatically increased in the lamina propria of the involved SI. The severity of inflammation corresponded to increased numbers of CD8alphabeta(+)NK1.1(+) T cells and levels of production of the Th1-type cytokines IFN-gamma and TNF-alpha. Locally overexpressed IL-15 was accompanied by increased resistance of CD8alphabeta(+) NK1.1(+) T cells to activation-induced cell death. Our results suggest that chronic inflammation in the SI in this murine model is mediated by dysregulation of epithelial cell-derived IL-15. The model may contribute to understanding the role of CD8(+) T cells in human Crohn's disease involving the SI.  相似文献   

7.
The T cell populations present in normal murine bone marrow have not been previously analyzed in detail, mainly because of their relative rarity. In order to permit such analyses, bone marrow T cells were enriched by depleting Mac1-positive cells, which constitute 65 to 90% of bone marrow cells (BMC), and then studied by two-color flow cytometry. Analysis of the remaining cells revealed that the T cell profile of adult murine bone marrow is markedly different from that of other lymphoid organs. A very high proportion of bone marrow CD3+ cells (approximately one-third) are CD4-CD8-. CD3+CD4-CD8- cells are much more concentrated among BMC T cells than among thymocytes or splenic T cells, suggesting that bone marrow may be either a site of extrathymic TCR gene rearrangement, or a major site to which such cells home from the thymus. The expression of NK1.1 was also evaluated on Mac1-depleted BMC populations. Surprisingly, up to 39% of alpha beta TCR+ BMC were found to express NK1.1. Most alpha beta TCR+NK1.1+ BMC also expressed CD4 or CD8. NK1.1+ alpha beta TCR+ cells represented a much greater proportion of BMC T cells than of other lymphoid (splenocyte or thymocyte) T cell populations. Mac1-depleted BMC of nude mice contained very few cells with this phenotype. These results are consistent with the hypothesis that NK1.1+ alpha beta TCR+ cells are generated primarily in the thymus of normal animals and migrate preferentially to bone marrow, where they may function as regulatory elements in hematopoiesis.  相似文献   

8.
Activated NK T cells are known to rapidly stimulate NK cells and, subsequently, CD8(+) T cells and B cells. In this report, we first demonstrate that the downstream effects induced by alpha-galactosylceramide activated NK T cells on NK cells are mainly dependent on IFN-gamma. We found that NK T cell activation of NK cells requires a functional IFN-gamma signaling in macrophages and dendritic cells but not in B cells, NK cells, or NK T cells. NK T cell activation is dendritic cell-dependent whereas NK T cell activation of NK cells is indirect and in part mediated by macrophages. Interestingly, in this context, macrophage participation in the CD1d Ag presentation of alpha-galactosylceramide to NK T cells is not necessary. These data indicate that NK T cell-dependent activation of macrophages is required for optimal NK T cell-induced stimulation of NK cells.  相似文献   

9.
Although NK cells in the mouse are thought to develop in the bone marrow, a small population of NK cells in the thymus has been shown to derive from a GATA3-dependent pathway. Characteristically, thymic NK cells express CD127 and few Ly49 molecules and lack CD11b. Because these NK cells develop in the thymus, the question of their relationship to the T cell lineage has been raised. Using several different mouse models, we find that unlike T cells, thymic NK cells are not the progeny of Rorc-expressing progenitors and do not express Rag2 or rearrange the TCRγ locus. We further demonstrate that thymic NK cells develop independently of the Notch signaling pathway, supporting the idea that thymic NK cells represent bona fide NK cells that can develop independently of all T cell precursors.  相似文献   

10.
Ab stimulation of the TCR rapidly enhances the functional activity of the LFA-1 integrin. Although TCR-mediated changes in LFA-1 activity are thought to promote T cell-APC interactions, the Ag specificity and sensitivity of TCR-mediated triggering of LFA-1 is not clear. We demonstrate that peptide/MHC (pMHC) tetramers rapidly enhance LFA-1-dependent adhesion of OT-I TCR transgenic CD8(+) T cells to purified ICAM-1. Inhibition of src family tyrosine kinase or PI3K activity blocked pMHC tetramer- and anti-CD3-stimulated adhesion. These effects are highly specific because partial agonist and antagonist pMHC tetramers are unable to stimulate OT-I T cell adhesion to ICAM-1. The Ag thresholds required for T cell adhesion to ICAM-1 resemble those of early T cell activation events, because optimal LFA-1 activation occurs at tetramer concentrations that fail to induce maximal T cell proliferation. Thus, TCR signaling to LFA-1 is highly Ag specific and sensitive to low concentrations of Ag.  相似文献   

11.
Human Valpha24(+) NKT cells constitute a counterpart of mouse Valpha14(+) NKT cells, both of which use an invariant TCR-alpha chain. The human Valpha24(+) NKT cells as well as mouse Valpha14(+) NKT cells are activated by glycolipids in a CD1d-restricted manner and produce many immunomodulatory cytokines, possibly affecting the immune balance. In mice, it has been considered from extensive investigations that Valpha14(+)CD8(+) NKT cells that express invariant TCR do not exist. Here we introduce human Valpha24(+)CD8(+) NKT cells. These cells share important features of Valpha24(+) NKT cells in common, but in contrast to CD4(-)CD8(-) (double-negative) or CD4(+) Valpha24(+) NKT cells, they do not produce IL-4. Our discovery may extend and deepen the research field of Valpha24(+) NKT cells as well as help to understand the mechanism of the immune balance-related diseases.  相似文献   

12.
Fetal liver- and thymus-derived NK1.1+ cells do not express known Ly-49 receptors. Despite the absence of Ly-49 inhibitory receptors, fetal and neonatal NK1.1+Ly-49- cells can distinguish between class Ihigh and class Ilow target cells, suggesting the existence of other class I-specific inhibitory receptors. We demonstrate that fetal NK1. 1+Ly-49- cell lysates contain CD94 protein and that a significant proportion of fetal NK cells are bound by Qa1b tetramers. Fetal and adult NK cells efficiently lyse lymphoblasts from Kb-/-Db-/- mice. Qa1b-specific peptides Qdm and HLA-CW4 leader peptide specifically inhibited the lysis of these blasts by adult and fetal NK cells. Qdm peptide also inhibited the lysis of Qa1b-transfected human 721.221 cells by fetal NK cells. Taken together, these results suggest that the CD94/NKG2A receptor complex is the major known inhibitory receptor for class I (Qa1b) molecules on developing fetal NK cells.  相似文献   

13.
Optimal differentiation of cytotoxic NK cells is important to provide protective innate immunity to patients after bone marrow transplantation. In vitro differentiation of CD56(+)CD3(-) NK cells takes weeks and is supported by several cytokines, including IL-2, IL-7, and IL-15, and thus can be useful for immunotherapy. However, IL-2 therapy is problematic in vivo, and NK cells differentiated in vitro with only IL-7 lack cytotoxicity. We assessed whether human NK cells initially differentiated in vitro from CD34(+)Lin(-) bone marrow cells with IL-7 could acquire cytotoxicity after exposure to additional cytokines and what changes promoted cytotoxicity. The cells cultured with IL-7 already had granzyme B as well as perforin, as previously reported, the proteins of cytotoxic granules. The cells also lacked LFA-1. After 1 wk of secondary culture with either IL-2 or IL-15, but not with IL-12 or IL-18, the IL-7-cultured cells acquired cytotoxicity. IL-2 or IL-15 also induced LFA-1. Ab to the LFA-1 subunits CD11a and CD18 blocked lysis by the NK cells, indicating that the new LFA-1 correlated with, and was essential for, the cytotoxic function of the in vitro generated cells. The LFA-1 also participated in target cell binding by the in vitro differentiated cells. In this study, we demonstrated a new function for IL-15, the induction of LFA-1 in NK progenitor cells, and that IL-15 does more than merely support NK progenitor cell proliferation. The efficacy after only 1 wk of IL-15 administration is a positive practical feature that may apply to human therapy.  相似文献   

14.
Splenic NK1.1+CD4+ T cells that express intermediate levels of TCR alpha beta molecules (TCRint) and the DX5 Ag (believed to identify an equivalent population in NK1.1 allelic negative mice) possess the ability to rapidly produce high quantities of immunomodulatory cytokines, notably IL-4 and IFN-gamma, upon primary TCR activation in vivo. Indeed, only T cells expressing the NK1.1 Ag appear to be capable of this function. In this study, we demonstrate that splenic NK1.1-negative TCRintCD4+ T cells, identified on the basis of Fc gamma R expression, exist in naive NK1.1 allelic positive (C57BL/6) and negative (C3H/HeN) mice with the capacity to produce large amounts of IL-4 and IFN-gamma after only 8 h of primary CD3 stimulation in vitro. Furthermore, a comparison of the amounts of early cytokines produced by Fc gamma R+CD4+TCRint T cells with NK1. 1+CD4+ or DX5+CD4+TCRint T cells, simultaneously isolated from C57BL/6 or C3H/HeN mice, revealed strain and population differences. Thus, Fc gamma R defines another subpopulation of splenic CD4+TCRint cells that can rapidly produce large concentrations of immunomodulatory cytokines, suggesting that CD4+TCRint T cells themselves may represent a unique family of immunoregulatory CD4+ T cells whose members include Fc gamma R+CD4+ and NK1.1/DX5+CD4+ T cells.  相似文献   

15.
16.
In contrast to peripheral lymphoid organs, in the liver a high proportion of T cells are CD4+NKT cells. We have previously reported that LFA-1 plays a pivotal role in the homing of thymic CD4+NKT cells to the liver. In the present study, we further assessed which cell type participates in the homing of thymic CD4+NKT cells to the liver. The accumulation of donor thymocyte-derived CD4+NKT cells in the liver of SCID mice that had been reconstituted with thymocytes from C57BL/6 mice was severely impaired by in vivo depletion of NK cells, but not Kupffer cells in recipients. These results suggest that NK cells participate in the homing of thymic CD4+NKT cells to the liver. We assume that LFA-1 expressed on NK cells is involved in this mechanism.  相似文献   

17.
The leukocyte-specific integrin, LFA-1, plays a critical role in trafficking of T cells to both lymphoid and nonlymphoid tissues. However, the role of LFA-1 in T cell activation in vivo has been less well understood. Although there have been reports describing LFA-1-deficient T cell response defects in vivo, due to impaired migration to lymphoid structures and to sites of effector function in the absence of LFA-1, it has been difficult to assess whether T cells also have a specific activation defect in vivo. We examined the role of LFA-1 in CD4(+) T cell activation in vivo by using a system that allows for segregation of the migration and activation defects through the adoptive transfer of LFA-1-deficient (CD18(-/-)) CD4(+) T cells from DO11.10 Ag-specific TCR transgenic mice into wild-type BALB/c mice. We find that in addition to its role in trafficking to peripheral lymph nodes, LFA-1 is required for optimal CD4(+) T cell priming in vivo upon s.c. immunization. CD18(-/-) DO11.10 CD4(+) T cells primed in the lymph nodes demonstrate defects in IL-2 and IFN-gamma production. In addition, recipient mice adoptively transferred with CD18(-/-) DO11.10 CD4(+) T cells demonstrate a defect in OVA-specific IgG2a production after s.c. immunization. The defect in priming of CD18(-/-) CD4(+) T cells persists even in the presence of proliferating CD18(+/-) CD4(+) T cells and in lymphoid structures to which there is no migration defect. Taken together, these results demonstrate that LFA-1 is required for optimal CD4(+) T cell priming in vivo.  相似文献   

18.
Experimental infection of C57BL/6 mice by Plasmodium yoelii sporozoites induced an increase of CD4-CD8- NK1.1+ TCR alpha beta int cells and a down-regulation of CD4+ NK1.1+ TCR alpha beta int cells in the liver during the acute phase of the infection. These cells showed an activated CD69+, CD122+, CD44high, and CD62Lhigh surface phenotype. Analysis of the expressed TCRV beta segment repertoire revealed that most of the expanded CD4-CD8- (double-negative) T cells presented a skewed TCRV beta repertoire and preferentially used V beta 2 and V beta 7 rather than V beta 8. To get an insight into the function of expanded NK1.1+ T cells, experiments were designed in vitro to study their activity against P. yoelii liver stage development. P. yoelii-primed CD3+ NK1.1+ intrahepatic lymphocytes inhibited parasite growth within the hepatocyte. The antiplasmodial effector function of the parasite-induced NK1.1+ liver T cells was almost totally reversed with an anti-CD3 Ab. Moreover, IFN-gamma was in part involved in this antiparasite activity. These results suggest that up-regulation of CD4-CD8- NK1.1+ alpha beta T cells and down-regulation of CD4+ NK1.1+ TCR alpha beta int cells may contribute to the early immune response induced by the Plasmodium during the prime infection.  相似文献   

19.
CD1d tetramers loaded with alpha-galactosylceramide (alpha-GalCer) bind selectively to mouse invariant Valpha14 (Valpha14i) NKT cells and their human counterparts. Whereas tetramer binding strictly depends on the expression of a Valpha14-Jalpha18 chain in murine NKT cells, the associated beta-chain (typically expressing Vbeta8.2 or Vbeta7) appears not to influence tetramer binding. In this study, we describe novel alpha-GalCer-loaded mouse and human CD1d-IgG1 dimers, which revealed an unexpected influence of the TCR-beta chain on the avidity of CD1d:alpha-GalCer binding. A subset of Valpha14i NKT cells clearly discriminated alpha-GalCer bound to mouse or human CD1d on the basis of avidity differences conferred by the Vbeta domain of the TCR-beta chain, with Vbeta8.2 conferring higher avidity binding than Vbeta7.  相似文献   

20.
Phagocytosis of apoptotic cells by macrophages and dendritic cells is necessary for clearance of proinflammatory debris and for presentation of viral, tumor, and self Ags. While a number of receptors involved in the cognate recognition of apoptotic cells by phagocytes have been identified, the signaling events that result in internalization remain poorly understood. Here we demonstrate that clearance of apoptotic cells is accompanied by recruitment of the Wiskott-Aldrich syndrome (WAS) protein to the phagocytic cup and that it's absence results in delayed phagocytosis both in vitro and in vivo. Therefore, we propose that WAS protein plays an important and nonredundant role in the safe removal of apoptotic cells and that deficiency contributes significantly to the immune dysregulation of WAS. The efficiency of apoptotic cell clearance may be a key determinant in the suppression of tissue inflammation and prevention of autoimmunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号