首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 147 毫秒
1.
In this study, we used molecules with either of the structural differences in the side chains of vitamin D(2) and vitamin D(3) to investigate which feature is responsible for the significant differences in their respective metabolism, pharmacokinetics and toxicity. We used two cell model systems-HepG2 and HPK1A-ras-to study hepatic and target cell metabolism, respectively. Studies with HepG2 revealed that the pattern of 24- and 26-hydroxylation of the side chain reported for 1alpha-hydroxyvitamin D(2) (1alpha-OH-D(2)) but not for 1alpha-OH-D(3) is also observed in both 1alpha-OH-D(4) and Delta(22)-1alpha-OH-D(3) metabolism. This suggests that the structural feature responsible for targeting the enzyme to the C24 or C26 site could be either the C24 methyl group or the 22-23 double bond. In HPK1A-ras cells, the pattern of metabolism observed for the 24-methylated derivative, 1alpha,25-(OH)(2)D(4), was the same pattern of multiple hydroxylations at C24, C26 and C28 seen for vitamin D(2) compounds without evidence of side chain cleavage observed for vitamin D(3) derivatives, suggesting that the C24 methyl group plays a major role in this difference in target cell metabolism of D(2) and D(3) compounds. Novel vitamin D(4) compounds were tested and found to be active in a variety of in vitro biological assays. We conclude that vitamin D(4) analogs and their metabolites offer valuable insights into vitamin D analog design, metabolic enzymes and maybe useful clinically.  相似文献   

2.
The binding of metabolites of vitamin D and their analogs to the 3.7S chick intestinal cytosol receptor protein has been specifically studied by competitive binding techniques and polyethylene glycol precipitation of the complex. The structural requirements for the interaction between the vitamin D molecule and the receptor could be assessed without the nuclear chromatin binding step. These measurements have shown that 1,25-dihydroxyvitamin D3 and 1,25-dihydroxyvitamin D2 are equally competitive and are the most active. Of the structural features of the compounds, the 1α-hydroxyl is most important followed by the 25-hydroxyl and the 3β-hydroxyl. The addition of a second hydroxyl near carbon 25 markedly reduces binding whether on the 26 carbon or the 24 carbon. A hydroxyl on C-24 could substitute to some degree for the 25-hydroxyl inasmuch as 24-hydroxyvitamin D3 was much more effective than vitamin D3 but less effective than 25-hydroxyvitamin D3. In general the patterns of binding affinities correlated well with the biological activity of the various analogs strongly supporting a physiological role for the 1,25-dihydroxyvitamin D3 binding protein. It also suggests that of the two-step receptor mechanism, the structural specificity is located in the initial interaction of the 1,25-dihydroxyvitamin D3 and the cytosol receptor.  相似文献   

3.
The essential role of vitamin D throughout the life of most mammals and birds as a mediator of calcium homeostasis is well established. In view of the complex endocrine system existent for the regulated metabolism of vitamin D3 to both 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3] and 24R,25-dihydroxyvitamin D3 [24R,25-(OH)2D3] (both produced by the kidney), an intriguing problem is to elucidate whether only one or both of these dihydroxyvitamin D3 metabolites is required for the generation of all the biological responses mediated by the parent vitamin D3. In contrast to the accumulated knowledge concerning the short term actions of 1,25(OH)2-D3 on stimulating intestinal calcium absorption and bone calcium reabsorption, relatively little is known of the biological function of 24,25(OH)2D3. We report now the results of a nine month study in which chicks were raised on a vitamin D-deficient diet from hatching to sexual maturity and received as their sole source of “vitamin D” either 24,25(OH)2D3 or 1,25(OH)2D3 singly or in combination. Specifically we are describing the integrated operation of the vitamin D endocrine system as quantitated by the individual measurement in all birds of 22 variables related to “vitamin D status” and as evaluated by the statistical procedure of multivariate discriminant analysis. Twelve of these variables involved detailed analysis of the bone including quantitative histology and the other 10 variables reflect various manifestations of vitamin D action, e.g. serum Ca2+ and Pi levels, vitamin D-dependent calcium binding protein (CaBP) in the intestine and kidney, egg productivity etc. As evaluated by the multivariate analysis, it is clear that 24,25(OH)2D3 and 1,25(OH)2D3 are simultaneously required for normalization of calcium homeostasis.  相似文献   

4.
The synthesis of 1α-25-dihydroxyvitamin D2 and of several stereoisomers (5,6-trans and 1β-hydroxy isomers and the 24R-epimers of these compounds) was reported. Synthesis was accomplished from two different starting materials, 25-hydroxyvitamin D2 and 25,25-ethylenedioxy-26-norvitamin D2, and involved C-1-hydroxylation via 3,5-cyclovitamin D intermediates. Synthetic 1α,25-dihydroxyvitamin D2 was found to be identical with the biologically generated natural product. An analysis of the binding affinity of the synthetic products for the 1α,25-dihydroxyvitamin D3 receptor protein showed that isomerization of the 5,6 double bond from cis to trans, or epimerization of the 24-methyl group from S to R, reduced ligand binding to the receptor only slightly, while both changes together led to a 100-fold reduction of binding affinity. The epimerization of the 1-hydroxy function from 1α to 1β attenuated binding dramatically (ca. 1000-fold).  相似文献   

5.
This paper reports the development of three new ternary solvent mixtures for the liquid-chromatographic separation of metabolites of vitamin D on microparticulate silica. All solvent systems offer reduced peak tailing and improved resolution of vitamin D compounds, particularly of 24(R),25-(OH)2D3, when compared to the commonly used hexane—isopropanol mixture. The new mixtures can be substituted for hexane—isopropanol systems presently used for preparative liquid-chromatographic steps prior to radioimmunoassay or competitive protein-binding assay of 24,25-(OH)2D and 1,25-(OH)2D in human plasma. Hexane—isopropanol—methanol (87:10:3) mixtures are recommended where the lipid content of samples is high, whereas hexane—ethanol—chloroform (80:10:10) promises to be a useful mixture for differentiating vitamin D3 metabolites from their vitamin D2 analogs. A combination of the two solvent systems permits the separate assay of both 24(R),25-(OH)2D3 and 24(R),25-(OH)2D2 as well as 1,25-(OH)2D3 and 1,25-(OH)2D2.  相似文献   

6.
The extensive use of depleted uranium (DU) in today's society results in the increase of the number of human population exposed to this radionuclide. The aim of this work was to investigate in vivo the effects of a chronic exposure to DU on vitamin D3 metabolism, a hormone essential in mineral and bone homeostasis. The experiments were carried out in rats after a chronic contamination for 9 months by DU through drinking water at 40 mg/L (1 mg/rat/day). This dose corresponds to the double of highest concentration found naturally in Finland. In DU-exposed rats, the active vitamin D (1,25(OH)2D3) plasma level was significantly decreased. In kidney, a decreased gene expression was observed for cyp24a1, as well as for vdr and rxrα, the principal regulators of CYP24A1. Similarly, mRNA levels of vitamin D target genes ecac1, cabp-d28k and ncx-1, involved in renal calcium transport were decreased in kidney. In the brain lower levels of messengers were observed for cyp27a1 as well as for lxrβ, involved in its regulation. In conclusion, this study showed for the first time that DU affects both the vitamin D active form (1,25(OH)2D3) level and the vitamin D receptor expression, and consequently could modulate the expression of cyp24a1 and vitamin D target genes involved in calcium homeostasis.  相似文献   

7.
A new rapid and sensitive high-performance liquid chromatographic method using 0.5 ml of plasma has been developed for the simultaneous determination of retinol (vitamin A), α-tocopherol (vitamin E), 25-hydroxyvitamin D2 and 25-hydroxyvitamin D3. The eluate was monitored with a photodiode-array detector with two fixed wavelengths (267 nm for vitamin D, 292 nm for α-tocopherol and retinol). For all compounds, including internal standards, the method provides extraction recoveries greater than 81%. Detection limits were equal to or lower than 1.5 μg/l for the 4 vitamins. Linearity of standards was excellent (r>0.999 in all cases). Intra-day and inter-day precision were generally acceptable; the intra-day-assay C.V. was 7.7 for all compounds and the inter-day-assay C.V. was <9.2% except for the lower concentrations of 25-hydroxyvitamin D3, 25-hydroxyvitamin D2 and α-tocopherol (10.8, 11.8 and 11.9, respectively). The important properties of the present method are its ease of use, its rapidity, since sample preparation was achieved in 15 min and all the compounds were eluted in less than 15 min, and its small sample volume required (=0.5 ml), which enables it to be used in pediatric practice.  相似文献   

8.
Circulating 25-hydroxyvitamin D [25(OH)D] is generally considered the means by which we define nutritional vitamin D status. There is much debate, however, with respect to what a healthy minimum level of circulation 25(OH)D should be. Recent data using various biomarkers such as intact parathyroid hormone (PTH), intestinal calcium absorption, and skeletal density measurements suggest this minimum level to be 80 nmol (32 ng/mL). Surprisingly, the relationship between circulating vitamin D3 and its metabolic product—25(OH)D3 has not been studied. We investigated this relationship in two separate populations: the first, individuals from Hawaii who received significant sun exposure; the second, subjects from a lactation study who received up to 6400 IU vitamin D3/day for 6 months.Results (1) the relationship between circulating vitamin D3 and 25(OH)D in both groups was not linear, but appeared saturable and controlled; (2) optimal nutritional vitamin D status appeared to occur when molar ratios of circulating vitamin D3 and 25(OH)D exceeded 0.3; at this point, the Vmax of the 25-hydroxylase appeared to be achieved. This was achieved when circulating 25(OH)D exceeded 100 nmol.We hypothesize that as humans live today, the 25-hydroxylase operates well below its Vmax because of chronic substrate deficiency, namely vitamin D3. When humans are sun (or dietary) replete, the vitamin D endocrine system will function in a fashion as do these other steroid synthetic pathways, not limited by substrate. Thus, the relationship between circulating vitamin D and 25(OH)D may represent what “normal” vitamin D status should be.  相似文献   

9.
The Steroid hormon 1α, @5-Dihydroxyvitamin D3 has been shown to expert rapid effect (15 s to 5 min) in osteoblast. These occur in osteoblast-like cells lacking the nuclear vitamin D receptor, ROS 24/1, suggesting that a separate signalling system mediates the rapid action. These non-genomic action include rapid activation of phospholipase C and opening of calcium channels, pointing to a membrane localization of this signalling system. Previous studies have shown that the 1β epimer of 1α25-dihydroxyvitamina D3 can block these rapid action, indicating that the 1β epimer may bind to the recptor responsible for the rapid action sin a competative manner. We have assessed the displacement of 3H-1α,25dihydroxyvitamin D3 by vitamin D compounds, as well as the apparent dissociation constant of 1α25-dihydroxyvitamin D3 and its 1β epimer for the memberane receptor in membrane prepration from ROS 24/1 cells. Increasing concentrations of 1α25-dihydroxyvitamin D3, 7.25 nM to 725 nM, displaced 3H-1α25-dihydrxyvitamin D3 from the membranes with 725 nM of the hormone displacing 40–49% of the radioactivity. Similarly, 1β,25-dihydroxyvitamin D3, 7.25 nM and 72.5 nM, displaced 1α25-dihydroxyvitamin D3 binding while 25-hydroxyvitamin D3, 7.25 nM, did not. The apparent dissociation constant (KD) for 1α25-dihydroxyvitamin D3 was detrermined from displacement of 3H-1α25-dihydroxyvitamin D3 yielding a value of 8.1 × 10?7 M by Scatchard analysis. The KD for the 1β epimer determine from displacement of 3H-1α25-dihydroxyvitamin D3 was 4.8 × 10?7 M. The data suggest the presence of a receptor on the membrane of ROS 24/1 cells that reconize 1α25-dihydroxyvitamin D3 and its 1β epimer, but not 25-dihydroxyvitamin D3. Its ability to reconize the 1β epimer which appears to be a specific anagonist of the rapid effect of the hormone suggests that these studies may be the initial steps in the isolation and characterization of the signalling system mediating the rapid action of vitamin D.  相似文献   

10.
A simplified method for the determination of 25-hydroxy and 1α,25-dihydroxy metabolites of vitamins D2 and D3 in human plasma was developed. Plasma samples were deproteinizated and applied to a Bond Elut C18 OH cartridge to separate 25-hydroxyvitamin D (25-OH-D) and 1α-25-dihydroxyvitamin D [1,25(OH)2D] fractions. The 25-OH-D fraction was purified by a Bond Elut C18 cartridge and 25-OH-D2 and 25-OH-D3 were assayed by HPLC using a Zorbax SIL column. The 1,25(OH)2D fraction obtained above was subsequently applied to HPLC using a Zorbax SIL column to separate 1,25(OH)2D2 and 1,25(OH)2D3 fractions which were determined by a radioreceptor assay (RRA) using calf thymus receptor. The method was applied to nutritional studies.  相似文献   

11.
A set of eight 1-hydroxyvitamin D3 compounds comprising the four possible (5Z)-1,3-diol stereoisomers and the corresponding (5E)-double bond isomers, has been prepared in order to assess the effect of 1,3-diol stereochemistry and 5,6-double bond geometry on binding affinity for the intestinal 1,25-(OH)2D3-receptor protein. The compounds were synthesized from either vitamin D3 or 3-epivitamin D3 via 3,5-cyclovitamin D intermediates. Competitive receptor binding assays establish that all changes from the natural ring A-configuration (1S, 3R, 5Z) lead to decreased binding affinity, and confirm the importance of the 1-hydroxy function since the conversion of stereochemistry at that center from 1α(S) to 1β(R) has the most pronounced effect on binding affinity (attenuation by more than three orders of magnitude). Other modifications (i.e., conversion at C-3, or cis to trans isomerization of the 5,6-double bond) decrease binding affinity by more moderate (ca. 10-fold) but cumulative factors.  相似文献   

12.
Numerous vitamin D3 analogs (VDAs) can inhibit the proliferation of cells from several types of human malignancies. The physiologically active form of vitamin D3, 1,25-dihydroxyvitamin D3(1,25D3), is formed by successive hydroxylations of cholecalciferol at the 25 and 1α positions. In this study we examined the effects of the absence of the 1α(OH) group, introduction of a double bond in position 16, and further modifications at the 23, 26, and 27 positions in the side chain on the potency of the VDAs. The parameters studied were the rapidity of the induction of monocytic differentiation, the cell cycle traverse, and the effects of VDAs on intracellular calcium homeostasis in HL60 cells. The results show that (1) 1,25D3 derivatives which lack the 1α(OH) group have little differentiation-inducing activity, (2) hexafluorination (6F) of the terminal methyl groups in the side chain partially restores the activity of 1α-desoxy compounds and potentiates the activity of 1α hydroxylated compounds, and (3) 25-(OH)-16,23E-diene-26,27-hexafluoro-vitamin D3 (Ro25-9887) alone among the twelve compounds tested induces differentiation with only minimal changes in the basal levels of intracellular calcium and store-dependent calcium influx in HL60 cells. Addition of 1α(OH) group to this compound increases its differentiation-inducing activity but also elevates basal calcium level. The results suggest that altered calcium homeostasis is not an obligatory component of HL60 leukemia cell differentiation, and that Ro25-9887 and related VDAs may be suitable for testing as components of anti-leukemic therapy. © 1996 Wiley-Liss, Inc.  相似文献   

13.
Hapten derivatives of 25-hydroxyvitamin D3 and 1α,25-dihydroxyvitamin D3 were synthesized using the Wittig–Horner approach. Both haptens bearing a carboxylic group at the side chain that can be linked to a protein for raising antibodies of potential utility for the determination of 25-hydroxyvitamin D3, 1α,25-dihydroxyvitamin D3 and 1α-hydroxylated vitamin D3 analogues.  相似文献   

14.
15.
The clearance of human fibrinogen fragments D1, D2, D3 and fibrin fragment D1 dimer were studied in the mouse model. Clearance of these fragments is a complex process involving clearance from blood into three other compartments. The overall clearance of fragment D1 and its dimer were essentially identical. Fragments D2 and D3 cleared at a progressively slower rate. Competition studies were performed between 125I-labeled fragment D1 and large molar excesses of unlabelled human fragments D1, D2, D3, D1 dimer, fragment E, fibrinogen, macroalbumin, mannan and asialooroscomucoid. Of these ligands only the fragment D variants competed for the clearance of 125I-labeled fragment D1. Cross-competition was observed when 125I-labeled fragment D1 dimer was cleared in the presence of large molar excesses of fragment D1. Autopsies demonstrated that injected fragments D1, D2, D3 and D1 dimer cleared primarily in liver and kidneys. In some clearance studies, livers were perfused with tissue culture fluid, subjected to light microscopic autoradiography, and silver grain counts performed to localize cleared fragment D1. These experiments indicated that 80% of the liver uptake was in hepatocytes. However, when silver grain counts were normalized for the number of parenchymal and nonparenchymal cells, the distribution of silver grains was essentially identical (1.8 and 1.6 grains per cell, respectively). It is concluded that fragments D1, D2, D3 and D1 dimer are recognized by a similar clearance pathway. Since neither fibrinogen nor fragment E competed for the clearance of fragment D1, it is suggested that determinants present in the fragment D domain become exposed after plasmin attack on fibrinogen and are responsible for clearance.  相似文献   

16.
Incubation of [26,27-3H2]-25-hydroxyvitamin D3 with kidney homogenates from rats fed a high (3%) calcium vitamin D-supplemented diet results in the production of a more polar metabolite which cochromatographs with 1,24,25-trihydroxyvitamin D3. On the other hand, incubation with kidney homogenates from vitamin D-deficient or calcium-deficient rats did not produce the polar metabolite. Mitochondria but not microsomes carry out the reaction and evidence has been produced to demonstrate that the 1,24,25-trihydroxyvitamin D3 can be produced in vivo from either 1,25-dihydroxyvitamin D3 as previously reported.  相似文献   

17.
Human colon carcinoma cells express 25-hydroxyvitamin D3-1α-hydroxylase (CYP27B1) and thus produce the vitamin D receptor (VDR) ligand 1α,25-dihydroxyvitamin D3 (1,25-D3), which can be metabolized by 25-hydroxyvitamin D3-24-hydroxylase (CYP24). Expression of VDR, CYP27B1, and CYP24 determines the efficacy of the antimitotic action of 1,25-D3 and is distinctly related to the degree of differentiation of cancerous lesions. In the present study we addressed the question of whether the effects of epidermal growth factor (EGF) and of 1,25-D3 on VDR, CYP27B1, and CYP24 gene expression in human colon carcinoma cell lines also depend on the degree of cellular differentiation. We were able to show that slowly dividing, highly differentiated Caco-2/15 cells responded in a dose-dependent manner to both EGF and 1,25-D3 by up-regulation of VDR and CYP27B1 expression, whereas in highly proliferative, less differentiated cell lines, such as Caco-2/AQ and COGA-1A and -1E, negative regulation was observed. CYP24 mRNA was inducible in all clones by 1,25-D3 but not by EGF. From the observed clonal differences in the regulatory effects of EGF and 1,25-D3 on VDR and CYP27B1 gene expression we suggest that VDR-mediated growth inhibition by 1,25-D3 would be efficient only in highly differentiated carcinomas even when under mitogenic stimulation by EGF.  相似文献   

18.
WEHI-3B D cells differentiate in response to 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) but not to all-trans-retinoic acid (RA) or other inducing agents. Combinations of RA with 1,25-(OH)2D3 interact to produce synergistic differentiation of WEHI-3B D cells. To determine factors involved in the synergistic interaction, expression of the 1,25-(OH)2D3 receptor (VDR) and retinoid receptors, RARα and RXRα, was measured. No VDR was detected in untreated WEHI-3B D cells; however, RA and 1,25-(OH)2D3 when used as single agents caused a slight induction of the VDR and in combination produced a marked increase in the VDR. In contrast, no changes in RARα and RXRα were initiated by these compounds. An RAR-selective agonist combined with 1,25-(OH)2D3 produced synergistic differentiation of WEHI-3B D cells, whereas an RXR-selective agonist did not. To gain information on the role of the VDR in the synergistic interaction, the VDR gene was transferred into WEHI-3B D+ cells, in which no VDR was detected and no synergism was produced. Expression of the VDR conferred differentiation responsiveness to 1,25-(OH)2D3 in WEHI-3B D+ cells. These findings suggest that (a) induction of VDR expression is a key component in the synergistic differentiation induced by 1,25-(OH)2D3 and RA and (b) RAR and not RXR must be activated for enhanced induction of the VDR and for the synergistic differentiation produced by RA and 1,25-(OH)2D3.  相似文献   

19.
20.
The production of calcium-binding protein, in vitro, by embryonic chick duodenum has been used to assess the potency of vitamin D compounds. The introduction of an hydroxyl on 1-, 25-, or 24R-position enhanced biological activity while the introduction of both 1α- and 25-hydroxyls produced maximal activity. However 24R-hydroxylation of 1,25-dihydroxyvitamin D3 diminished activity. The vitamin D2 side chain on 25-hydroxyvitamin D or 1,25-dihydroxyvitamin D did not greatly diminish activity in contrast to the fact that the vitamin D2 compounds are 10% as active as the vitamin D3 compounds in vivo in the chick. These results support the idea that the target organs of the chick do not discriminate against the vitamin D2 side chain and that the discrimination in this species is at the level of metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号