首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Four cyclopentenone prostaglandins (CPPGs) and PGE2 caused significant dose-dependent inhibition in growth of human oral squamous carcinoma cells (SCC-15). The rank order of their potency was PGJ2>PGA1>16, 16-dimethyl PGA1>PGA2>PGE2. In a follow-up experiment it was found that the mean per cent inhibition in cell growth by PGJ2 and Δ12-PGJ2 at 10−5 M was 61.22 and 63.81, while that of 5-fluorouracil and methotrexate was 36.67 and 38.86, respectively. Δ12-PGJ2 and PGJ2 induced significant dose-dependent inhibition in nuclear DNA synthesis (i.e. cell proliferation). Combining vitamin E succinate with lower concentrations of CPPGs enhanced significantly their inhibitory effect on nuclear DNA synthesis of cancer cells.  相似文献   

3.
The presence of prostaglandins (PGs) has been demonstrated in the processes of carcinogenesis and inflammation. In the present study, we found that 12-o-tetradecanoylphorbol 13-acetate (TPA) induced cyclooxygenase 2 (COX-2), but not COX-1, protein expression in HL-60 cells, and the addition of arachidonic acid (AA) in the presence or absence of TPA significantly reduced the viability of HL-60 cells, an effect that was blocked by adding the COX inhibitors, NS398 and aspirin. The AA metabolites, PGD2 and PGJ2, but not PGE2 or PGF, reduced the viability of the human HL60 and Jurkat leukemia cells according to the MTT assay and LDH release assay. Apoptotic characteristics including DNA fragmentation, apoptotic bodies, and hypodiploid cells were observed in PGD2- and PGJ2-treated leukemia cells. A dose- and time-dependent induction of caspase 3 protein procession, and PARP and D4-GDI protein cleavage with activation of caspase 3, but not caspase 1, enzyme activity was detected in HL-60 cells treated with PGD2 or PGJ2. Additionally, DNA ladders induced by PGD2 and PGJ2 were significantly inhibited by the caspase 3 peptidyl inhibitor, Ac-DEVD-FMK, but not by the caspase 1 peptidyl inhibitor, Ac-YVAD-FMK, in accordance with the blocking of caspase 3, PARP, and D4-GDI protein procession. An increase in intracellular peroxide levels by PGD2 and PGJ2 was identified by the DCHF-DA assay, and anti-oxidant N-acetyl cysteine (NAC), mannitol (MAN), and tiron significantly inhibited cell death induced by PGD2 and PGJ2 by reducing reactive oxygen species (ROS) production. The PGJ2 metabolites, 15-deoxy-Δ12,14-PGJ2 and Δ12-PGJ2, exhibited effective apoptosis-inducing activity in HL-60 cells through ROS production via activation of the caspase 3 cascade. The proliferator-activated receptor-γ (PPAR-γ) agonists, rosiglitazone (RO), troglitazone (TR), and ciglitazone (CI), induced apoptosis in cells which was blocked by the addition of the PPAR-γ antagonists, GW9662 and BADGE, via blocking of caspase 3 and PARP cleavage. However, neither GW9662 nor BADGE showed any protective effect on PGD2- and PGJ2-induced apoptosis. A differential apoptotic effect of PGs through ROS production, followed by activation of the caspase 3 cascade, was demonstrated.  相似文献   

4.
We studied the effect of intracellular glutathione (GSH), which was known to conjugate readily with an α, β-unsaturated carbonyl of 9-deoxy-Δ9,12-13,14-dihydro PGD2 (Δ12-PGJ2), on the cytotoxicity of Δ12-PGJ2. Δ12-PGJ2 caused DNA fragmentation in human hepatocellular carcinoma Hep 3B cells, which was blocked by cycloheximide (CHX). The Δ12-PGJ2-induced apoptosis was augmented by GSH depletion resulted from pretreatment with buthioninine sulfoximine (BSO), an inhibitor of γ-glutamylcysteine synthetase. On the contrary, N-acetyl-cysteine (NAC), a precursor of cysteine, elevated the GSH level and protected cells from initiating apoptosis by Δ12-PGJ2. Sodium arsenite, a thiol-reactive agent, also induced apoptosis, which was potentiated or attenuated by BSO or NAC treatment respectively. These results suggest that the apoptosis-inducing activity of Δ12-PGJ2 is due to thiol-reactivity and intracellular GSH modulates the Δ12-PGJ2-induced apoptosis by regulating the accessibility of Δ12-PGJ2 to target proteins containing thiol groups.  相似文献   

5.
We studied the effect of intracellular glutathione (GSH), which was known to conjugate readily with an α, β-unsaturated carbonyl of 9-deoxy-Δ9,12-13,14-dihydro PGD212-PGJ2), on the cytotoxicity of Δ12-PGJ2. Δ12-PGJ2 caused DNA fragmentation in human hepatocellular carcinoma Hep 3B cells, which was blocked by cycloheximide (CHX). The Δ12-PGJ2-induced apoptosis was augmented by GSH depletion resulted from pretreatment with buthioninine sulfoximine (BSO), an inhibitor of γ-glutamylcysteine synthetase. On the contrary, N-acetyl-cysteine (NAC), a precursor of cysteine, elevated the GSH level and protected cells from initiating apoptosis by Δ12-PGJ2. Sodium arsenite, a thiol-reactive agent, also induced apoptosis, which was potentiated or attenuated by BSO or NAC treatment respectively. These results suggest that the apoptosis-inducing activity of Δ12-PGJ2 is due to thiol-reactivity and intracellular GSH modulates the Δ12-PGJ2-induced apoptosis by regulating the accessibility of Δ12-PGJ2 to target proteins containing thiol groups.  相似文献   

6.
15‐Deoxy‐delta12, 14‐prostaglandin J2 (15d‐PGJ2) is an endogenous anti‐inflammatory lipid derived from PGD2. One potential mechanism for its activity is the covalent modification of cellular proteins, via a reactive α,β‐unsaturated carbonyl group in its cyclopentenone ring, which in turn alters protein function. In order to identify the candidate target proteins covalently modified by 15d‐PGJ2 in human aortic endothelial cell (EC), EC was treated with biotinylated‐15d‐PGJ2, the modified proteins extracted by Neutravidin affinity‐purification and the proteins identified by LTQ Orbitrap mass spectrometer. Classification of the 358 identified proteins was performed using PANTHER classification system ( www.pantherdb.org ), showing that the proteins mapped to metabolic process, cellular process, and transport activity. This protein data set highlights the potential for 15d‐PGJ2 to covalently modify cellular proteins and provides a source of data that will aid further studies on the mechanism of action of this endogenous regulator of inflammation.  相似文献   

7.
PGJ2 and Δ12PGJ2 (1 μM to 30 μm) inhibited the growth of human astrocytoma cells (1321N1) in a time-dependent manner within 48 hrs, determined by [3H]thymidine incorporation into acid-insoluble fraction or amounts of protein. The EC50 values for PGJ2 and Δ12PGJ2 were approximately 8 μM and 6 μM, respectively. [3H]Thymidine incorporation to acid insoluble fraction was inhibited by these PGs within 1 hr, indicating that these PGs rapidly affect cell functions. Although it has been reported that an increase in cyclic AMP inhibits cell growth, PGJ2 and Δ12PGJ2, but not PGE1, reduced isoproterenol (10 μM)-induced accumulation of cyclic AMP, suggesting that PGJ2 and Δ12PGJ2 may disturb adenylate cyclase system, which might be independent on cell growth. On the other hand, these PGs inhibited the incorporation of [3H]inositol into phospholipid fraction within 6 hrs. Furthermore, PGJ2 and Δ12PGJ2 inhibited carbachol- and/or histamine-induced accumulation of inositol phosphates with a similar dose-dependency to their inhibitions of cell growth. In membrane preparations, however, PGJ2 and Δ12PGJ2 failed to inhibit GTPγS (10 μM)- nor Ca2+ (1mM)-induced accumulation of inositol phosphate. The site of PGJ2 or Δ12PGJ2 in inhibition of inositol phosphate accumulation would not be phospholipase C nor a putative GTP binding protein involved in activation of phospholipase C. The present results indicate that PGJ2 and Δ12PGJ2 inhibit cell growth in human astrocytoma cells and the inhibition of phosphoinositide turnover by these PGs might be involved in the inhibition of cell growth.  相似文献   

8.
Prostaglandins (PGs) having antitumor activity such as Δ12,14-PGJ2, Δ12-PGJ2, PGA2 and PGA1 strongly inhibited topoisomerase II (topo II) from human placenta, the potential order of inhibitory activity of the PGs resembling that of the antitumor activity. PGs having no antitumor activity did not inhibit topo II. Δ12,14-PGJ2 to be a potent inhibitor showed inhibitions to some extent against topo I from wheat germ, NIH3T3 and calf thymus gland, and showed no inhibition against the enzymes from Vero, A549, HeLa and COLO 201 cells. Δ12,14-PGJ2 differentially inhibited topo I from different sources. Δ12,14-PGJ2 was a topo inhibitor of the cleavable complex-nonforming type without DNA intercalation.  相似文献   

9.
Aldo-keto reductase (AKR) 1C3 (type 5 17β-hydroxysteroid dehydrogenase and prostaglandin F synthase), may stimulate proliferation via steroid hormone and prostaglandin (PG) metabolism in the breast. Purified recombinant AKR1C3 reduces PGD2 to 9α,11β-PGF2, Δ4-androstenedione to testosterone, progesterone to 20α-hydroxyprogesterone, and to a lesser extent, estrone to 17β-estradiol. We established MCF-7 cells that stably express AKR1C3 (MCF-7-AKR1C3 cells) to model its over-expression in breast cancer. AKR1C3 expression increased steroid conversion by MCF-7 cells, leading to a pro-estrogenic state. Unexpectedly, estrone was reduced fastest by MCF-7-AKR1C3 cells when compared to other substrates at 0.1 μM. MCF-7-AKR1C3 cells proliferated three times faster than parental cells in response to estrone and 17β-estradiol. AKR1C3 therefore represents a potential target for attenuating estrogen receptor α induced proliferation. MCF-7-AKR1C3 cells also reduced PGD2, limiting its dehydration to form PGJ2 products. The AKR1C3 product was confirmed as 9α,11β-PGF2 and quantified with a stereospecific stable isotope dilution liquid chromatography–mass spectrometry method. This method will allow the examination of the role of AKR1C3 in endogenous prostaglandin formation in response to inflammatory stimuli. Expression of AKR1C3 reduced the anti-proliferative effects of PGD2 on MCF-7 cells, suggesting that AKR1C3 limits peroxisome proliferator activated receptor γ (PPARγ) signaling by reducing formation of 15-deoxy-Δ12,14-PGJ2 (15dPGJ2).  相似文献   

10.
Previous studies have demonstrated the ability of an eicosapentaenoic acid (EPA)-derived endogenous cyclopentenone prostaglandin (CyPG) metabolite, Δ12-PGJ3, to selectively target leukemic stem cells, but not the normal hematopoietic stems cells, in in vitro and in vivo models of chronic myelogenous leukemia (CML). Here we evaluated the stability, bioavailability, and hypersensitivity of Δ12-PGJ3. The stability of Δ12-PGJ3 was evaluated under simulated conditions using artificial gastric and intestinal juice. The bioavailability of Δ12-PGJ3 in systemic circulation was demonstrated upon intraperitoneal injection into mice by LC-MS/MS. Δ12-PGJ3 being a downstream metabolite of PGD3 was tested in vitro using primary mouse bone marrow-derived mast cells (BMMCs) and in vivo mouse models for airway hypersensitivity. ZK118182, a synthetic PG analog with potent PGD2 receptor (DP)-agonist activity and a drug candidate in current clinical trials, was used for toxicological comparison. Δ12-PGJ3 was relatively more stable in simulated gastric juice than in simulated intestinal juice that followed first-order kinetics of degradation. Intraperitoneal injection into mice revealed that Δ12-PGJ3 was bioavailable and well absorbed into systemic circulation with a Cmax of 263 µg/L at 12 h. Treatment of BMMCs with ZK118182 for 12 h resulted in increased production of histamine, while Δ12-PGJ3 did not induce degranulation in BMMCs nor increase histamine. In addition, in vivo testing for hypersensitivity in mice showed that ZK118182 induces higher airways hyperresponsiveness when compared Δ12-PGJ3 and/or PBS control. Based on the stability studies, our data indicates that intraperitoneal route of administration of Δ12-PGJ3 was favorable than oral administration to achieve effective pharmacological levels in the plasma against leukemia. Δ12-PGJ3 failed to increase histamine and IL-4 in BMMCs, which is in agreement with reduced airway hyperresponsiveness in mice. In summary, our studies suggest Δ12-PGJ3 to be a promising bioactive metabolite for further evaluation as a potential drug candidate for treating CML.  相似文献   

11.
We evaluated the effects of prostaglandins (PGs) on rat glioma C6BU-1 cells by supplementing the culture media with PGs. In the medium containing PGD2 (15 or 20 μM), the glial cells showed altered morphology from an elongated fibroblastic form to a spreading multipolar one within 24 h, and their growth rate was suppressed to half of that of control cultures. In these cultures, the specific activity of glutamine synthetase (GS) increased approximately twofold within 48 h in comparison to the value for vehicle-treated controls. Simultaneous treatment with actinomycin D or cycloheximide completely blocked the PGD2-elicited increase in GS specific activity, suggesting that the increase was due to de novo synthesis of the enzyme. PGD2-like prostanoids such as PGD1 and 9-deoxy-Δ9, Δ12-13,14-dihydro-PGD2 (Δ12-PGJ2), when added to the culture medium, mimicked the actions of PGD2 on the C6BU-I cells, though their effective concentrations were not necessarily identical. PGs of the E- and F-series had almost no discernible effect on the glioma. These results might imply a possibility that PGD2 plays a regulatory effect in growth and/or differentiation of rat glioma C6BU-1 cells.  相似文献   

12.
Prostaglandin (PG)E2 9-ketoreductase, which catalyzes the conversion of PGE2 to PGF2, was purified from human brain to apparent homogeneity. The molecular weight, isoelectric point, optimum pH, Km value for PGE2, and turnover number were 34,000, 8.2, 6.5–7.5, 1.0 mM, and 7.6 min–1, respectively. Among PGs tested, the enzyme also catalyzed the reduction of other PGs such as PGA2, PGE1, and 13,14-dihydro-15-keto PGF2, but not that of PGD2, 11-PGE2, PGH2, PGJ2, or 12-PGJ2. The reaction product formed from PGE2 was identified as PGF2, by TLC combined with HPLC. This enzyme, as is the case for carbonyl reductase, was NADPH-dependent, preferred carbonyl compounds such as 9,10-phenanthrenequinone and menadione as substrates, and was sensitive to indomethacin, ethacrynic acid, and Cibacron blue 3G-A. The reduction of PGE2 was competitively inhibited by 9,10-phenanthrenequinone, which is a good substrate of this enzyme, indicating that the enzyme catalyzed the reduction of both substrates at the same active site. These results suggest that PGE2 9-ketoreductase, which belongs to the family of carbonyl reductases, contributes to the enzymatic formation of PGF2 in human brain.Special issue dedicated to Dr. Sidney Udenfriend.  相似文献   

13.
Electrophilic cyclopentenone prostaglandins (cyPGs), such as 15-deoxy-Δ12,14-prostaglandin J2 (15dPGJ2), initiate redox-based cell signaling responses including increased intracellular glutathione (GSH) synthesis. We investigated whether cyPGs facilitated GSH efflux and if members of the ATP-binding cassette (ABC) protein family mediated the efflux. Four human cell lines were treated with 1–6 μM cyPGs for 48 h. Media and cells were harvested for GSH measurements using HPLC-EC. CyPG treatment increased extracellular GSH levels two- to threefold over controls in HN4 and C38 cells and five- to sixfold in SAEC and MDA 1586 cells and was dependent on increased GSH synthesis. Our studies show that prostaglandin D2 and its metabolites, prostaglandin J2 and 15dPGJ2, specifically induce GSH efflux compared to other eicosanoids. These higher extracellular GSH levels were associated with protection from tert-butylhydroperoxide. Superarray analysis of ABC transporters suggested only ABCG2 expression had a positive relationship in the four cell types compared with extracellular GSH increases after cyPG treatment. The ABCG2 substrate Hoechst 33342 inhibited extracellular GSH increase after 15dPGJ2 treatment. We report for the first time that ABCG2 may play a role in GSH efflux in response to cyPG treatment and may link inflammatory signaling with antioxidant adaptive responses.  相似文献   

14.
Pretreatment of human lung fibroblasts with PGE2 but not PGF enhanced synthesis of prostaglandins (PGs). The effect of the pretreatment on PG synthesis was related to the concentration of PGE2 that was added to the culture medium. Pretreatment with PGE2 at 5 × 10−12M did not enhance PG synthesis whereas pretreatment with PGE2 at 5 × 10−6M induced a maximal effect. Production of PGs was increased following 1 day of pretreatment with PGE2 and was increased further following 3 days of pretreatment. The PGE2 treated cells showed only a slight increase in the bradykinin-induced release of radioactivity from cells prelabeled with [3H]arachidonic acid but showed a dramatic increase in the bradykinin-induced synthesis of radio-labeled PGs. The conversion of free arachidonate to PGs in both intact cells and in a cell-free preparation was increased by PGE2 pretreatment. The presence of cyclohexamide during the pretreatment did not inhibit the PGE2-induced activation of PG synthesis. Taken together, the results indicate that pretreatment of cells with PGE2 increased PG synthesis by augmenting the conversion of arachidonate to PGs.  相似文献   

15.
16.
17.
18.
19.
δ12-prostaglandin(PG)J2 (7.5μg/ml) significantly inhibited protein synthesis and cell growth in a human neuroblastoma cell line (NCG), decreasing these factors by 31.5% and 78.2% of the control values, respectively. Two protein synthesis inhibitors, cycloheximide (CHM)_and emetine, exhibited a dose-dependent protective effect for neuroblastoma cells against δ12-PCJ2 cytotoxicity. At a concentration of 15μ/ml CHM, the number of viable cells increased from 21.8% to 36.7% of the control value (p<0.01). The sodium dodecyl sulfate-polyacrylamide gel analysis of [35S]methionine-incorporated proteins revealed an increased synthesis of 86k, 70k and 66k proteins in the δ12-PGJ2-treated NCG cells under the condition that δ12-PGJ2 exerts cytotoxicity. Of these proteins, the amount of 66k protein was particularly increased in cell cytosol; however, its synthesis did not occur when CHM prohibited the δ12-PGJ2 cytotoxic effect. When emetine was used instead of CHM, similar results were obtained.These results strongly suggest that the 66k protein plays a critical role in the °12-PGJ2 cytotoxicity.  相似文献   

20.
To study the precise mechanism of cytotoxic activity of PGD2 or Δ12-PGJ2 (a biological active metabolite of PGD2), we examined the effect of various compounds on PGD2 or Δ12-PGJ2 cytottoxic, using a human neuroblastoma cell line (NCG). Cycloheximide (CHM) specifically protected PGD2 cytotoxicity on NCG cells. When Δ12-PGJ2 was tested, CHM exhibited a similar rescue effect. Puromycin, mitomycin C, and α-amanitin did not affect PGD2 or Δ12-PGJ2 cytotoxicity. Emetine showed a variable and no consistent rescue effect CHM may have been active at the primary site where PGD2 or Δ12-PGJ2 exerts its cytotoxicity. This is the first report indicating that CHM reduces the cytotoxicity induced by PGD2 or Δ12-PGJ2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号