首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
BACKGROUND: Naturally induced antibodies binding to surface antigens of Plasmodium falciparum-infected erythrocytes can be detected by direct agglutination of infected erythrocytes or by indirect immunofluorescence on intact, unfixed, infected erythrocytes. Agglutinating antibodies have previously been shown to recognise Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1). This protein is inserted by the parasite into the host cell membrane and mediates the adhesion to the venular endothelium of the host organism in vivo. METHODS: Erythrocytes infected at high parasitaemias with ethidium-bromide-labelled mature forms of P. falciparum parasites were sequentially exposed to immune plasma, goat anti-human immunoglobulin (Ig) G, and fluorescein-isothiocyanate-conjugated rabbit anti-goat Ig. Plasma antibodies recognising antigens exposed on the surface of parasitised erythrocytes were subsequently detected by two-colour flow cytometry. RESULTS: Binding of human antibodies to the surface of erythrocytes infected with adhesive strains of Plasmodium falciparum can be measured by the two-colour flow cytometry (FCM) assay described. In addition, we demonstrate that the adhesive capacity of a parasite isolate correlates with the capacity of human immune plasmas to label the isolate as detected by FCM. We also show that the antigens recognised by the labelling antibodies are strain specific and that their molecular weights are in the range previously described for PfEMP1 antigens. CONCLUSIONS: Our FCM assay predominantly detects antibodies that recognise PfEMP1 and thus constitutes a convenient assay for the analysis of acquisition, maintenance, and diversity of anti-PfEMP1-specific antibodies and for the examination of class and subclass characteristics.  相似文献   

2.
In vitro binding capacity of erythrocytes infected with P. falciparum and the modulation of cytoadherence on human endothelial cells by cytokines and sera from semi immune subjects in relation to cytoadherence were studied. Tumor necrosis factor and interleukin-3, alone or in combination with granulocyte macrophage-colony stimulating factor, enhanced in vitro cytoadherence. Contrary to pooled immune sera, patients' sera obtained during acute or convalescent phase did not reverse nor inhibit in vitro cytoadherence.  相似文献   

3.
A 33-kDa soluble antigen identified in the culture supernatant by patient serum and monoclonal antibodies was present in rings, trophozoites, schizonts, and merozoites of Plasmodium falciparum. The antigen which is released into the culture supernatant by growing parasites was also observed in the host cells of trophozoites and schizonts and could be localized on the host cell surface. Its specificity for the surface of trophozoites and schizonts was observed to decrease with increased duration without subculture. The antigen could then be detected on the surface of noninfected erythrocytes. The antigenicity of the 33-kDa antigen was destroyed by heating at 65 degrees C. Monoclonal and polyclonal specific antibodies weakly inhibited parasite growth in vitro. The antigen was present in both knob positive and knob negative parasites in all the P. falciparum isolates tested.  相似文献   

4.
Infections with the human malaria Plasmodium falciparum are characterized by the retention of parasitized erythrocytes in tissue capillaries and venules. Erythrocytes containing trophozoites and schizonts attach to the endothelial cells that line these vessels by means of structurally identifiable excrescences present on the surface of the infected cell. Such excrescences, commonly called knobs, are visible by means of scanning or transmission electron microscopy. The biochemical mechanisms responsible for erythrocyte adherence to the endothelial cell are still undefined. In an attempt to identify the cytoadhesive molecule on the surface of the infected cell, we have prepared monoclonal antibodies to knob-bearing erythrocytes infected with the FCR-3 strain of P. falciparum. One of these monoclonal antibodies, designed 4A3, is an IgM that reacts (by means of immunofluorescence) with the surface of unfixed erythrocytes bearing mature parasites of the knobby line; it does not react with knobless lines or uninfected erythrocytes. By immunoelectron microscopy the monoclonal antibody 4A3 was localized to the knob region. In an in vitro cytoadherence assay, the monoclonal antibody partially blocked the binding of knob-bearing cells (FCR-3 strain) to formalin-fixed amelanotic melanoma cells. The monoclonal antibody was used to immunoprecipitate a protein from extracts of knobby erythrocytes that had been previously surface iodinated. By a two-dimensional peptide mapping technique, the antigen recognized by the monoclonal antibody was found to be structurally related to band 3 protein, the human erythrocyte anion transporter.  相似文献   

5.
Erythrocytes infected with Plasmodium falciparum bind specifically to cultured endothelial cells and to a line of amelanotic melanoma cells. We have fixed endothelial cells and amelanotic melanoma cells in various ways and determined whether the fixed cells were still able to bind infected erythrocytes. Only cells fixed with 1.0-2.5% formalin in phosphate-buffered saline continued to bind infected erythrocytes as well as unfixed cells. The mechanism of binding to fixed and unfixed cells appeared to be identical for the following reasons. First, erythrocytes infected by parasite strains that bound to unfixed cells also bound to fixed cells while those that did not bind to unfixed cells did not bind to fixed cells. Second, immune serum that inhibited binding to unfixed cells also inhibited binding to fixed cells. Third, electron microscopy showed that knobs were the points of attachment between infected erythrocytes and both fixed and unfixed melanoma cells. Fixed cells gave reproducible results over at least 2 months. Thus, we have developed a simplified, reproducible assay for measuring binding of P. falciparum-infected erythrocytes to target cells.  相似文献   

6.
《The Journal of cell biology》1990,111(5):1877-1884
The Plasmodium falciparum gene encoding erythrocyte binding antigen-175 (EBA-175), a putative receptor for red cell invasion (Camus, D., and T. J. Hadley. 1985. Science (Wash. DC). 230:553-556.), has been isolated and characterized. DNA sequencing demonstrated a single open reading frame encoding a translation product of 1,435 amino acid residues. Peptides corresponding to regions on the deduced amino acid sequence predicted to be B cell epitopes were assessed for immunogenicity. Immunization of mice and rabbits with EBA-peptide 4, a synthetic peptide encompassing amino acid residues 1,062-1,103, produced antibodies that recognized P. falciparum merozoites in an indirect fluorescent antibody assay. When compared to sera from rabbits immunized with the same adjuvant and carrier protein, sera from rabbits immunized with EBA-peptide 4 inhibited merozoite invasion of erythrocytes in vitro by 80% at a 1:5 dilution. Furthermore, these sera inhibited the binding of purified, authentic EBA-175 to erythrocytes, suggesting that their activity in inhibiting merozoite invasion of erythrocytes is mediated by blocking the binding of EBA-175 to erythrocytes. Since the nucleotide sequence of EBA-peptide 4 is conserved among seven strains of P. falciparum from throughout the world (Sim, B. K. L. 1990. Mol. Biochem. Parasitol. 41:293-296.), these data identify a region of the protein that should be a focus of vaccine development efforts.  相似文献   

7.
Plasmodium falciparum erythrocyte membrane protein-1 (PfEMP-1) is a variable antigen expressed by P. falciparum, the malarial parasite. PfEMP-1, present on the surface of infected host erythrocytes, mediates erythrocyte binding to vascular endothelium, enabling the parasite to avoid splenic clearance. In addition, PfEMP-1 is proposed to regulate host immune responses via interactions with the CD36 receptor on antigen-presenting cells. We investigated the immunoregulatory function of PfEMP-1 by comparing host cell responses to erythrocytes infected with either wild-type parasites or transgenic parasites lacking PfEMP-1. We showed that PfEMP-1 suppresses the production of the cytokine interferon-gamma by human peripheral blood mononuclear cells early after exposure to P. falciparum. Suppression of this rapid proinflammatory response was CD36 independent and specific to interferon-gamma production by gammadelta-T, NK, and alphabeta-T cells. These data demonstrate a parasite strategy for downregulating the proinflammatory interferon-gamma response and further establish transgenic parasites lacking PfEMP-1 as powerful tools for elucidating PfEMP-1 functions.  相似文献   

8.
Acquired protection from Plasmodium falciparum placental malaria, a major cause of maternal, fetal, and infant morbidity, is mediated by IgG specific for the P. falciparum erythrocyte membrane protein 1 variant VAR2CSA. This protein enables adhesion of P. falciparum-infected erythrocytes to chondroitin sulfate A in the intervillous space. Although interclonal variation of the var2csa gene is lower than that among var genes in general, VAR2CSA-specific Abs appear to target mainly polymorphic epitopes. This has raised doubts about the feasibility of VAR2CSA-based vaccines. We used eight human monoclonal IgG Abs from affinity-matured memory B cells of P. falciparum-exposed women to study interclonal variation and functional importance of Ab epitopes among placental and peripheral parasites from East and West Africa. Most placental P. falciparum isolates were labeled by several mAbs, whereas peripheral isolates from children were essentially nonreactive. The mAb reactivity of peripheral isolates from pregnant women indicated that some were placental, whereas others had alternative sequestration foci. Most of the mAbs were comparable in their reactivity with bound infected erythrocytes (IEs) and recombinant VAR2CSA and interfered with IE and/or VAR2CSA binding to chondroitin sulfate A. Pair-wise mAb combinations were more inhibitory than single mAbs, and all of the mAbs together was the most efficient combination. Each mAb could opsonize IEs for phagocytosis, and a combination of the eight mAbs caused phagocytosis similar to that of plasma IgG-opsonized IEs. We conclude that functionally important Ab epitopes are shared by the majority of polymorphic VAR2CSA variants, which supports the feasibility of VAR2CSA-based vaccines against placental malaria.  相似文献   

9.
The relationship between autoimmunity and malaria is not well understood. To determine whether autoimmune responses have a protective role during malaria, we studied the pattern of reactivity to plasmodial antigens of sera from 93 patients with 14 different autoimmune diseases (AID) who were not previously exposed to malaria. Sera from patients with 13 different AID reacted against Plasmodium falciparum by indirect fluorescent antibody test with frequencies varying from 33-100%. In addition, sera from 37 AID patients were tested for reactivity against Plasmodium yoelii 17XNL and the asexual blood stage forms of three different P. falciparum strains. In general, the frequency of reactive sera was higher against young trophozoites than schizonts (p < 0.05 for 2 strains), indicating that the antigenic determinants targeted by the tested AID sera might be more highly expressed by the former stage. The ability of monoclonal auto-antibodies (auto-Ab) to inhibit P. falciparum growth in vitro was also tested. Thirteen of the 18 monoclonal auto-Ab tested (72%), but none of the control monoclonal antibodies, inhibited parasite growth, in some cases by greater than 40%. We conclude that autoimmune responses mediated by auto-Ab may present anti-plasmodial activity.  相似文献   

10.
Sequestration, the adherence of infected erythrocytes containing the more mature stages of parasite development (trophozoites and schizonts) to the endothelial cells lining the capillaries and post-capillary venules, is characteristic of Plasmodium falciparum infections. In this review, Irwin Sherman and his colleagues discuss recent advances in the characterization of the adhesive molecules on the surface of malaria-infected erythrocytes and the receptors on the endothelium to which they bind.  相似文献   

11.
Neutralization of a chimeric human immunodeficiency virus (HIV) type 1, containing the V3 loop of the MN isolate substituted within the HXB2 envelope, was enhanced up to 20-fold compared with the HXB2 or MN parental isolates by human HIV-positive sera. MN V3 loop-specific monoclonal antibodies were better able to recognize the chimeric virus compared with MN, staining a greater percentage of infected cells and exhibiting slight increases in relative affinity with a concomitant increase in neutralization titer. Competition analysis revealed that enhanced neutralization by human HIV-positive sera of the chimera was attributable in some cases to better reactivity with the linear V3 loop epitope but in others to conformational loop epitopes or previously cryptic or poorly recognized epitopes outside the loop region. Mice primed with a vaccinia virus-chimeric envelope recombinant and boosted with gp160 developed a spectrum of antibodies different from that of mice similarly immunized with HXB2 or MN recombinants or that of naturally infected humans. The chimeric envelope elicited antibodies with enhanced binding to the native MN V3 loop; however, the sites seen by the BALB/c mice were not neutralizing epitopes. Nevertheless, similar to the observations made with use of human sera, the chimeric virus was more readily neutralized by all of the immune mouse sera, an effect apparently mediated by non-V3 loop epitopes. These studies illustrate that not only the V3 loop sequence and conformation but also its context within the viral envelope influence neutralization.  相似文献   

12.
Rhoptry-associated protein 2 (RAP2) is known to be discharged from rhoptry onto the membrane surface of infected and uninfected erythrocytes (UEs) ex vivo and in vitro and this information provides new insights into the understanding of the pathology of severe anemia in falciparum malaria. In this study, a hexahistidine-tagged recombinant protein corresponding to residues 5-190 of the N-terminal of Plasmodium falciparum RAP2 (rN-RAP2) was produced using a new method of solubilization and purification. Expression was induced with D-lactose, a less expensive alternative inducer to the more common isopropyl-beta-D-thio-galactopyranosidase. The recombinant protein was purified using two types of commercially-available affinity columns, iminodiacetic and nitrilotriacetic. rN-RAP2 had immunogenic potential, since it induced high titers of anti-RAP2 antibodies in mice. These antibodies recognized full-length RAP2 prepared from Triton X-100 extracts from two strains of P. falciparum. In fact, the antibody recognized a 29-kDa product of RAP2 cleavage as well as 82 and 70-kDa products of RAP1 cleavage. These results indicate that the two antigens share sequence epitopes. Our expressed protein fragment was shown to contain a functional epitope that is also present in rhoptry-derived ring surface protein 2 which attaches to the surface of both infected and UEs and erythroid precursor cells in the bone marrow of malaria patients. Serum from malaria patients who developed anemia during infection recognized rN-RAP2, suggesting that this protein fragment may be important for epidemiological studies investigating whether immune responses to RAP2 exacerbate hemolysis in falciparum malaria patients.  相似文献   

13.
During erythrocyte invasion, the Plasmodium falciparum Ring-infected erythrocyte surface antigen (RESA) establishes specific interactions with spectrin. Based on analysis of strains with a large chromosome 1 deletion, RESA has been assigned several functions, none of which is firmly established. Analysis of parasites with a disrupted resa1 gene and isogenic parental or resa3-disrupted controls confirmed the critical role of RESA in the surface reactivity of immune adult sera on glutaraldehyde-fixed ring stages. Absence of RESA did not influence merozoite invasion or erythrocyte membrane rigidity, was associated with a modest increase of cytoadhesion to CD36 under conditions of flow, but resulted in marked susceptibility to heat shock. resa1-KO-infected erythrocytes were prone to heat-induced vesiculation like uninfected erythrocytes, whereas parental or resa3-KO infected erythrocytes remained undamaged. Furthermore, a 6 h exposure of ring stages at 41 degrees C resulted in 33% culture inhibition of resa1-KO parasites while marginally impacting parental and resa3-KO parasite growth. This points to a role for RESA in protecting the infected erythrocyte cytoskeleton during febrile episodes. Infection patterns of resa1-KO and parental parasites in Saimiri sciureus indicated that RESA does not, at least on its own, modulate virulence in the squirrel monkey, as had been previously suggested.  相似文献   

14.
Plasmodium falciparum malaria is one o f the most widespread o f human parasitic diseases and is responsible for the deaths of several million people in subtropical and tropical regions o f the world. The interaction o f malarial merozoites with erythrocytes and the adherence o f infected erythrocytes to the endothelium are among the cellular interactions extensively studied to define candidate antigens for a blood stage vaccine. However, the exact mechanisms underlying the invasion o f erythrocytes by P. falciparum merozoites and their subsequent binding to endothelium are not yet understood. Here Mats Wahlgren, Johan Carlson, Rachonee Udomsangpetch and Peter Perlmonn discuss a novel cytoodherence phenomenon which may be o f great importance in this context, that is, the spontaneous binding o f uninfected erythrocytes to those infected with late-stage parasites (trophozoites/schizonts).  相似文献   

15.
The PfCLAG9 has been extensively studied because their immunogenicity. Thereby, the gene product is important for therapeutics interventions and a potential vaccine candidate. Antibodies against synthetic peptides corresponding to selected sequences of the Plasmodium falciparum antigen PfCLAG9 were found in sera of falciparum malaria patients from Rondônia, in the Brazilian Amazon. Much higher antibody titres were found in semi-immune and immune asymptomatic parasite carriers than in subjects suffering clinical infections, corroborating original findings in Papua Guinea. However, sera of Plasmodium vivax patients from the same Amazon area, in particular from asymptomatic vivax parasite carriers, reacted strongly with the same peptides. Bioinformatic analyses revealed regions of similarity between P. falciparum Pfclag9 and the P. vivax ortholog Pvclag7. Indirect fluorescent microscopy analysis showed that antibodies against PfCLAG9 peptides elicited in BALB/c mice react with human red blood cells (RBCs) infected with both P. falciparum and P. vivax parasites. The patterns of reactivity on the surface of the parasitised RBCs are very similar. The present observations support previous findings that PfCLAG9 may be a target of protective immune responses and raises the possibility that the cross reactive antibodies to PvCLAG7 in mixed infections play a role in regulate the fate of Plasmodium mixed infections.  相似文献   

16.
17.
Apical membrane antigen 1 (AMA1) is essential for invasion of erythrocytes and hepatocytes by Plasmodium parasites and is a leading malarial vaccine candidate. Although conventional antibodies to AMA1 can prevent such invasion, extensive polymorphisms within surface-exposed loops may limit the ability of these AMA1-induced antibodies to protect against all parasite genotypes. Using an AMA1-specific IgNAR single-variable-domain antibody, we performed targeted mutagenesis and selection against AMA1 from three P. falciparum strains. We present cocrystal structures of two antibody-AMA1 complexes which reveal extended IgNAR CDR3 loops penetrating deep into a hydrophobic cleft on the antigen surface and contacting residues conserved across parasite species. Comparison of a series of affinity-enhancing mutations allowed dissection of their relative contributions to binding kinetics and correlation with inhibition of erythrocyte invasion. These findings provide insights into mechanisms of single-domain antibody binding, and may enable design of reagents targeting otherwise cryptic epitopes in pathogen antigens.  相似文献   

18.
Adhesion of erythrocytes infected with the malaria parasite Plasmodium falciparum to human host receptors is a process associated with severe malarial pathology. A number of in vitro cell lines are available as models for these adhesive processes, including Chinese hamster ovary (CHO) cells which express the placental adhesion receptor chondroitin-4-sulphate (CSA) on their surface. CHO-745 cells, a glycosaminoglycan-negative mutant CHO cell line lacking CSA and other reported P. falciparum adhesion receptors, are often used for recombinant expression of host receptors and for receptor binding studies. In this study we show that P. falciparum-infected erythrocytes can be easily selected for adhesion to an endogenous receptor on the surface of CHO-745 cells, bringing into question the validity of using these cells as a tool for P. falciparum adhesin expression studies. The adhesive interaction between CHO-745 cells and parasitized erythrocytes described here is not mediated by the known P. falciparum adhesion receptors CSA, CD36, or ICAM-1. However, we found that CHO-745-selected parasitized erythrocytes bind normal human IgM and that adhesion to CHO-745 cells is inhibited by protein A in the presence of serum, but not in its absence, indicating a non-specific inhibitory effect. Thus, protein A, which has been used as an inhibitor for a recently described interaction between infected erythrocytes and the placenta, may not be an appropriate in vitro inhibitor for understanding in vivo adhesive interactions.  相似文献   

19.
The major surface antigen of the merozoite (MMSA) is very immunogenic in humans and it is considered a candidate for developing a malaria vaccine. This protein consists of conserved, dimorphic and polymorphic sequences that might differ in their ability to induce immunity. Epidemiological studies were undertaken in two different endemic areas of West Africa with the aim to identify the sequences within the protein that are the target of the humoral and cellular immune responses. Recombinant polypeptides expressed in E. coli, covering the conserved, the dimorphic and polymorphic regions, were used to evaluate the reactivity of sera and of Peripheral Blood Mononuclear Cells (PBMC) from inhabitants of rural communities exposed to P. falciparum transmission. The analysis of the humoral immune response against the MMSA showed that both qualitative and quantitative differences exist among groups of individuals with different susceptibility to P. falciparum infection. Furthermore, an association between intensity of transmission and antibody reactivity against the dimorphic regions was observed in individuals living in a malaria endemic area. The proliferative response of the PBMC was in most cases very low, however, several T cell clones could be established. The dimorphic region of MMSA was shown to contain T cell epitopes together with sequences most frequently recognized by human sera.  相似文献   

20.
Human erythrocytes infected with five strains of Plasmodium falciparum and Aotus erythrocytes infected with three strains of P. falciparum were studied by thin-section and freeze-fracture electron microscopy. All strains of P. falciparum we studied induced electron-dense conical knobs, measuring 30-40 nm in height and 90-100 nm in diameter on erythrocyte membranes. Freeze-fracture demonstrated that the knobs were distributed over the membrane of both human and Aotus erythrocytes. A distinct difference was seen between the intramembrane particle (IMP) distribution over the knobs of human and Aotus erythrocyte membranes. There was no change in IMP distribution in infected human erythrocyte membranes, but infected Aotus erythrocytes showed an aggregation of IMP over the P face of the knobs with a clear zone at the base. This difference in IMP distribution was related only to the host species and not to parasite strains. Biochemical analysis demonstrated that a higher proportion of band 3 was bound to the cytoskeleton of uninfected Aotus erythrocytes than uninfected human erythrocytes after Triton X-100 extraction. This may account for the different effects of P. falciparum infection on IMP distribution in the two different cell types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号