首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Myometrial low speed supernatant prepared from non-pregnant rhesus uteri was incubated with 3H-Prostaglandin (PG)E1 with or without addition of unlabelled prostaglandins. The uptake of 3H-PGE1 was inhibited in a dose dependent fashion by PGE2>PGE1>PGA1>PGF=PGA1>PGB1=PGB2≥PGD2. PGE1 metabolites inhibited 3H-PGE1 binding in the following order: 13,14-dihydro-PGE1>13,14-dihydro-15-keto-PGE1=15-keto-PGE1. The specific binding of 3H-PGE1 and 3H-PGF was similarly affected by the temperature and time of incubation. Equilibrium binding constants determined using rhesus uteri obtained during the luteal phase of the menstrual cycle indicate the presence of high affinity PGE1 binding sites with an average (n=3) apparent dissociation constant of 2.2 × 10−9M and a lower affinity PGE1 binding site with a Kd ≅ 1 × 10−8M. No high affinity — low capacity 3H-PGF sites could be demonstrated.Relative uterine stimulating potencies of some natural prostaglandins and prostaglandin analogs tested after acute intravenous administration in mid-pregnant rhesus monkeys corresponded with the PGE1 binding inhibition of the respective compound. The uterine stimulating potencies of the prostaglandin analogs tested were: (15S)-15-methyl-PGE2=16,16-dimethyl-PGE2>17-phenyl-18,19,20-trinor-PGE2>16 phenoxy-17,18,19,20-tetranor-PGF=PGE2=PGE1=(15S)-15-methyl-PGF>PGF.  相似文献   

2.
3.
Prostaglandin E1 binds to Z protein of rat liver   总被引:4,自引:0,他引:4  
Z protein or fatty-acid-binding protein is abundant in the cytosol of many cell types including liver cells. It is considered to play an important role in intracellular transport and metabolism of long-chain fatty acids and other organic anions. We studied the role of Z protein in the metabolism of prostaglandin E1 (PGE1). Binding of tritiated prostaglandin E1 to this fatty-acid-binding protein (Z protein) purified from rat liver was determined. The binding of [3H]prostaglandin E1 to Z protein is rapid, saturable and reversible. Scatchard analysis of [3H]PGE1 binding to Z protein showed a single class of binding sites with a dissociation constant (Kd) of 37 nM. The binding capacity is 110 nmol/mg Z protein. Optimal [3H]PGE1 binding occurred at pH 7.4. The presence of 3 mM MgCl2 stimulated the prostaglandin E1 binding to Z protein. Competition experiments show that the binding of this autacoid to Z protein is highly specific. It could not be displaced by other prostaglandins (PGA1, PGA2, PGE2, PGB1, PGI2, PGD2, PGF2 alpha, and 6-keto PGF1 alpha). Z protein might be involved in the metabolism of prostaglandins in the cytosol.  相似文献   

4.
Uncoupling protein 2 (UCP2) mRNA expression and function was examined in rat primary cultured hepatocytes. UCP2 mRNA was not expressed in freshly isolated hepatocytes, but appeared during a 24-144 h primary culture period. Isolated mitochondria from 144 h cultured hepatocytes showed a lower oxygen consumption rate in the presence of succinate and ADP. However, the ratio of the oxygen consumption rate when media contained succinate alone to that with succinate and ADP was increased by 166% versus control mitochondria. Moreover, the mitochondrial potential in the presence of succinate was decreased by 60%, indicating the potential role of UCP2 in hepatocyte mitochondria as an active uncoupler.  相似文献   

5.
6.
7.
8.
Prostaglandin E2 (PGE2) bound specifically (P less than 0.001) to ampullary and isthmic tissue on Day 2 and Day 5 after ovulation. No significant differences (P greater than 0.8) were detected between Day 2 and Day 5 in the specific binding of ampullary or isthmic tissue. Significantly more (P less than 0.05) PGE2 bound specifically to ampullary versus isthmic tissue on both days. Detection of PGE2-specific binding in the oviductal isthmus on Day 2 and Day 5 indicates that the oviduct is responsive to PGE2 when it is capable of transporting equine embryos.  相似文献   

9.
The binding of [3H]prostaglandin E1 to membranes of clones of normal rat kidney fibroblasts (NRK cells) has been measured. Cell lines that responded to prostaglandin E1, such as NRK and NRK transformed with Schmitt-Ruppin strain of Rous sarcoma virus (SR-NRK cells), have a high affinity prostaglandin E1 binding site. Murine-sarcoma-virus-transformed lines of NRK cells are unresponsive to prostaglandin E1 and have reduced prostaglandin E1 binding Exposure of cells to prostaglandin E1 results both in decreased prostaglandin E1 responsiveness and reduced prostaglandin E1 binding. Activation of adenylate cyclase is correlated to binding of prostaglandin E1 to receptors in both NRK and SR-NRK cell membranes. Mathematical models suggest that GTP decreases the affinity of hormone for its receptor while increasing the catalytic efficiency of adenylate cyclase, and that aggregates of occupied receptors may play an important role in the activation of adenylate cyclase.  相似文献   

10.
11.
12.
Alcoholic liver disease (ALD) caused by excessive alcohol consumption is associated with oxidative stress, mitochondrial dysfunction, and hepatocellular apoptosis. Cilostazol, a licensed clinical drug used to treat intermittent claudication, has been reported to act as a protective agent in a spectrum of diseases. However, little information regarding its role in ethanol-induced hepatocellular toxicity has been reported. In the current study, we investigated the protective effects and mechanisms of cilostazol on ethanol-induced hepatocytic injury. Rat primary hepatocytes were pretreated with cilostazol prior to ethanol treatment. MTT and LDH assay indicated that ethanol-induced cell death was ameliorated by cilostazol in a dose-dependent manner. Our results display that overproduction of intracellular reactive oxygen species (ROS) and 4-hydroxy-2-nonenal (4-HNE) induced by ethanol was attenuated by pretreatment with cilostazol. Furthermore, cilostazol significantly inhibited ethanol-induced generation of ROS in mitochondria. Importantly, it was shown that cilostazol could improve mitochondrial function in primary hepatocytes by restoring the levels of ATP and mitochondrial membrane potential (MMP). Additionally, cilostazol was found to reduce apoptosis induced by ethanol using a terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay. Mechanistically, we found that cilostazol prevented mitochondrial pathway-mediated apoptotic signals by reversing the expression of Bax and Bcl2, the level of cleaved caspase-3, and attenuating cytochrome C release. These findings suggest the possibility of novel ALD therapies using cilostazol.  相似文献   

13.
  • 1.1. Putrescine and spermidine content increased in hepatocytes during culture. In the presence of 10 μM Berenil, putrescine content was further increased, while the increase of spermidine was prevented.
  • 2.2. Ornithine decarboxylase activity was markedly reduced, and to a lesser extent also S-adenosyl-methionine decarboxylase activity.
  • 3.3. Berenil appears to promote an increase in the transformation of spermidine into putrescine, and to inhibit the polyamine efflux.
  相似文献   

14.
15.
16.
Excretion of glutathione conjugates by primary cultured rat hepatocytes   总被引:2,自引:0,他引:2  
Conjugation of xenobiotics with glutathione occurs commonly within the liver, and these glutathione conjugates are then preferentially excreted into bile. We have characterized this excretory process using primary cultured hepatocytes (24 h). 1-Chloro-2,4-dinitrobenzene rapidly entered the cells and formed a glutathione conjugate, S-(dinitrophenyl)glutathione, irrespective of the temperature of incubation. In contrast, the efflux of the glutathione conjugate was essentially absent in the cold but recovered rapidly upon rewarming of the cells. Therefore, initial rates of efflux of the conjugate at 37 degrees C were measured from cells preloaded biosynthetically at 10 degrees C. Efflux was a saturable process with respect to intracellular S-(dinitrophenyl)glutathione with an apparent Km of 0.58 +/- 0.12 mM and Vmax of 0.15 +/- 0.05 nmol/min/mg of protein. The excretion of S-(dinitrophenyl)glutathione had an energy of activation of 15.3 kcal/mol. The glutathione conjugate of p-nitrobenzylchloride when formed within the hepatocytes acted as a competitive inhibitor of S-(dinitrophenyl)glutathione efflux. Cultured hepatocytes, therefore, appeared to have a specific transport process for the excretion of glutathione conjugates. The addition of S-(dinitrophenyl)glutathione, but not GSH, GSSG, or methionine, to the medium caused a decrease in the rate of efflux of radiolabeled S-(dinitrophenyl)glutathione. The hepatocytes were able, however, to excrete the glutathione conjugate against an excess of extracellular S-(dinitrophenyl)glutathione. This observation suggested that extracellular S-(dinitrophenyl)glutathione, although capable of binding to the carrier, entered the hepatocytes quite slowly relative to rates of efflux. This carrier may function in a manner that would minimize the reuptake by hepatocytes of conjugates that have been excreted into the bile.  相似文献   

17.
The hepatic metabolism of the 16-androstene steroids was investigated using isolated porcine hepatocytes. This study demonstrated that the liver is capable of producing both phase I and phase II steroid metabolites from 16-androstene steroid precursors. 16-Androstene metabolites were recovered by solid-phase extraction and identified by gas chromatography-mass spectrometry (GC-MS). When 5alpha-androstenone was provided as a substrate, both 3beta- and 3alpha-androstenol were produced as well as a metabolite that showed evidence of hydroxylation. Incubations with the various 16-androstene steroids produced metabolic profiles which suggested that the major role of the liver is phase II conjugation. Sulfoconjugated 16-androstene steroids included androstadienol, 5alpha-androstenone, 3beta-, 3alpha-androstenol, and possibly the hydroxylated metabolite of 5alpha-androstenone. It was determined that hydroxysteroid sulfotransferase (HST) is the likely candidate for the sulfoconjugation of the 16-androstene steroids within the liver. Despite the capacity of the hepatocytes to sulfoconjugate the 16-androstene steroids, the principle metabolites produced from incubations with 5alpha-androstenone, 3beta-, and 3alpha-androstenol were glucuronide conjugates, accounting for approximately 68% of all phase II metabolism. These findings underline the importance of steroid conjugation and suggest that hepatic metabolism of the 16-androstene steroids may influence the levels of 5alpha-androstenone present in the circulation, and thus, capable of accumulating in fat.  相似文献   

18.
Whereas the role of liver fatty acid-binding protein (L-FABP) in the uptake, transport, mitochondrial oxidation, and esterification of normal straight-chain fatty acids has been studied extensively, almost nothing is known regarding the function of L-FABP in peroxisomal oxidation and metabolism of branched-chain fatty acids. Therefore, phytanic acid (most common dietary branched-chain fatty acid) was chosen to address these issues in cultured primary hepatocytes isolated from livers of L-FABP gene-ablated (-/-) and wild type (+/+) mice. These studies provided three new insights: First, L-FABP gene ablation reduced maximal, but not initial, uptake of phytanic acid 3.2-fold. Initial uptake of phytanic acid uptake was unaltered apparently due to concomitant 5.3-, 1.6-, and 1.4-fold up-regulation of plasma membrane fatty acid transporter/translocase proteins (glutamic-oxaloacetic transaminase, fatty acid transport protein, and fatty acid translocase, respectively). Second, L-FABP gene ablation inhibited phytanic acid peroxisomal oxidation and microsomal esterification. These effects were consistent with reduced cytoplasmic fatty acid transport as evidenced by multiphoton fluorescence photobleaching recovery, where L-FABP gene ablation reduced the cytoplasmic, but not membrane, diffusional component of NBD-stearic acid movement 2-fold. Third, lipid analysis of the L-FABP gene-ablated hepatocytes revealed an altered fatty acid phenotype. Free fatty acid and triglyceride levels were decreased 1.9- and 1.6-fold, respectively. In summary, results with cultured primary hepatocytes isolated from L-FABP (+/+) and L-FABP (-/-) mice demonstrated for the first time a physiological role of L-FABP in the uptake and metabolism of branched-chain fatty acids.  相似文献   

19.
Hepatocytes from male Syrian hamsters were cultured in the presence of insulin and assayed for lipogenesis by following (14C)acetate incorporation into total cell lipid at 4 hourly intervals over a 48-h period. Circadian rhythms of lipogenic activity were observed on days 2 and 3 of culture. Although the phases of the rhythms were similar, the amplitude of the peak levels of lipogenesis declined from day 2 to 3. Addition of prolactin to the culture reversed this decline when introduced at specific times relative to the lipogenic peaks. Prolactin more than doubled lipogenesis only at the daily peaks of lipogenic activity and only when added to culture 20 h before the times of peak lipogenesis. The results are the first to demonstrate important roles for circadian rhythms and a direct prolactin stimulation in the regulation of lipogenesis in primary hepatocyte culture.  相似文献   

20.
Primary rabbit hepatocytes from 6 week old female New Zealand White rabbits (3.0 x 10(6) viable hepatocytes per treatment) were incubated for 24 h or 48 h with two basic variants of the selenium and vitamin E free DMEM/F12-HAM nutrition medium containing 2.5% or 10% fetal calf serum (FCS). Selenium and vitamin E concentrations of the media were varied by the addition of 0, 10, 50 and 100 ng Se/mL medium as sodium selenite and 100 microg alpha-tocopheryl acetate/mL. Lactic dehydrogenase (LDH) leakage of the hepatocytes was not influenced by the various selenium concentrations of the media, whereas vitamin E addition significantly inhibited LDH release. The activity of cellular glutathione peroxidase (GPx1) was markedly induced by increasing the selenium supplementation of the culture media. Vitamin E supply further enhanced GPx1 induction. In hepatocytes cultivated at the lower serum concentration (2.5% FCS), increasing the selenite concentration of the media raised GPx1 and reduced the intracellular levels of the reduced tripeptide glutathione (GSH). No vectored relation between the selenium concentration of the media and the activity of superoxide dismutase (SOD) could be observed. After both incubation periods (24 h and 48 h) SOD activity was significantly higher in the cytosol of hepatocytes grown in media containing 10% FCS as compared to cells incubated at the 2.5% FCS level. Furthermore, SOD activity was reduced by the addition of vitamin E to the media. In conclusion the results indicate an effective metabolism of rabbit hepatocytes for selenite even in amounts as low as nanograms. A general cytoprotective role for vitamin E can be shown by its ability to decrease LDH leakage and by the reduction of SOD activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号