首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of age on pain response to paw pressure and intraplantar formalin injection in rats is elucidated. Pain responses evoked by mechanical pressure on hind paw and intraplantar injection of formaldehyde (5%) into the hind paw were evaluated in groups of adult, young and aged male Sprague Dawley rats, after intraperitoneal (i.p.) or intracerebroventricular (i.c.v.) injection of L-arginine or NG-nitro-L-arginine methyl ester (L-NAME). Nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase staining was done in the two groups. The results show that pain response was reduced in the aged rats and enhanced pain response to paw pressure in aged rats only. L-arginine (i.c.v.) had no effect on pain response to paw pressure in the two groups but enhanced biphasic pain response to formalin. L-NAME (i.p. and i.c.v.) suppressed pain response to paw pressure in the two groups. L-NAME (i.c.v.) suppressed pain response to formalin during the acute phase and enhanced it during the late phase. NADPH-diaphorase activity was significantly greater in young rats. In conclusion, pain response is blunted in the aged rats. NO might be involved in mechanical nociception in aged rats and in formalin-induced nociception in both groups. NO blockade has an antinociceptive effect on pain response. Central NO has dual role in pain response evoked by formalin.  相似文献   

2.
目的:观察鞘内给予N-甲基-D-天门冬氨酸(NMDA)受体拮抗剂MK-801对足底注射甲醛诱导的自发痛反应和海马一氧化氮合酶(NOS)表达及一氧化氮(N0)含量的影响,探讨炎性痛诱导海马NO产生增多的机制。方法:通过观察舔足反射时间反映大鼠自发痛程度;采用NADPH—d组织化学法测定大鼠海马NOS表达;硝酸还原酶法测定海马组织NO含量。结果:足底注射甲醛后动物即出现舔、咬、摇动注射侧脚掌等自发痛相关表现,预先鞘内注射MK-801可使大鼠第二时相自发病程度显著降低,但对第一时相痛反应程度无明显影响。注射甲醛后12h时,海马CA1、CA2~3区及DG区NOS阳性细胞数目、阳性细胞染色深度均显著增加,海马组织NO含量显著增加;预先鞘内注射MK-801,可使甲醛炎性痛大鼠海马各区NOS阳性细胞数目明显减少,阳性细胞染色深度明显变浅,海马NO含量明显降低。结论:鞘内注射MK-801可逆转甲醛炎性痛诱导的海马NOS表达及NO产生的增加,表明甲醛炎性痛诱导的海马NO产生增加主要是由于伤害性信息传入所引起。  相似文献   

3.
It has been reported that ethanol can alter nociceptive sensitivity from superficial tissues, such as skin and subcutaneous region. However, the influence of ethanol on deep pain conditions is not understood. The aim of this study was to demonstrate the acute, chronic and ethanol withdrawal effects on nociceptive behavioral responses induced by the injection of formalin into the temporomandibular joint (TMJ) region of rats. In experiment 1, rats were injected with ethanol (2,5 g/Kg, i.p.) or an equal volume of saline 15 min before the administration of formalin (1.5%) into the TMJ. Rats pretreated with ethanol showed a decrease in nociceptive behavioral responses. In experiment 2, rats were given an ethanol solution (6.5%) or tap water to drink for 4 and 10 days. On day 4, the animals (ethanol group) showed amounts of analgesia when submitted to the TMJ formalin test. Tolerance to the antinociceptive effects was observed on day 10. Behavioral hyperalgesia was verified 12 hr after withdrawal in another group that drank ethanol for 10 days. These results show that ethanol can affect the nociceptive responses related to deep pain evoked by the TMJ formalin test.  相似文献   

4.
Ma J  Qiao JT  Dafny N 《Life sciences》2001,69(8):969-976
After subcutaneous injection of formalin (5%, 50 microl) into a hindpaw of rats, biphasic excitatory nociceptive discharges were recorded extracellularly in thalamic parafascicular neurons. Intrathecal (i.t.) administration of either norepinephrine (NE. 6 nmol, 10 microl) or serotonin (5-HT, 120 nmol, 10 microl) prior to the second phase significantly inhibited the second phase of the formalin-induced parafascicular nociceptive discharges. Intrathecal naloxone (Nal, 50 nmol, 10 microl) did not show any effect on the parafascicular nociceptive discharges. However, when i.t. Nal was given 5 min before NE, Nal prevented the NE antinociceptive effect. Pre-administration of Nal before 5-HT did not affect the antinociceptive effects of 5-HT on the second phase of nociceptive discharges. These results indicate that opiate-like substances are involved in the mediation of NE-induced antinociception. It is suggested that endogenous NE and 5-HT released from brainstem descending terminals at the spinal level carry out their antinociceptive actions differently.  相似文献   

5.
Sushko  B. S.  Limanskii  Yu. P. 《Neurophysiology》2001,33(5):314-321
In experiments on mongrel albino male mice with a nidus of tonic pain created by subcutaneous injection of 5% formalin solution into the hindlimb, we estimated changes in nociceptive behavioral reaction (licking the pain nidus) elicited by i.p. injections of compounds modulating the system of nitric oxide (NO): a blocker of NO synthase, N-nitro-L-arginine (L-NAME), and activator of NO synthesis, L-arginine (L-Arg), as well as NO donors: sodium nitroprusside (SNP) and sodium nitrate (SN). After injections of L-NAME, L-Arg, and SN, the intensity of the nociceptive behavioral reaction dropped by 55-21%, as compared with the control. In contrast, SN significantly increased the intensity of this reaction. Mechanisms responsible for modulation of the nociceptive behavioral reaction with the involvement of NO and specific features of the effects of different NO donors on this reaction (related to a complex nature of these effects) are discussed.  相似文献   

6.
Zajac JM  Latapie JP  Francés B 《Peptides》2000,21(8):1209-1213
This study examined the ability of the anti-opioid Neuropeptide FF (NPFF) to modify the endogenous activity of nitric oxide (NO). Antinociceptive and hypothermic effects of 1DMe (D.Tyr-Leu-(n.Me)Phe-Gln-Pro-Gln-Arg-Phe-NH(2)), an NPFF agonist, and of L-NAME (N(omega)nitro-L-arginine methyl ester), an inhibitor of nitric oxide synthase, were investigated in mice. Intraperitoneal (i.p.) injection of L-NAME induced, in the hot plate test, a dose-dependent antinociception not reversed by naloxone, an opioid antagonist, but inhibited by L-Arg, the NO synthesis precursor. Intracerebroventricular (i.c.v.) injections of 1DMe inhibit the antinociceptive activity of L-NAME in a dose-dependent manner. On the contrary, L-NAME markedly potentiated hypothermia induced by 1DMe injected in the third ventricle. These data show that Neuropeptide FF receptors exert a dual effect on endogenous NO functions and could modulate pain transmission independently of opioids.  相似文献   

7.
Coronary effects of endothelin-1 and vasopressin during acute hypotension, and the role of NO and prostanoids in these effects were examined in anesthetized goats. Left circumflex coronary artery flow was measured electromagnetically, and hypotension was induced by constriction of the caudal vena cava in animals non-treated (7 goats) or treated with the inhibitor of NO synthesis N(w)-nitro-L-arginine methyl esther (L-NAME, 5 goats), the cyclooxygenase inhibitor meclofenamate (5 goats) or both drugs (5 goats). Under normotension (22 goats), mean arterial pressure averaged 93 +/- 3 mm Hg and coronary vascular conductance (CVC) 0.37 +/- 0.025 ml/min/mm Hg. Endothelin-1 (0.01-0.3 nmol) and vasopressin (0.03-1 nmol), intracoronarily injected, dose-dependently decreased CVC by up to 56% for endothelin-1 and 40% for vasopressin. During hypotension in every condition tested, mean arterial pressure decreased to approximately 60 mm Hg, and CVC only decreased during hypotension pretreated with L-NAME (23%) or L-NAME + meclofenamate (34%). Under non-treated hypotension, the decreases in CVC by endothelin-1 were augmented approximately 1.5 fold, and those by vasopressin were not modified. This increase in CVR by endothelin-1 was not affected by L-NAME and was reversed by meclofenamate or L-NAME + meclofenamate. The coronary effects of vasopressin were not modified by any of these treatments. Therefore, acute hypotension increases the coronary vasoconstriction in response to endothelin-1 but not to vasopressin. This increased response to endothelin-1 may be related to both inhibition of NO release and release of vasoconstrictor prostanoids.  相似文献   

8.
Semicarbazones induce an anticonvulsant effect in different experimental models. As some anticonvulsant drugs also have anti-inflammatory activity, the effects of benzaldehyde semicarbazone (BS) on models of nociception, edema and angiogenesis were investigated. BS (10, 25 or 50 mg/kg, i.p.) markedly inhibited the second phase of nociceptive response induced by formaldehyde (0.34%, 20 microl) in mice, but only the highest dose inhibited the first phase of this response. The thermal hyperalgesia and mechanical allodynia induced by carrageenan (1%, 50 microl, i.pl.) in rats were also inhibited by BS (50 mg/kg, i.p.). However, treatment of mice with BS did not induce an antinociceptive effect in the hot-plate model. The paw edema induced by carrageenan (1%, 50 microl, i.pl.) in rats was inhibited by BS (25 or 50 mg/kg, i.p.). Treatment of mice with BS (0.25, 0.5 or 2.5 mg/kg/day, i.p., 7 days) also inhibited angiogenesis induced by subcutaneous implantation of a sponge disc. It is unlikely that the antinociceptive effect induced by BS results from motor incoordination or a muscle relaxing effect, as the mice treated with this drug displayed no behavioral impairment in the rotarod apparatus. In conclusion, we demonstrated that BS presents antinociceptive, antiedematogenic and antiangiogenic activities. An extensive investigation of the pharmacological actions of BS and its derivatives is justified and may lead to the development of new clinically useful drugs.  相似文献   

9.
GPR103 is one of the orphan G protein-coupled receptors. Recently, an endogenous ligand for GPR103, 26RFa, was identified. Many 26RFa binding sites have been observed in various nuclei of the brain involved in the processing of pain such as the parafascicular thalamic nucleus, the locus coeruleus, the dorsal raphe nucleus, and the parabrachial nucleus. In the present study, the effects of intracerebroventricular injection of 26RFa were tested in the rat. Intracerebroventricular injection of 26RFa significantly decreased the number of both phase 1 and phase 2 agitation behaviors induced by paw formalin injection. This analgesic effect of 26RFa on the phase 1 response, but not phase 2 response, was antagonized by BIBP3226, a mixed antagonist of neuropeptide Y Y1 and neuropeptide FF receptors. Intracerebroventricular injection of 26RFa has no effect in the 52.5 °C hot plate test. Intracerebroventricular injection of 26RFa had no effect on the expression of Fos-like immunoreactivity induced by paw formalin injection in the superficial layers of the spinal dorsal horn. These data suggest that (1) 26RFa modulates nociceptive transmission at the supraspinal site during a formalin test, (2) the mechanism 26RFa uses to produce an analgesic effect on the phase 1 response is different from that on the phase 2 response, and (3) intracerebroventricularly injected 26RFa dose not directly inhibit the nociceptive input to the spinal cord.  相似文献   

10.
Li TN  Li QJ  Li WB  Sun XC  Li SQ 《中国应用生理学杂志》2004,20(3):291-295,F008
目的:探讨CGRP受体拮抗剂CGRP8-37对甲醛炎性痛大鼠自发痛反应及脊髓后角NOS表达和NO含量的影响.方法:大鼠足底注射甲醛制造炎性痛模型;计数缩足反射次数反映自发痛程度;NADPH-d组织化学法观察脊髓后角NOS表达;硝酸还原酶法测定NO-3/NO-2含量以反映NO含量.结果:足底注射甲醛后,动物出现自发痛反应行为.足底注射甲醛后24 h,双侧脊髓后角NOS表达及NO含量明显增加.预先鞘内注射CGRP8-37可使甲醛诱导的自发性缩足反射次数明显减少,并可明显抑制甲醛炎性痛诱导的脊髓后角NOS表达及NO含量的增加.结论:甲醛炎性痛时,脊髓后角CGRP受体激活可促进NOS活性表达及NO的产生.  相似文献   

11.
Intrathecal (i.t.) injection (between lumbar vertebrae 5 and 6) into mice of a markedly low dose of IL-1alpha (3x10(-4) fmol or 5.4 fg in 5 microl per mouse) induced behaviors involving scratching, biting, and licking of non-stimulated hindpaws. The IL-1-induced behaviors appeared within 10 min of the injection of IL-1alpha, peaked at 20-40 min, and had disappeared 60 min after the injection. The IL-1-induced behaviors were similar to the nociceptive responses induced in mice by i.t. injection of substance P (SP) or subcutaneous (s.c.) injection of formalin into the footpad. The IL-1-induced behaviors were suppressed by intraperitoneal morphine, indicating that they are nociceptive responses. The nociceptive responses induced by 3x10(-4) (5.4 fg) of IL-1alpha were almost completely suppressed by co-injection of 0.3 fmol (7.2 pg) of an IL-1 receptor antagonist (IL-1ra). An antiserum against substance P, but not an antiserum against somatostatin, suppressed the IL-1-induced nociceptive responses. The nociceptive responses induced by s.c. injection of 2% formalin into the footpad were also inhibited by i.t. injection of 30 pmol (720 ng) of IL-1ra. These results suggest that IL-1 may play a role in hyperalgesia in mice by acting as a factor augmenting pain transmission in the spinal cord at least in part by either directly or indirectly releasing substance P.  相似文献   

12.
The antinociceptive effect of vitamin K2 (menatetrenone) in mice was examined using tail-flick and formalin test. Menatetrenone at doses of 10, 50 and 100 mg/kg, i.p. produced a dose-dependent and significant inhibition of the tail-flick response in mice. Menatetrenone (50 and 100 mg/kg, i.p.) had no significant effect on the duration of the first phase of the formalin-induced flinching. However, menatetrenone (100 mg/kg, i.p.) significantly inhibited the second phase of the formalin-induced flinching. I.p. administration of menatetrenone (100 mg/kg) significantly reduced the duration of nociceptive responses induced by i.t. injection of bradykinin, but not of substance P, prostaglandin E2 or N-methyl-D-aspartate (NMDA). These present data suggest that i.p. pretreatment with menatetrenone produced dose-dependent antinociceptive effect in mice. This effect may be, at least in part, mediated by the inhibition of bradykinin dependent nociceptive transmission in the spinal cord.  相似文献   

13.
The L-arginine/nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) pathway is known to be involved in central and peripheral nociceptive processes. This study evaluated the rhythmic pattern of the L-arginine/NO/cGMP pathway using the mouse visceral pain model. Experiments were performed at six different times (1, 5, 9, 13, 17, and 21 h after light on) per day in male mice synchronized to a 12 h:12 h light-dark cycle. Animals were injected s.c. with saline, 2 mg/kg L-arginine (a NO precursor), 75 mg/kg L-N(G)-nitroarginine methyl ester (L-NAME, a NOS inhibitor), 40 mg/kg methylene blue (a soluble guanylyl cyclase and/or NOS inhibitor), or 0.1 mg/kg sodium nitroprusside (a nonenzymatic NO donor) 15 min before counting 2.5 mg/kg (i.p.) p-benzoquinone (PBQ)-induced abdominal constrictions for 15 min. Blood samples were collected after the test, and the nitrite concentration was determined in serum samples. L-arginine or L-NAME caused both antinociception and nociception, depending on the circadian time of their injection. The analgesic effect of methylene blue or sodium nitroprusside exhibited significant biological time-dependent differences in PBQ-induced abdominal constrictions. Serum nitrite levels also displayed a significant 24 h variation in mice injected with PBQ, L-NAME, methylene blue, or sodium nitroprusside, but not saline or L-arginine. These results suggest that components of L-arginine/NO/cGMP pathway exhibit biological time-dependent effects on visceral nociceptive process.  相似文献   

14.
The purpose of this study was to investigate the role of the L-arginine/nitric oxide (NO)/cGMP pathway in p-benzoquinone-induced writhing model in mouse. L-arginine, a NO precursor, displayed antinociceptive effects at the doses of 0.125-1.0 mg/kg. When the doses of L-arginine were increased gradually to 10-100 mg/kg, a dose-dependent triphasic pattern of nociception-antinociception-nociception was obtained. The NO synthase (NOS) inhibitor, NG-nitro-L-arginine methyl ester (L-NAME) (18.7515 mg/kg), possessed antinociceptive activity. Methylene blue (MB), a guanylyl cyclase and/or NOS inhibitor, (5-160 mg/kg) also produced a dose-dependent triphasic response. When L-arginine (50 mg/ kg) was combined with L-NAME (75 mg/kg). L-arginine-induced antinociception did not change significantly. Cotreatment of L-arginine with 5 mg/kg MB significantly decreased MB-induced antinociception and reversed the nociception induced by 40 mg/kg MB to antinociception. It is concluded that the components of L-arginine/nitric oxide/cGMP cascade may participate in nociceptive processes both peripherally and centrally by a direct effect on nociceptors or by the involvement of other related pathways of nociceptive processes induced by NO.  相似文献   

15.
In the present study, we investigated the effects of the nitric oxide (NO) synthase inhibitor N(G)-nitro-L-arginine-methyl ester (L-NAME) on tissue injury or cytotoxicity caused by endotoxin challenge by assaying lactate dehydrogenase (LDH) isozymes and cell viability in J774A.1 cells. In mice treated with L-NAME (10 mg kg(-1), i.v.), the activity of LDH in serum 18 h after endotoxin (6 mg kg(-1), i.p.) injection was not significantly different from that in mice treated with endotoxin alone. Mice injected with endotoxin exhibited leakage of LDH isozymes 3 and 5, but L-NAME did not protect against endotoxin-induced acute leakage of LDH isozymes. Treatment with L-NAME (10-1000 microM) significantly inhibited NO generation by endotoxin (1 microg ml(-1))-activated J774A.1 cells. However, L-NAME (10-1000 microM) did not affect endotoxin-induced cytotoxicity in J774A.1 cells. These findings suggested that endotoxin-induced NO formation may not contribute to tissue injury or cytotoxicity caused by endotoxin.  相似文献   

16.
Qi WX  Lu CR 《生理学报》2003,55(1):101-104
本实验用福尔马林试验在动物痛模型上观察了鞘内单纯注射生理盐水 (NS)、NMDA受体阻断剂MK 80 1、阿片受体阻断剂纳洛酮 (naloxone)、强啡肽A [DynA (1 17) ]以及先用MK 80 1或纳洛酮再注射DynA (1 17)对动物的行为痛反应的影响。大鼠后肢脚掌皮下注射福尔马林后出现的行为痛反应显示有 2个时相 ,即首先出现持续较短的第一时相和 3~ 6min后出现的持续较长的第二时相。实验结果显示 ,各组的第一时相无明显差异 ;而第二时相则有差异 :鞘内注射DynA (1 17)组第二时相痛反应持续时间 (489 5± 2 2 5s)明显较单纯鞘内注射NS组(3 44 7± 12 9s)、MK 80 1组 (3 3 1 4± 2 0 7s)和纳洛酮组 (3 5 2 5± 18 4s)长 (均为P <0 0 1) ;而先用NMDA受体阻断剂MK 80 1后再注射DynA (1 17) ,则第二时相行为痛反应的持续时间 (2 85 7± 19 4s)较单纯注射DynA (1 17)组明显缩短 (P <0 0 1) ,但与单纯鞘内注射MK 80 1组相比无明显差异 ;先用阿片受体阻断剂纳洛酮后再注射DynA (1 17) ,则动物的第二时相行为痛反应 (473 8± 17 8s)与单纯注射DynA (1 17)组相比无明显差异 ,而与单纯注射NS组或纳洛酮组相比则明显增强 (分别为P <0 0 1)。因此本实验结果提示 :(1)在脊髓水平的DynA(1 17)具有促进福尔马林所诱导的第二  相似文献   

17.
In the present study, we examined the effects of L-nitroarginine methylester (L-NAME), a non-selective nitric oxide synthase (NOS) inhibitor, indomethacin (IND), a non-selective COX inhibitor and a combination of these agents (L-NAME+IND) on carrageenan-induced pleurisy in rats. Exudate volume, albumin leakage, leukocyte influx, exudate and plasma nitrite/nitrate (NO(x)) levels and exudate PGE(2) levels increased markedly 6 h after an intrapleural injection of 2% carrageenan. First, the effects of L-NAME and IND alone were investigated. L-NAME non-significantly reduced exudate volume by 26% at 10 mg/kg (i.p.), and significantly by 45% at 30 mg/kg. IND dose-dependently decreased the exudate volume at 0.3-10 mg/kg (p.o.) and the effect reached the maximal level at 1 mg/kg (33%). Second, the effects of L-NAME (10 mg/kg, i.p.), IND (1 mg/kg, p.o.) and L-NAME+IND were examined. L-NAME and IND alone at the dose employed significantly reduced the exudate volume and albumin levels by 21-26%. L-NAME but not IND tended to reduce the increased exudate and plasma NO(x) by 18% and 19%, respectively. IND but not L-NAME significantly reduced leukocyte numbers and PGE(2) levels in the exudates by 25% and 77%, respectively. L-NAME+IND significantly reduced exudate volume, albumin leakage, leukocyte number, PGE(2) and NO(x) by 43%, 41%, 31%, 80% and 37%, respectively. The inhibitory effects of L-NAME+IND on exudate volume, albumin leakage and NO(x) levels were greater than those of L-NAME and IND alone. In conclusion, a non-selective NOS inhibitor and COX inhibitor showed anti-inflammatory effects at the early phase of carrageenan-induced pleurisy, and a combination of both inhibitors had a greater effect than each alone probably via the potentiation of NOS inhibition. The simultaneous inhibition of NOS and COX could be a useful approach in therapy for acute inflammation.  相似文献   

18.
Li Y  Yuan B  Tang JS 《生理学报》2007,59(6):777-783
本文旨在研究丘脑中央下核(thalamic nucleus submedius,Sm)是否参与持续伤害感受性调制。以自动运动检测系统记录大鼠一侧后爪皮下注射福尔马林诱发的伤害性行为(烦乱反应)为指标,观察电刺激和电解损毁Sm对烦乱反应的效应。结果显示,电刺激(100μA,5min)同侧或对侧Sm明显抑制福尔马林诱发的第二时相的烦乱反应,而刺激Sm外邻近结构(超过0.5mm)对烦乱反应无明显效应。电解损毁双侧Sm对第一或第二时相的烦乱反应均无影响。结果提示,Sm不仅参与急性时相性伤害感受性调制,也参与持续性伤害感受性调制。本研究为Sm参与下行痛调制提供了新的证据。  相似文献   

19.
Our studies have focused on the effect of injection of L-NAME and sodium nitroprussiate (SNP) on the salivary secretion, arterial blood pressure, sodium excretion and urinary volume induced by pilocarpine which was injected into the medial septal area (MSA). Rats were anesthetized with urethane (1.25 g/kg b. wt.) and a stainless steel cannula was implanted into their MSA. The amount of saliva secretion was studied over a five-minute period after injection of pilocarpine into MSA. Injection of pilocarpine (10, 20, 40, 80, 160 microg/microl) into MSA produced a dose-dependent increase in salivary secretion. L-NG-nitro arginine methyl-esther (L-NAME) (40 microg/microl), a nitric oxide (NO) synthase inhibitor, was injected into MSA prior to the injection of pilocarpine into MSA, producing an increase in salivary secretion due to the effect of pilocarpine. Sodium nitroprussiate (SNP) (30 microg/microl) was injected into MSA prior to the injection of pilocarpine into MSA attenuating the increase in salivary secretion induced by pilocarpine. Medial arterial pressure (MAP) increase after injections of pilocarpine into the MSA. L-NAME injected into the MSA prior to injection of pilocarpine into MSA increased the MAP. SNP injected into the MSA prior to pilocarpine attenuated the effect of pilocarpine on MAP. Pilocarpine (40 ug/ul) injected into the MAS induced an increase in sodium and urinary excretion. L-NAME injected prior to pilocarpine into the MSA increased the urinary sodium excretion and urinary volume induced by pilocarpine. SNP injected prior to pilocarpine into the MSA decreased the sodium excretion and urinary volume induced by pilocarpine. All these roles of pilocarpine depend on the release of nitric oxide into the MSA. We may also conclude that the MSA is involved with the cholinergic excitatory mechanism that induce salivary secretion, increase in MAP and increase in sodium excretion and urinary volume.  相似文献   

20.
Previous experiments have suggested that nitric oxide plays an important role in nociceptive transmission in the spinal cord. In order to explore the involvement of glia in the NO-mediated nociceptive transmission, the present study was undertaken to investigate the effect of fluorocitrate (FC), an inhibitor of glial metabolism, on NOS expression and activity and NO production in the spinal cord during the process of peripheral inflammatory pain and hyperalgesia induced by formalin test in rats. Sixty adult male Sprague–Dawley rats were randomly assigned into sham, formalin, formalin + normal saline (NS), and formalin + FC groups. The NOS expression, NOS activity and NO production was detected by NADPH-d histochemistry staining, NOS and NO assay kit, respectively. It was found that formalin test significantly up-regulated NOS expression and activity and NO production in the laminae I–II of the dorsal horn and the grey matter around the central canal in the lumbar spinal cord at 1 h after the formalin test. Selective inhibition of glia metabolism with intrathecal administration of FC (1 nmol) significantly inhibited the up-regulation in NOS expression and activity and NO production normally induced by the formalin test, which was represented with decreases in the number and density of the NADPH-d positive cells in the dorsal horn and grey matter around the central canal, and decrease in density of NADPH-d positive neuropil in the dorsal horn in formalin + FC group compared with formalin group. The results suggested that glia may be involved in the NO-mediated nociceptive transmission in the spinal cord. X.-C. Sun, W.-N. Chen and S.-Q. Li contributed equally to this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号