首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Escherichia coli strain K4 expresses a chondroitin (CH)-polymerizing enzyme (K4CP) that contains two glycosyltransferase active domains. K4CP alternately transfers glucuronic acid (GlcA) and N-acetyl-galactosamine (GalNAc) residues using UDP-GlcA and UDP-GalNAc donors to the nonreducing end of a CH chain acceptor. Here we generated two K4CP point mutants substituted at the UDP-sugar binding motif (DXD) in the glycosyltransferase active domains, which showed either glycosyltransferase activity of the intact domain and retained comparable activity after immobilization onto agarose beads. The mutant enzyme-immobilized beads exhibited an addition of GlcA or GalNAc to GalNAc or GlcA residue at the nonreducing end of CH oligosaccharides and sequentially elongated pyridylamine-conjugated CH (PA-CH) chain by the alternate use. The sequential elongation up to 16-mer was successfully achieved as assessed by fluorescent detection on a gel filtration chromatography and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and MALDI potential lift tandem TOF mass spectrometry (MALDI-LIFT-TOF/TOF MS/MS) analyses in the negative reflection mode. This method provides exactly defined CH oligosaccharide derivatives, which are useful for studies on glycosaminoglycan functions.  相似文献   

2.
Oversulfated chondroitin sulfate E (CS-E) derived from squid cartilage exhibits intriguing biological activities, which appear to reflect the biological activities of mammalian CS chains containing the so-called E disaccharide unit [GlcAbeta1-3GalNAc(4,6-O-disulfate)]. Previously, we isolated novel tetra- and hexasaccharides containing a rare GlcA(3-O-sulfate) at the nonreducing end after digestion of squid cartilage CS-E with testicular hyaluronidase. In this study, squid cartilage CS-E was extensively digested with chondroitinase AC-II, which yielded five highly sulfated novel tetrasaccharides and two odd-numbered oligosaccharides (tri- and pentasaccharides) containing D-Glc. Their structures were determined by fast atom bombardment mass spectrometry and (1)H NMR spectroscopy. The results revealed an internal GlcA(3-O-sulfate) residue for all the novel tetrasaccharide sequences, which rendered the oligosaccharides resistant to the enzyme. The results suggest that GlcA(3-O-sulfate) units are not clustered but rather interspersed in the CS-E polysaccahride chains, being preferentially located in the highly sulfated sequences. The predominant structure on the nearest nonreducing side of a GlcA(3-O-sulfate) residue was GalNAc(4-O-sulfate) (80%), whereas that on the reducing side was GalNAc(4,6-O-disulfate) (59%). The structural variety in the vicinity of the GlcA(3-O-sulfate) residue might represent the substrate specificity of the unidentified chondroitin GlcA 3-O-sulfotransferase. The results also revealed a trisaccharide and a pentasaccahride sequence, both of which contained a beta-d-Glc branch at the C6 position of the constituent GalNAc residue. Approximately 5 mol % of all disaccharide units were substituted by Glc in the CS-E preparation used.  相似文献   

3.
Chondroitin and dermatan sulfate (CS and DS) chains were isolated from bovine tracheal cartilage and pig intestinal mucosal preparations and fragmented by enzymatic methods. The oligosaccharides studied include a disaccharide and hexasaccharides from chondroitin ABC lyase digestion as well as trisaccharides already present in some commercial preparations. In addition, other trisaccharides were generated from tetrasaccharides by chemical removal of nonreducing terminal residues. Their structures were examined by high-field 1H and 13C NMR spectroscopy, after reduction using sodium borohydride. The main hexasaccharide isolated from pig intestinal mucosal DS was found to be fully 4-O-sulfated and have the structure: DeltaUA(beta1-3)GalNAc4S(beta1-4)L-IdoA(alpha1-3)GalNAc4S(beta1-4)L-IdoA(alpha1-3)GalNAc4S-ol, whereas one from bovine tracheal cartilage CS comprised only 6-O-sulfated residues and had the structure: DeltaUA(beta1-3)GalNAc6S(beta1-4)GlcA(beta1-3)GalNAc6S(beta1-4)GlcA(beta1-3)GalNAc6S-ol. No oligosaccharide showed any uronic acid 2-sulfation. One novel disaccharide was examined and found to have the structure: GalNAc6S(beta1-4)GlcA-ol. The trisaccharides isolated from the CS/DS chains were found to have the structures: DeltaUA(beta1-3)GalNAc4S(beta1-4)GlcA-ol and DeltaUA(beta1-3)GalNAc6S(beta1-4)GlcA-ol. Such oligosaccharides were found in commercial CS/DS preparations and may derive from endogenous glucuronidase and other enzymatic activity. Chemically generated trisaccharides were confirmed as models of the CS/DS chain caps and included: GalNAc6S(beta1-4)GlcA(beta1-3)GalNAc4S-ol and GalNAc6S(beta1-4)GlcA(beta1-3)GalNAc6S-ol. The full assignment of all signals in the NMR spectra are given, and these data permit the further characterization of CS/DS chains and their nonreducing capping structures.  相似文献   

4.
Bacterial chondroitin polymerase K4CP is a multifunctional enzyme with two active sites. K4CP catalyzes alternative transfers of glucoronic acid (GlcA) and N-acetylgalactosamine (GalNAc) to elongate a chain consisting of the repeated disaccharide sequence GlcAbeta1-3GalNAcbeta1-4. Unlike the polymerization reactions of DNA and RNA and polypeptide synthesis, which depend upon templates, the monosaccharide polymerization by K4CP does not. To investigate the catalytic mechanism of this reaction, we have used isothermal titration calorimetry to determine the binding of the donor substrates UDP-GlcA and UDP-GalNAc to purified K4CP protein and its mutants. Only one donor molecule bound to one molecule of K4CP at a time. UDP-GlcA bound only to the C-terminal active site at a high affinity (K(d)=6.81 microm), thus initiating the polymerization reaction. UDP-GalNAc could bind to either the N-terminal or C-terminal active sites at a low affinity (K(d)=266-283 microm) but not to both sites at the same time. The binding affinity of UDP-GalNAc to a K4CP N-terminal fragment (residues 58-357) was profoundly decreased, yielding the average K(d) value of 23.77 microm, closer to the previously reported K(m) value for the UDP-GalNAc transfer reaction that takes place at the N-terminal active site. Thus, the first step of the reaction appears to be the binding of UDP-GlcA to the C-terminal active site, whereas the second step involves the C-terminal region of the K4CP molecule regulating the binding of UDP-GalNAc to only the N-terminal active site. Alternation of these two specific bindings advances the polymerization reaction by K4CP.  相似文献   

5.
Microsomal preparations from cultured chick embryo chondrocytes were incubated with 3'-phosphoadenosine 5'-phosphosulfate and oligosaccharides prepared from chondroitin. Rates of 4- and 6-sulfation were measured at pH 6 and 8 in the presence of MnCl2 and Brij 58. Ratios of the overall 6-sulfation to 4-sulfation rates ranged from 40-200 at pH 8 and from 6-35 at pH 6, depending upon the composition of the assay mixture. When saturating concentrations of 3'-phosphoadenosine 5'-phosphosulfate and the oligosaccharide acceptors were used, the resulting products were mixtures of monosulfated oligosaccharides. The compositions of the mixtures formed from oligosaccharides with degrees of polymerization from 4-12 at pH 6 and 8 were analyzed. Sulfate substituents were found at all N-acetyl-D-galactosamine (GalNAc) residues in the acceptors but were not evenly distributed along the oligosaccharide chains. For oligosaccharides with nonreducing terminal D-glucuronic acid (GlcUA) residues, sulfation at the nonreducing terminal GlcUA----GalNAc occurred exclusively at the C6 of the GalNAc residue. However, for oligosaccharides with nonreducing terminal GalNAc residues the rate of 6-sulfation of the nonreducing terminal GalNAc was markedly reduced and was similar to the rate of 4-sulfation at the same position. The rates of sulfation at the reducing ends of the oligosaccharides were relatively high for the shorter oligosaccharide acceptors but decreased with increasing length of the acceptor, suggesting that the sulfotransferases recognized primarily the GalNAc residues in the nonreducing terminal regions.  相似文献   

6.
We studied a glucuronyltransferase involved in chondroitin sulfate(CS) biosynthesis in a preparation obtained from fetal bovineserum by heparin-Sepharose affinity chromatography. This enzymetransferred GlcA from UDP-GlcA to the nonreducing GalNAc residuesof polymeric chondroitin. It required Mn2+ for maximal activityand showed a sharp pH optimum between pH 5.5 and 6.0. The apparentKm value of the glucuronyltransferase for UDP-GlcA was 51 µM.The specificity was investigated using structurally definedacceptor substrates, which consisted of chemically synthesizedtri-, penta-, and heptasaccharide-serines and various odd-numberedoligosaccharides with a GalNAc residue at the nonreducing terminus,prepared from chondroitin and CS by chondroitinase ABC digestionfollowed by mercuric acetate treatment. The enzyme utilizeda heptasaccharide-serine GalNAcß1-4GlcAß1-3GalNAcß1-4GlcAß1-3Galß1-3Galß1-4Xylß1-O-Serand a pentasaccharide-serine GalNAcß 4GlcAß1-3Galß1-3Galß1-4Xylß1-O-Seras acceptors. In contrast, neither a trisaccharide-serine Galß1-3Galß1-4Xylß1-O-Sernor an  相似文献   

7.
We have shown previously that a highly sulfated sequence, GalNAc(4,6-SO(4))-GlcA(2SO(4))-GalNAc(6SO(4)), is present at the nonreducing terminal of chondroitin sulfate (CS), and this structure was synthesized from a unique sequence, GalNAc(4SO(4))-GlcA(2SO(4))-GalNAc(6SO(4)), by sulfation with N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase. Uronosyl 2-O-sulfotrasferase (2OST), which transfers sulfate from 3'-phosphoadenosine 5'-phosphosulfate (PAPS) to position 2 of the GlcA residue of CS, is expected to be involved in synthesis of these structures; however, the specificity of 2OST concerning recognition of the sulfation pattern of the acceptor has largely remained unclear. In the present study, we examined the specificity of 2OST in terms of recognition of the sulfation pattern around the targeting GlcA residue. The recombinant 2OST could sulfate CS-A, CS-C, and desulfated dermatan sulfate. When [(35)S]glycosaminoglycans formed from CS-A after the reaction with the recombinant 2OST and [(35)S]PAPS were subjected to limited digestion with chondroitinase ACII, a radioactive tetrasaccharide (Tetra A) was obtained as a sole intermediate product. The sequence of Tetra A was found to be DeltaHexA-GalNAc(4SO(4))-GlcA(2SO(4))-GalNAc(6SO(4)) by enzymatic and chemical reactions. These observations indicate that 2OST transfers sulfate preferentially to the GlcA residue located in a unique sequence, -GalNAc(4SO(4))-GlcA-GalNAc(6SO(4))-. When oligosaccharides with different sulfation patterns were used as the acceptor, GalNAc(4SO(4))-GlcA-GalNAc(6SO(4)) and GlcA-GalNAc(4SO(4))-GlcA-GalNAc(6SO(4)) were the best acceptors for 2OST among trisaccharides and tetrasaccharides, respectively. These results suggest that 2OST may be involved in the synthesis of the highly sulfated structure found in CS-A.  相似文献   

8.
N-Acetylgalactosamine 4-sulfate 6-O-sulfotransferase (GalNAc4S-6ST) transfers sulfate from 3'-phosphoadenosine 5'-phosphosulfate (PAPS) to position 6 of N-acetylgalactosamine 4-sulfate (GalNAc(4SO4)). We previously identified human GalNAc4S-6ST cDNA and showed that the recombinant GalNAc4S-6ST could transfer sulfate efficiently to the nonreducing terminal GalNAc(4SO4) residues. We here present evidence that GalNAc4S-6ST should be involved in a unique nonreducing terminal modification of chondroitin sulfate A (CSA). From the nonreducing terminal of CS-A, a GlcA-containing oligosaccharide (Oligo I) that could serve as an acceptor for GalNAc4S-6ST was obtained after chondroitinase ACII digestion. Oligo I was found to be GalNAc(4SO4)-GlcA(2SO4)-GalNAc(6SO4) because GalNAc(4SO4) and deltaHexA(2SO4)-GalNAc(6SO4) were formed after chondroitinase ABC digestion. When Oligo I was used as the acceptor for GalNAc4S-6ST, sulfate was transferred to position 6 of GalNAc(4SO4) located at the nonreducing end of Oligo I. Oligo I was much better acceptor for GalNAc4S-6ST than GalNAc(4SO4)-GlcAGalNAc(6SO4). An oligosaccharide (Oligo II) whose structure is identical to that of the sulfated Oligo I was obtained from CS-A after chondroitinase ACII digestion, indicating that the terminal modification occurs under the physiological conditions. When CS-A was incubated with [35S]PAPS and GalNAc4S-6ST and the 35S-labeled product was digested with chondroitinase ACII, a 35S-labeled trisaccharide (Oligo III) containing [35S]GalNAc(4,6-SO4) residue at the nonreducing end was obtained. Oligo III behaved identically with the sulfated Oligos I and II. These results suggest that GalNAc4S-6ST may be involved in the terminal modification of CS-A, through which a highly sulfated nonreducing terminal sequence is generated.  相似文献   

9.
Two N-acetylgalactosaminyltransferases, designated I and II, have been purified from the microsomal fraction of calf arterial tissue and separated on Bio-Gel A. N-Acetylgalactosaminyltransferase I was purified 450-fold. It requires Mn2+ for maximal activity and transfers N-acetylgalactosamine residues from UDP-[1-3H]GalNAc in beta-glycosidic configuration to the non-reducing terminus of the acceptor substrates GlcA(beta 1-3)Gal(beta 1-3)Gal, GlcA(beta 1-3)Gal(beta 1-4)Glc and GlcA(beta 1-3)Gal. Even-numbered chondroitin oligosaccharides serve as acceptors for N-acetylgalactosaminyltransferase II, which transfers N-acetylgalactosamine from UDP-[1-3H]GalNAc to the non-reducing glucuronic acid residues of oligosaccharide acceptor substrates. Maximum transfer rates were obtained with a decasaccharide derived from chondroitin. Longer or shorter-chain chondroitin oligosaccharides are less effective acceptor substrates. All reaction products formed by N-acetylgalactosaminyltransferases I and II are substrates of beta-N-acetylhexosaminidase, which splits off the transferred [1-3H]GalNAc completely. In the microsomal fraction N-acetylgalactosaminyltransferase II had a 300-fold higher specific activity than N-acetylgalactosaminyltransferase I. In contrast to enzyme I, enzyme II loses much of its activity during the purification procedure and undergoes rapid thermodenaturation. GlcA-Gal-Gal is a characteristic sequence of the carbohydrate-protein linkage region of proteochondrioitin sulfate. The acceptor capacity of this trisaccharide suggests that N-acetylgalactosaminyltransferase I is involved in the synthesis of the carbohydrate-protein linkage region. Since N-acetylgalactosaminyltransferase II is highly specific for chondroitin oligosaccharides, we conclude that it participates in chain elongation during chondroitin sulfate synthesis.  相似文献   

10.
Elongation of glycosaminoglycan chains, such as heparan and chondroitin, is catalyzed by bi-functional glycosyltransferases, for which both 3-dimensional structures and reaction mechanisms remain unknown. The bacterial chondroitin polymerase K4CP catalyzes elongation of the chondroitin chain by alternatively transferring the GlcUA and GalNAc moiety from UDP-GlcUA and UDP-GalNAc to the non-reducing ends of the chondroitin chain. Here, we have determined the crystal structure of K4CP in the presence of UDP and UDP-GalNAc as well as with UDP and UDP-GlcUA. The structures consisted of two GT-A fold domains in which the two active sites were 60 Å apart. UDP-GalNAc and UDP-GlcUA were found at the active sites of the N-terminal and C-terminal domains, respectively. The present K4CPstructures have provided the structural basis for further investigating the molecular mechanism of biosynthesis of chondroitin chain.  相似文献   

11.
Squid cartilage chondroitin sulfate E (CS-E) exhibits various biological activities, including anticoagulant activities, lymphoid regulatory activities, and neuroregulatory activities [Ueoka, C., Kaneda, N., Okazaki, I., Nadanaka, S., Muramatsu, T., and Sugahara, K. (2000) J. Biol. Chem. 275, 37407-37413]. These activities are expressed through molecular interactions with specific proteins, including heparin cofactor II, selectins, CD44, chemokines, and the heparin-binding growth factor midkine. Hence, the sugar sequence information is essential for a better understanding of the CS-E functions. Previously, several novel tetrasaccharides containing the unreported 3-O-sulfated glucuronic acid (GlcA) were isolated after digestion of squid cartilage CS-E with testicular hyaluronidase. In this study, hexasaccharides were isolated to obtain more detailed sequence information, especially around the GlcA(3-O-sulfate) residue, and were characterized by fast atom bombardment mass spectrometry and 500 or 600 MHz (1)H NMR spectroscopy. The findings demonstrate one tetrasulfated and five pentasulfated hexasaccharide sequences, five of them being novel. They were composed of three disaccharide building units of either A [GlcA(beta1-3)GalNAc(4-O-sulfate)], E [GlcA(beta1-3)GalNAc(4,6-O-disulfate)], K [GlcA(3-O-sulfate)(beta1-3)GalNAc(4-O-sulfate)], L [GlcA(3-O-sulfate)(beta1-3)GalNAc(6-O-sulfate)], or M [GlcA(3-O-sulfate)(beta1-3)GalNAc(4,6-O-disulfate)], forming E-A-A, M-A-A, K-L-A, E-E-A, K-K-A, and A-M-A hexasaccharide sequences. The K-L tetrasaccharide sequence is to date unreported. The isolated sequences appear to indicate the occurrence of an unreported GlcA 3-O-sulfotransferase specific for chondroitin sulfate. The obtained sequence information will be useful for investigating the structure-function relationship and biosynthesis of CS-E.  相似文献   

12.
Xylan is a major component of the plant cell wall and the most abundant noncellulosic component in the secondary cell walls that constitute the largest part of plant biomass. Dicot glucuronoxylan consists of a linear backbone of β(1,4)-linked xylose residues substituted with α(1,2)-linked glucuronic acid (GlcA). Although several genes have been implicated in xylan synthesis through mutant analyses, the biochemical mechanisms responsible for synthesizing xylan are largely unknown. Here, we show evidence for biochemical activity of GUX1 (for GlcA substitution of xylan 1), a member of Glycosyltransferase Family 8 in Arabidopsis (Arabidopsis thaliana) that is responsible for adding the glucuronosyl substitutions onto the xylan backbone. GUX1 has characteristics typical of Golgi-localized glycosyltransferases and a K(m) for UDP-GlcA of 165 μm. GUX1 strongly favors xylohexaose as an acceptor over shorter xylooligosaccharides, and with xylohexaose as an acceptor, GlcA is almost exclusively added to the fifth xylose residue from the nonreducing end. We also show that several related proteins, GUX2 to GUX5 and Plant Glycogenin-like Starch Initiation Protein6, are Golgi localized and that only two of these proteins, GUX2 and GUX4, have activity as xylan α-glucuronosyltransferases.  相似文献   

13.
We previously reported that cultured cells incubated with beta-xylosides synthesized alpha-GalNAc-capped GAG-related xylosides, GalNAc alpha GlcA beta Gal beta Gal beta Xyl beta-R and GalNAc alpha GlcA beta GalNAc beta GlcA beta Gal beta Gal beta Xyl beta-R, where R is 4-methylumbelliferyl or p-nitrophenyl (Manzi et al., 1995; Miura and Freeze, 1998). In this study, we characterized an alpha-N-acetylgalactosaminyltransferase (alpha-GalNAc-T) that probably adds the alpha-GalNAc residue to the above xylosides. Microsomes from several animal cells and mouse brain contained the enzyme activity which requires divalent cations, and has a relatively broad pH optimal range around neutral. The apparent K(m) values were in the submillimolar range for the acceptors tested, and 19 microM for UDP-GalNAc. 1H-NMR analysis of the GlcA-beta-MU acceptor product showed the GalNAc residue is transferred in alpha 1,4-linkage to the glucuronide, which is consistent with previous results reported on alpha-GalNAc-capped Xyl-MU (Manzi et al., 1995). Various artificial glucuronides were tested as acceptors to assess the influence of the aglycone. Glucuronides with a bicyclic aromatic ring, such as 4-methylumbelliferyl beta-D-glucuronide (GlcA-beta-MU) and alpha-naphthyl beta-D-glucuronide, were the best acceptors. Interestingly, a synthetic acceptor that resembles the HNK-1 carbohydrate epitope but lacking the sulfate group, GlcA beta 1,3Gal beta 1,4GlcNAc beta-O-octyl (delta SHNK-C8), was a better acceptor for alpha-GalNAc-T than the glycosaminoglycan-protein linkage region tetrasaccharyl xyloside, GlcA beta 1,3Gal beta 1,3Gal beta 1,4Xyl beta-MU. GlcA-beta-MU and delta SHNK-C8 competed for the alpha-GalNAc-T activity, suggesting that the same activity catalyzes the transfer of the GalNAc residue to both acceptors. Taken together, the results show that the alpha-GalNAc-T described here is not restricted to GAG-type oligosaccharide acceptors, but rather is a UDP-GalNAc:glucuronide alpha 1-4-N-acetylgalactosaminyltransferase.  相似文献   

14.
From the carbohydrate-protein linkage region of whale cartilage proteoglycans, which bear predominantly chondroitin 4-sulfate, one nonsulfated, two monosulfated and one disulfated hexasaccharide alditols were isolated after exhaustive digestions with Actinase E and chondroitinase ABC, and subsequent beta-elimination. Their structures were analyzed by chondroitinase ACII digestion in conjunction with HPLC and by 500-MHz 1H-NMR spectroscopy. The nonsulfated compound (A) had the following conventional structure: delta GlcA(beta 1-3)-GalNAc(beta 1-4)GlcA(beta 1-3)Gal(beta 1-4)Xylol, where GlcA, delta GlcA and GalNAc are glucuronic acid; 4,5-unsaturated glucuronic acid and 2-deoxy-2-N-acetylamino-D-galactose, respectively. The other compounds were sulfated derivatives of compound A. Two monosulfated compounds (B and C) had an ester sulfate on C4 or C6 of the GalNAc residue, respectively and the disulfated compound (D) had two ester sulfate groups, namely, one on C4 of the GalNAc and the other on C4 of the Gal residue substituted by GlcA. The molar ratio of A/B/C/D was 0.21:0.16:0.36:0.27. The compound containing Gal-4-O-sulfate was previously isolated by us in the form of a sulfated glycoserine [delta GlcA(beta 1-3)GalNAc(4-O- sulfate)(beta 1-4)GlcA(beta 1-3)Gal(4-O-sulfate)(beta 1-3)-Gal(beta 1- 4)Xyl beta 1-O-Ser] from the carbohydrate-protein linkage region of rat chondrosarcoma chondroitin-4-sulfate proteoglycans [Sugahara K., Yamashina, I., DeWaard, P., Van Halbeek, H. & Vliegenthart, J.F.G. (1988) J. Biol. Chem. 263, 10,168-10,174]. The discovery of this structure in the carbohydrate-protein linkage region of chondroitin 4-sulfate proteoglycans from nontumorous cartilage indicates that it is not a tumor-associated product but rather a physiological biosynthetic product since it represents a significant proportion. The biological significance of this structure is discussed in relation to glycosaminoglycan biosynthesis.  相似文献   

15.
We synthesized the biotinylated chondroitin sulfate tetrasaccharides CS-CC [-3)βGalNAc6S(1–4)βGlcA(1-]2 and CS-DD [-3)βGalNAc6S(1–4)βGlcA2S(1-]2 which possess sulfate groups at O-6 of GalNAc and an additional sulfate group at O-2 of GlcA, respectively. We also analyzed interactions among CS-CC and CS-DD and the antibodies 2H6 and LY111, both of which are known to bind with CS-A, while CS-DD was shown for the first time to bind with both antibodies.  相似文献   

16.
Bone marrow-derived mast cells (BMMCs) contain chondroitin sulfate (CS)-E comprised of GlcA-GalNAc(4SO4) units and GlcA-GalNAc(4,6-SO4) units. GalNAc 4-sulfate 6-O-sulfotransferase (GalNAc4S-6ST) transfers sulfate to position 6 of GalNAc(4SO4) residues of CS. On the basis of the specificity of GalNAc4S-6ST, it is thought that CS-E is synthesized in BMMC through the sequential sulfation by chondroitin 4-sulfotransferase (C4ST)-1 and GalNAc4S-6ST. In this paper, we investigated whether GalNAc4S-6ST and C4ST-1 are actually expressed in BMMCs in which CS-E is actively synthesized. As the bone marrow cells differentiate to BMMCs, level of C4ST-1 and GalNAc4S-6ST messages increased, whereas chondroitin 6-sulfotransferase (C6ST)-1 message decreased. In the extract of BMMCs, activity of GalNAc4S-6ST and C4ST but not C6ST were detected. The recombinant mouse GalNAc4S-6ST transferred sulfate to both nonreducing terminal and internal GalNAc(4SO4) residues; the activity toward nonreducing terminal GalNAc(4SO4) was increased with increasing pH. When CS-E synthesized by BMMCs was metabolically labeled with 35SO4 in the presence of bafilomycin A, chloroquine or NH4Cl, the proportion of the nonreducing terminal GalNAc(4,6-SO4) was increased compared with the control, suggesting that GalNAc4S-6ST in BMMC may elaborate CS-E in the intracellular compartment with relatively low pH where sulfation of the internal GalNAc(4SO4) by GalNAc4S-6ST preferentially occurs.  相似文献   

17.
We previously reported that versican, a large chondroitin/dermatan sulfate (CS/DS) proteoglycan, interacts through its CS/DS chains with adhesion molecules L- and P-selectin and CD44, as well as chemokines. Here, we have characterized these interactions further. Using a metabolic inhibitor of sulfation, sodium chlorate, we show that the interactions of the CS/DS chains of versican with L- and P-selectin and chemokines are sulfation-dependent but the interaction with CD44 is sulfation-independent. Consistently, versican's binding to L- and P-selectin and chemokines is specifically inhibited by oversulfated CS/DS chains containing GlcAbeta1-3GalNAc(4,6-O-disulfate) or IdoAalpha1-3GalNAc(4,6-O-disulfate), but its binding to CD44 is inhibited by all the CS/DS chains, including low-sulfated and unsulfated ones. Affinity and kinetic analyses using surface plasmon resonance revealed that the oversulfated CS/DS chains containing GlcAbeta1/IdoAalpha1-3GalNAc(4,6-O-disulfate) bind directly to selectins and chemokines with high affinity (K(d) 21.1 to 293 nm). In addition, a tetrasaccharide fragment of repeating GlcAbeta1-3GalNAc(4,6-O-disulfate) units directly interacts with L- and P-selectin and chemokines and oversulfated CS/DS chains containing GlcAbeta1/IdoAalpha1-3GalNAc(4,6-O-disulfate) inhibit chemokine-induced Ca(2+) mobilization. Taken together, our results show that oversulfated CS/DS chains containing GlcAbeta1/IdoAalpha1-3GalNAc(4,6-O-disulfate) are recognized by L- and P-selectin and chemokines, and imply that these chains are important in selectin- and/or chemokine-mediated cellular responses.  相似文献   

18.
The structure of the linkage region of chondroitin sulfate chains attached to the hybrid proteoglycans of the Engelbreth-Holm-Swarm mouse tumor was investigated. The peptidoglycan fraction which contains oversulfated chondroitin sulfate rich in the GlcA beta 1-3GalNAc-4,6-diO-sulfate unit and undersulfated heparan sulfate rich in GlcA beta 1-4GlcNAc and GlcA beta 1-4GlcN-2N-sulfate units was isolated after exhaustive protease digestion of the acetone powder of the tumor tissue, (GlcA, glucuronic acid; GalNAc, 2-deoxy-2-N-acetylamino-D-galactose). Glycosaminoglycans were released by beta-elimination using NaB3H4 and digested with chondroitinase ABC. The linkage region fraction was separated from heparan sulfate by gel filtration and fractionated by HPLC on an amine-bound silica column. Six radiolabeled compounds (L1-L6) were obtained and structurally analyzed by cochromatography with authentic hexasaccharide alditols recently isolated by us from the linkage region, and by digestion using chondroitinase ACII, alkaline phosphatase and beta-galactosidase in conjugation with HPLC. These compounds shared the conventional hexasaccharide backbone structure: delta GlcA beta 1-3GalNAc beta 1-4GlcA beta 1-3Gal beta 1-3Gal beta 1-4Xyl-ol, (delta GlcA, delta 4.5-GlcA or D-gluco-4-enepyranosyluronic acid). L1 was not sulfated or phosphorylated. L2 and L4 were monosulfated at C-6 and C-4 of the GalNAc residue, respectively. Upon alkaline phosphatase digestion, L3, L5 and L6 were converted to L1, L2 and L4, respectively. Analysis of the periodate oxidation products indicated that the phosphate group in L3, L5 and L6 is located at C-2 of Xyl-ol. These results suggest that Xyl-2-O-phosphate is associated with both 4-O-sulfated and 6-O-sulfated GalNAc units and does not directly determine the sulfation pattern of chondroitin sulfate.  相似文献   

19.
Biosynthesis of chondroitin sulfate. Chain termination   总被引:4,自引:0,他引:4  
Incubation of chick embryo epiphyseal microsomal preparations with either UDP-[14C]GlcUA or UDP-[14C]-GalNAc plus exogenous chondroitin 6-sulfate resulted in the incorporation of either a single [14C]GlcUA or a [14C]GalNAc onto the nonreducing ends of the exogenous glycosaminoglycan. Degradation by chondroitinase ABC yielded the terminal products [14C]Di-OS, [14C]Di-6S, and [14C]GalNAc. Incubations of the microsomal preparations with either UDP-[14C]GlcUA or UDP-GalN[3H]Ac without exogenous chondroitin 6-sulfate resulted in the addition of a single sugar onto the nonreducing end of endogenous chondroitin sulfate. Degradation by chondroitinase ABC yielded the terminal products [14C]Di-OS, [14C]Di-6S, and GalN[3H]Ac in a molar ratio of approximately 1:1:3.5. Incubations of the microsomal preparations with both UDP-[14C]-GlcUA and UDP-GalN[3H]Ac together resulted in formation of [14C,3H]chondroitin chains added to the endogenous chondroitin sulfate. Degradation by chondroitinase ABC resulted in products with a molar ratio of [14C,3H]Di-OS to GalN[3H]Ac varying from approximately 1:1.5 to 1:3. The results of these experiments indicate that chondroitin 6-sulfate terminates at its nonreducing end in a mixture of GlcUA and GalNAc (some sulfated). GalNAc is somewhat more frequent as the terminal sugar and adds more readily to endogenous acceptors.  相似文献   

20.
Chondroitin sulfates were fragmented using the enzymes chondroitin sulfate ABC endolyase and chondroitin ACII lyase; both disaccharide and tetrasaccharide fragments were isolated after reduction to the corresponding 2-deoxy-2-N-acetylamino-D-galactitol (GalNAc-ol) form. These have the structures: Delta UA(beta 1--3)GalNAc4S-ol, Delta UA(beta 1--3)GalNAc6S-ol, Delta UA2S(beta 1--3)GalNAc6S-ol, Delta UA(beta 1--3)GalNAc4S(beta 1--4)L-IdoA(alpha 1--3)GalNAc4S-ol, Delta UA(beta 1--3)GalNAc4S(beta 1--4)GlcA(beta 1--3)GalNAc4S-ol, Delta UA(beta 1--3)GalNAc6S(beta 1--4)GlcA(beta 1--3)GalNAc4S-ol, Delta UA(beta 1--3)GalNAc6S(beta 1--4)GlcA(beta 1--3)GalNAc6S-ol, Delta UA2S(beta 1--3)GalNAc6S(beta 1--4)GlcA(beta 1--3)GalNAc4S-ol and Delta UA2S(beta 1--3)GalNAc6S(beta 1--4)GlcA(beta 1--3)GalNAc6S-ol, where Delta UA represents a 4,5-unsaturated hexuronic acid (4-deoxy-alpha-Lthreo-hex-4-enepyranosyluronic acid) and 6S/4S/2S represent O-ester sulfate groups at C6/C4/C2 sites. Complete (1)H-NMR and (13)C-NMR data are derived for these species, which may help to alleviate some of the significant difficulties resulting from signal complexity that are currently hindering the characterization and assignment of major and minor structural components within chondroitin sulfate and dermatan sulfate polymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号