首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Apamin is an 18-residue bee venom peptide with the sequence CNCKAPETALCARRCQQH-amide and contains 2 disulfide bonds connecting C-1 to C-11 and C-3 to C-15. In the folding of reduced, unfolded apamin to native apamin with two disulfide bonds, the one-disulfide folding intermediate states are not populated to significant levels. To study the properties of the one-disulfide intermediates, we have synthesized two peptide models to mimic the one-disulfide intermediates, Apa-1 and Apa-2, in which two cysteines in the sequence have been replaced by alanines. These peptides can form only one of the native disulfide bonds, C-1 to C-11 in the case of Apa-1 and C-3 to C-15 in the case of Apa-2. The stabilities of these disulfide bonds have been measured as a function of pH, concentration of urea, and temperature, in order to understand which contributions stabilize the disulfide-bonded structures. Using oxidized and reduced glutathione, the equilibrium constants for forming the disulfide bonds at 25 degrees C and pH 7.0 are 0.018 M for Apa-1 and 0.033 M for Apa-2 and show little dependence on pH or temperature. Both disulfide bonds are destabilized slightly (by approximately a factor of 2) between 0 and 8 M urea. Circular dichroism spectra indicate that although both Apa-1 and Apa-2 exhibit some structure, Apa-2 exhibits more than Apa-1. The results suggest that in the folding of apamin, the one-disulfide intermediate containing the C-3 to C-15 disulfide bond, as in Apa-2, is favored slightly. Secondary structure provides modest stabilization to this intermediate.  相似文献   

2.
Initial disulfide formation steps in the folding of an omega-conotoxin   总被引:2,自引:0,他引:2  
To determine whether the native disulfides of omega-conotoxins are preferentially stabilized early in the folding of these small proteins, the rates and equilibria for disulfide formation were measured for three analogues of omega-conotoxin MVIIA. In each analogue, one of the three pairs of disulfide-bonded Cys residues was replaced with Ala residues, leaving four Cys residues that can form six intermediates with one disulfide and three species with two disulfides. For each analogue, all of the disulfide-bonded species were identified, and the equilibrium constants for forming the individual species via exchange with oxidized and reduced glutathione were measured. These equilibrium constants represent effective concentrations of the Cys thiols and ranged from 0.01 to 0.4 M in the fully reduced protein. There was little or no preference for forming the native disulfides, and the equilibria for forming the first and second disulfides decreased only slightly upon the addition of 8 M urea. The data for the four-Cys analogues, together with equilibrium data for the six-Cys form, were also used to estimate effective concentrations for forming a third disulfide once two native disulfides are present. These effective concentrations were approximately 100 and 10 M in the presence of 0 and 8 M urea, respectively. The results indicate that there is little or no preferential formation of native interactions in the folding of these molecules until two disulfides have formed, after which there is a high degree of cooperativity among the native interactions.  相似文献   

3.
The disulfide bond-coupled folding and unfolding mechanism (at pH 8.7, 25 degrees C in the presence of oxidized and reduced dithiothreitol) was determined for a bovine pancreatic trypsin inhibitor mutant in which cysteines 30 and 51 were replaced with alanines so that only two disulfides, between cysteines 14 and 38 and cysteines 5 and 55, remain. Similar studies were made on a chemically-modified derivative of the mutant retaining only the 5-55 disulfide. The preferred unfolding mechanism for the Ala30/Ala51 mutant begins with reduction of the 14-38 disulfide. An intramolecular rearrangement via thiol-disulfide exchange, involving the 5-55 disulfide and cysteines 14 and/or 38, then occurs. At least five of six possible one-disulfide bond species accumulate during unfolding. Finally, the disulfide of one or more of the one-disulfide bond intermediates (excluding that with the 5-55 disulfide) is reduced giving unfolded protein. The folding mechanism seems to be the reverse of the unfolding mechanism; the observed folding and unfolding reactions are consistent with a single kinetic scheme. The rate constant for the rate-limiting intramolecular folding step--rearrangements of other one-disulfide bond species to the 5-55 disulfide intermediate--seems to depend primarily on the number of amino acids separating cysteines 5 and 55 in the unfolded chain. The energetics and kinetics of the mutant's folding mechanism are compared to those of wild-type protein [Creighton, T. E., & Goldenberg, D. P. (1984) J. Mol. Biol. 179, 497] and a mutant missing the 14-38 disulfide [Goldenberg, D. P. (1988) Biochemistry 27, 2481]. The most striking effects are destabilization of the native structure and a large increase in the rate of unfolding.  相似文献   

4.
Lin CC  Chang JY 《Biochemistry》2007,46(12):3925-3932
Bovine alpha-interferon (BoINF-alpha) is a single polypeptide protein containing 166 amino acids, two disulfide bonds (Cys1-Cys99 and Cys29-Cys138), and five stretches of alpha-helical structure. The pathway of oxidative folding of BoINF-alpha has been investigated here. Of the eight possible one- and two-disulfide isomers, only two nativelike one-disulfide isomers, BoINF-alpha (Cys1-Cys99) and BoINF-alpha (Cys29-Cys138), predominate as intermediates along the folding pathway. More strikingly, alpha-helical structures formed almost quantitatively before any detectable formation of a disulfide bond. This is demonstrated by the observation that fully reduced BoINF-alpha (starting material of oxidative folding) and reduced carboxymethylated BoINF-alpha both exhibit alpha-helical structure content indistinguishable form that of native BoINF-alpha. The folding mechanism of BoINF-alpha appears to be compatible with the framework model, in which secondary structures fold first, followed by docking (compaction) of preformed secondary structural elements yielding the native structure.  相似文献   

5.
Kaerner A  Rabenstein DL 《Biochemistry》1999,38(17):5459-5470
alpha-Conotoxin GI is a 13 residue snail toxin peptide cross-linked by Cys2-Cys7 and Cys3-Cys13 disulfide bridges. The formation of the two disulfide bonds by thiol/disulfide exchange with oxidized glutathione (GSSG) has been characterized. To characterize formation of the first disulfide bond in each of the two pathways by which the two disulfide bonds can form, two model peptides were synthesized in which Cys3 and Cys13 (Cono-1) or Cys2 and Cys7 (Cono-2) were replaced by alanines. Equilibrium constants were determined for formation of the single disulfide bonds of Cono-1 and Cono-2, and an overall equilibrium constant was measured for formation of the two disulfide bonds of alpha-conotoxin GI in pH 7.00 buffer and in pH 7. 00 buffer plus 8 M urea using concentrations obtained by HPLC analysis of equilibrium thiol/disulfide exchange reaction mixtures. The results indicate a modest amount of cooperativity in the formation of the second disulfide bond in both of the two-step pathways by which alpha-conotoxin GI folds into its native structure at pH 7.00. However, when considered in terms of the reactive thiolate species, the results indicate substantial cooperativity in formation of the second disulfide bond. The solution conformational and structural properties of Cono-1, Cono-2, and alpha-conotoxin GI were studied by 1H NMR to identify structural features which might facilitate formation of the disulfide bonds or are induced by formation of the disulfide bonds. The NMR data indicate that both Cono-1 and Cono-2 have some secondary structure in solution, including some of the same secondary structure as alpha-conotoxin GI, which facilitates formation of the second disulfide bond by thiol/disulfide exchange. However, both Cono-1 and Cono-2 are considerably less structured than alpha-conotoxin GI, which indicates that formation of the second disulfide bond to give the Cys2-Cys7, Cys3-Cys13 pairing induces considerable structure into the backbone of the peptide.  相似文献   

6.
Tick-derived protease inhibitor (TdPI) is a tight-binding Kunitz-related inhibitor of human tryptase β with a unique structure and disulfide-bond pattern. Here we analyzed its oxidative folding and reductive unfolding by chromatographic and disulfide analyses of acid-trapped intermediates. TdPI folds through a stepwise generation of heterogeneous populations of one-disulfide, two-disulfide, and three-disulfide intermediates, with a major accumulation of the nonnative three-disulfide species IIIa. The rate-limiting step of the process is disulfide reshuffling within the three-disulfide population towards a productive intermediate that oxidizes directly into the native four-disulfide protein. TdPI unfolds through a major accumulation of the native three-disulfide species IIIb and the subsequent formation of two-disulfide and one-disulfide intermediates. NMR characterization of the acid-trapped and further isolated IIIa intermediate revealed a highly disordered conformation that is maintained by the presence of the disulfide bonds. Conversely, the NMR structure of IIIb showed a native-like conformation, with three native disulfide bonds and increased flexibility only around the two free cysteines, thus providing a molecular basis for its role as a productive intermediate. Comparison of TdPI with a shortened variant lacking the flexible prehead and posthead segments revealed that these regions do not contribute to the protein conformational stability or the inhibition of trypsin but are important for both the initial steps of the folding reaction and the inhibition of tryptase β. Taken together, the results provide insights into the mechanism of oxidative folding of Kunitz inhibitors and pave the way for the design of TdPI variants with improved properties for biomedical applications.  相似文献   

7.
Kinetics of disulfide reduction in alpha-lactalbumin by dithiothreitol are investigated by measuring time-dependent changes in absorption at 310 nm and in CD ellipticity at 270 nm (pH 8.5 or 7.0, and 25 degrees C). When the disulfide-intact protein is folded, the kinetics are biphasic. The disulfide bond between the half-cystines-6 and -120 is reduced in the fast phase, and the other three disulfide bonds are reduced in the slow phase. The apparent rate constants of the two phases are both proportional to the concentration of dithiothreitol, indicating that both phases are expressed by bimolecular reactions. However, detailed molecular mechanisms that determine the reaction rates are markedly different between the two phases. The slow phase shows a sigmoidal increase in the reaction rate with increasing concentration of a denaturant, urea, and is also accelerated by destabilization of the native state on removal of the bound Ca2+ ion in the protein. The disulfide bonds are apparently protected against the reducing agent in the native structure. The fast phase reaction rate is, however, decreased with an increase in the concentration of urea, and the disulfide bond shows extraordinary superreactivity in native conditions. It is 140 times more reactive than normal disulfides in the fully accessible state, and three-disulfide alpha-lactalbumin produced by the fast phase assumes nativelike structure under a strongly native condition. As ionic strength does not affect the superreactivity of this disulfide bond, electrostatic contributions to the reactivity must be negligible. Inspection of the disulfide bond geometry based on the refined X-ray coordinates of baboon alpha-lactalbumin [Acharya et al. (1989) J. Mol. Biol. 208, 99-127] and comparison of the geometry with those in five other proteins clearly demonstrate that the superreactivity arises from the geometric strain imposed on this disulfide bond by the native structure folding. Relationships of the disulfide strain energy to the protein stability and the disulfide reactivity are discussed.  相似文献   

8.
M J Volles  X Xu  H A Scheraga 《Biochemistry》1999,38(22):7284-7293
The distribution of one-disulfide bonds in the two-disulfide intermediates in the oxidative refolding of bovine pancreatic ribonuclease A has been characterized. These two-disulfide intermediates were formed from the fully reduced denatured protein by oxidation with dithiothreitol, then blocked with AEMTS, purified by cation-exchange chromatography, enzymatically digested, and analyzed by reversed-phase high-performance liquid chromatography and mass spectrometry. The relative concentration of each of the 28 possible one-disulfide bonds in the two-disulfide ensemble was determined. Comparison with a statistical mechanical treatment of loop formation shows that the two-disulfide intermediates are probably compact. All 28 disulfide bonds were observed, demonstrating the absence of specific long-range interactions in these intermediates. Thermodynamic arguments suggest that the absence of such specific long-range interactions in the two-disulfide species may elevate the concentration of kinetically important three-disulfide intermediates and thereby increase the folding rate. Bond [65-72] was found to make up approximately 27% of the disulfide bonds of the two-disulfide species, significantly more than all other disulfides, because of stabilization by loop entropy factors and an energetically favorable beta-turn. This turn may be one of several chain-folding initiation sites, accelerating folding by decreasing the dimensionality of the conformational space that has to be searched.  相似文献   

9.
Disulfide exchange folding of insulin-like growth factor I.   总被引:11,自引:0,他引:11  
The disulfide exchange folding properties of insulin-like growth factor I (IGF-I) have been analyzed in a redox buffer containing reduced (10 mM) and oxidized (1 mM) glutathione. Under these conditions, the 3 disulfide bridges of the 70 amino acid peptide were not quantitatively formed. Instead, five major forms of IGF-I were detected, and these components were concluded to be in equilibrium as their relative amounts were similar starting from either reduced, native, or a mismatched variant of IGF-I containing two non-native disulfides. The different components in the mixtures were trapped by thiol alkylation using vinylpyridine and subsequently isolated by reverse-phase HPLC. The purified variants were further characterized using plasma desorption mass spectrometry and peptide mapping. Two of the five different forms were identified as native and mismatched IGF-I. One form was a variant with only one disulfide bond, and the other two major components had two disulfides formed. In a separate experiment, early refolding intermediates were trapped by pyridylethylation after only 90 s of refolding in the glutathione buffer, starting from reduced IGF-I. The intermediates were identical to the components observed at equilibrium, but at different relative concentrations. On the basis of the disulfide bond patterns of the different components in the equilibrium mixtures, we conclude that the disulfide between cysteines-47 and -52 in IGF-I is an unfavorable high-energy bond that may exist in the native molecule in a strained configuration.  相似文献   

10.
Bovine pancreatic trypsin inhibitor (BPTI) is stabilized by 3 disulfide bonds, between cysteines 30-51, 5-55, and 14-38. To better understand the influence of disulfide bonds on local protein structure and dynamics, we have measured amide proton exchange rates in 2 folded variants of BPTI, [5-55]Ala and [30-51; 14-38]V5A55, which share no common disulfide bonds. These proteins resemble disulfide-bonded intermediates that accumulate in the BPTI folding pathway. Essentially the same amide hydrogens are protected from exchange in both of the BPTI variants studied here as in native BPTI, demonstrating that the variants adopt fully folded, native-like structures in solution. However, the most highly protected amide protons in each variant differ, and are contained within the sequences of previously studied peptide models of related BPTI folding intermediates containing either the 5-55 or the 30-51 disulfide bond.  相似文献   

11.
Horsegram protease inhibitor belongs to the Bowman-Birk class (BBIs) of low molecular weight (8-10 kDa), disulfide-rich, "dual" inhibitors, which can bind and inhibit trypsin and chymotrypsin either independently or simultaneously. They have seven conserved disulfide bonds. Horsegram BBI exhibits remarkable stability against denaturants like urea, guanidine hydrochloride (GdmCl) and heat, which can be attributed to these conserved disulfide bonds. On reductive denaturation, horsegram BBI follows the "two-state" mode of unfolding where all the disulfide bonds are reduced simultaneously resulting in the fully reduced protein without any accumulation of partially reduced intermediates. Reduction with dithiothreitol (DTT) followed apparent first-order kinetics and the rate constants (k(r)) indicated that the disulfide bonds were "hyperreactive" in nature. Oxidative refolding of the fully reduced and denatured inhibitor was possible at very low protein concentration in the presence of "redox" combination of reduced and oxidized glutathiones. Simultaneous recovery of trypsin and chymotryptic inhibitory activities indicated the concomitant folding of both the inhibitory subdomains. Folding efficiency decreased in the absence of the glutathiones and in the presence of denaturants (6 M urea and 4 M GdmCl), indicating the importance of disulfide shuffling and the formation of noncovalent interactions and secondary structural elements, respectively, for folding efficiency. Folding rate was significantly improved in the presence of protein disulfide isomerase (PDI). A 3-fold enhancement of rate was observed in the presence of PDI at molar ratio of 1:20 (PDI/inhibitor), indicating that disulfide bond formation and isomerization to be rate limiting in folding. Peptide prolyl cis-trans isomerase (PPI) did not affect rate at low concentrations, but at molar ratios of 1:1.5 (PPI/inhibitor), there was 1.4-fold enhancement of the folding rate, indicating that the prolyl imidic bond isomerizations may be slowing down the folding reaction but were not rate limiting.  相似文献   

12.
In order to determine solution conditions appropriate for reoxidizing reduced bovine growth hormone (bGH), we have examined the possibility of using a particular denaturant concentration to poise the secondary and tertiary structure of the reduced protein in a stable, nativelike state. It was envisioned that the structure of the reduced molecule would differ from that of the final oxidized molecule solely by the absence of disulfide bonds. Dilution of concentrated samples of reduced and unfolded protein from 6.0 M guanidine into 4.5 M urea followed by air oxidation indicated it was possible to induce refolding and reoxidation to an oxidized monomeric species in high yield (approximately 90%). The choice of solution conditions was based on comparison of urea equilibrium denaturation data for native oxidized protein to those for completely reduced protein and to protein in which sulfhydryl groups had been either partially or completely reduced and subjected to modification with iodoacetamide or methyl methanethiolsulfonate. The denaturation behavior of these species supports the existence of equilibrium folding intermediates for bovine growth hormone and demonstrates that chemical modification of the protein is capable of inducing differences in the denaturation behavior of these intermediates. The changes in the protein absorption spectrum and helix-related circular dichroism signal, along with direct titration of protein sulfhydryl groups, indicated that the refolding/reoxidation of bGH is a multistate process. The ordered nature of the kinetic changes in these probes during reoxidation indicates that disulfide formation is a sequential process, with little mispairing in 4.5 M urea, and that it proceeds through one or more obligatory kinetic folding events. The equilibrium denaturation behavior of the oxidized molecule and the various chemically modified forms, together with the reoxidation data, indicated that the protein maintains a high degree of secondary structure without intrachain disulfide bonds. The formation of these disulfide bonds is a discrete process which occurs after a framework of protein secondary structure is established.  相似文献   

13.
Human alpha-thrombin is a very important plasma serine protease, which is involved in physiologically vital processes like hemostasis, thrombosis, and activation of platelets. Knowledge regarding the structural stability of alpha-thrombin is essential for understanding its biological regulation. Here, we investigated the structural and conformational stability of alpha-thrombin using the techniques of disulfide reduction and disulfide scrambling. alpha-Thrombin is composed of a light A-chain (36 residues) and a heavy B-chain (259 residues) linked covalently by an inter-chain disulfide bond (Cys(1)-Cys(122)). The B-chain is stabilized by three intra-chain disulfide bonds (Cys(42)-Cys(58), Cys(168)-Cys(182), and Cys(191)-Cys(220)) (Chymotrypsinogen nomenclature). Upon reduction with dithiothreitol (DTT), alpha-thrombin unfolded in a 'sequential' manner with sequential reduction of Cys(168)-Cys(182) within the B-chain followed by the inter-chain disulfide, generating two distinct partially reduced intermediates, I-1 and I-2, respectively. Conformational stability of alpha-thrombin was investigated by the technique of disulfide scrambling. alpha-Thrombin denatures by scrambling its native disulfide bonds in the presence of denaturant [urea, guanidine hydrochloride (GdmCl) or guanidine thiocyanate (GdmSCN)] and a thiol initiator. During the process, cleavage of the inter-chain disulfide bond and release of the A-chain from B-chain was the foremost event. The three disulfides in the B-chain subsequently scrambled to form three major isomers (designated as X-Ba, X-Bb, and X-Bc). Complete denaturation of alpha-thrombin was observed at low concentrations of denaturants (0.5 M GdmSCN, 1.5 M GdmCl, or 3 M urea) indicating low conformational stability of the protease.  相似文献   

14.
The oxidative refolding of ribonuclease A has been investigated in several experimental conditions using a variety of redox systems. All these studies agree that the formation of disulfide bonds during the process occurs through a nonrandom mechanism with a preferential coupling of certain cysteine residues. We have previously demonstrated that in the presence of glutathione the refolding process occurs through the reiteration of two sequential reactions: a mixed disulfide with glutathione is produced first which evolves to form an intramolecular S-S bond. In the same experimental conditions, protein disulfide isomerase (PDI) was shown to catalyze formation and reduction of mixed disulfides with glutathione as well as formation of intramolecular S-S bonds. This paper reports the structural characterization of the one-disulfide intermediate population during the oxidative refolding of Ribonuclease A under the presence of PDI and glutathione with the aim of defining the role of the enzyme at the early stages of the reaction. The one-disulfide intermediate population occurring at the early stages of both the uncatalyzed and the PDI-catalyzed refolding was purified and structurally characterized by proteolytic digestion followed by MALDI-MS and LC/ESIMS analyses. In the uncatalyzed refolding, a total of 12 disulfide bonds out of the 28 theoretical possible cysteine couplings was observed, confirming a nonrandom distribution of native and nonnative disulfide bonds. Under the presence of PDI, only two additional nonnative disulfides were detected. Semiquantitative LC/ESIMS analysis of the distribution of the S-S bridged peptides showed that the most abundant species were equally populated in both the uncatalyzed and the catalyzed process. This paper shows the first structural characterization of the one-disulfide intermediate population formed transiently during the refolding of ribonuclease A in quasi-physiological conditions that mimic those present in the ER lumen. At the early stages of the process, three of the four native disulfides are detected, whereas the Cys26-Cys84 pairing is absent. Most of the nonnative disulfide bonds identified are formed by nearest-neighboring cysteines. The presence of PDI does not significantly alter the distribution of S-S bonds, suggesting that the ensemble of single-disulfide species is formed under thermodynamic control.  相似文献   

15.
Antibodies provide an excellent system to study the folding and assembly of all beta-sheet proteins and to elucidate the hierarchy of intra/inter chain disulfide bonds formation during the folding process of multimeric and multidomain proteins. Here, the folding process of the Fc fragment of the heavy chain of the antibody MAK33 was investigated. The Fc fragment consists of the C(H)3 and C(H)2 domains of the immunoglobulin heavy chain, both containing a single S-S bond. The folding process was investigated both in the absence and presence of the folding catalyst protein-disulfide isomerase (PDI), monitoring the evolution of intermediates by electrospray mass spectrometry. Moreover, the disulfide bonds present at different times in the folding mixture were identified by mass mapping to determine the hierarchy of disulfide bond formation. The analysis of the uncatalyzed folding showed that the species containing one intramolecular disulfide predominated throughout the entire process, whereas the fully oxidized Fc fragment never accumulated in significant amounts. This result suggests the presence of a kinetic trap during the Fc folding, preventing the one-disulfide-containing species (1S2H) to reach the fully oxidized protein (2S). The assignment of disulfide bonds revealed that 1S2H is a homogeneous species characterized by the presence of a single disulfide bond (Cys-130-Cys-188) belonging to the C(H)3 domain. When the folding experiments were carried out in the presence of PDI, the completely oxidized species accumulated and predominated at later stages of the process. This species contained the two native S-S bonds of the Fc protein. Our results indicate that the two domains of the Fc fragment fold independently, with a precise hierarchy of disulfide formation in which the disulfide bond, especially, of the C(H)2 domain requires catalysis by PDI.  相似文献   

16.
Protein disulfide isomerase (PDI) supports proinsulin folding as chaperone and isomerase. Here, we focus on how the two PDI functions influence individual steps in the complex folding process of proinsulin. We generated a PDI mutant (PDI-aba'c) where the b' domain was partially deleted, thus abolishing peptide binding but maintaining a PDI-like redox potential. PDI-aba'c catalyzes the folding of human proinsulin by increasing the rate of formation and the final yield of native proinsulin. Importantly, PDI-aba'c isomerizes non-native disulfide bonds in completely oxidized folding intermediates, thereby accelerating the formation of native disulfide bonds. We conclude that peptide binding to PDI is not essential for disulfide isomerization in fully oxidized proinsulin folding intermediates.  相似文献   

17.
R P Miller  R A Farley 《Biochemistry》1990,29(6):1524-1532
Previous studies of titratable (Na+ + K+)-ATPase sulfhydryl groups have indicated the presence of one disulfide bond per mole of holoenzyme. This single disulfide cross-link was assigned to the beta subunit on the basis of the difference between the number of titrated "free" sulfhydryl groups and the total number of titrated sulfhydryl groups for each subunit [Esmann, M. (1982) Biochim. Biophys. Acta 688, 251; Kawamura, M., & Nagano, K. (1984) Biochim. Biophys. Acta 694, 27]. In the present study, beta-subunit tryptic peptides containing disulfide cross-links were identified and purified by HPLC. Two new peptides were generated from each disulfide-bonded peptide by reduction with dithiothreitol, and the amino acid compositions of these reduced peptides were determined. The data demonstrate that there are three disulfide bonds in the native beta subunit: 125Cys-148Cys, 158Cys-174Cys, and 212Cys-275Cys. The number of disulfide bonds in the beta subunit was also estimated by titration of sulfhydryl groups with [14C]iodoacetamide. Six sulfhydryl groups were identified: two sulfhydryl groups were titrated without prior reduction, and four were identified only after reduction of the protein with dithiothreitol. These data, suggesting that the beta subunit contains two disulfide bonds, are inconsistent with the peptide isolation experiments, which directly identified three disulfide bonds in the beta subunit. This inconsistency was resolved by demonstrating that approximately 20% of each disulfide bond in the beta subunit was reduced prior to the start of the experiment, resulting in an underestimation of the number of disulfide-bonded sulfhydryl groups in the beta subunit from the titration experiments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Two new three-disulfide intermediates have been found to be populated in the oxidative folding pathway of bovine pancreatic ribonuclease A at a low temperature (15 degrees C). These intermediates, des-[26-84] and des-[58-110], possess all but one of the four native disulfide bonds and have a stable tertiary structure, similar to the two previously observed intermediates, des-[65-72] and des-[40-95]. While the latter two des species each lack one surface-exposed disulfide bond, the newly discovered intermediates each lack one buried disulfide bond. The possible involvement of these species in the rate-determining steps during the oxidative folding of RNase A is discussed and a specific role for such species during oxidative folding is suggested.  相似文献   

19.
Our previous results using the Saccharomyces cerevisiae secretion system suggest that intramolecular exchange of disulfide bonds occurs in the folding pathway of human lysozyme in vivo (Taniyama, Y., Yamamoto, Y., Kuroki, R., and Kikuchi, M. (1990) J. Biol. Chem. 265, 7570-7575). Here we report on the results of introducing an artificial disulfide bond in mutants with 2 cysteine residues substituting for Ala83 and Asp91. The mutant (C83/91) protein was not detected in the culture medium of the yeast, probably because of incorrect folding. Thereupon, 2 cysteine residues Cys77 and Cys95 were replaced with Ala in the mutant C83/91, because a native disulfide bond Cys77-Cys95 was found not necessary for correct folding in vivo (Taniyama, Y., Yamamoto, Y., Nakao, M., Kikuchi, M., and Ikehara, M. (1988) Biochem. Biophys. Res. Commun. 152, 962-967). The resultant mutant (AC83/91) was secreted as two proteins (AC83/91-a and AC83/91-b) with different specific activities. Amino acid and peptide mapping analyses showed that two glutathiones appeared to be attached to the thiol groups of the cysteine residues introduced into AC83/91-a and that four disulfide bonds including an artificial disulfide bond existed in the AC83/91-b molecule. The presence of cysteine residues modified with glutathione may indicate that the non-native disulfide bond Cys83-Cys91 is not so easily formed as a native disulfide bond. These results suggest that the introduction of Cys83 and Cys91 may act to suppress the process of native disulfide bond formation through disulfide bond interchange in the folding of human lysozyme.  相似文献   

20.
The formation of native disulfide bonds is an essential event in the folding and maturation of proteins entering the secretory pathway. For native disulfides to form efficiently an oxidative pathway is required for disulfide bond formation and a reductive pathway is required to ensure isomerization of non-native disulfide bonds. The oxidative pathway involves the oxidation of substrate proteins by PDI, which in turn is oxidized by endoplasmic reticulum oxidase (Ero1). Here we demonstrate that overexpression of Ero1 results in the acceleration of disulfide bond formation and correct protein folding. In contrast, lowering the levels of glutathione within the cell resulted in acceleration of disulfide bond formation but did not lead to correct protein folding. These results demonstrate that lowering the level of glutathione in the cell compromises the reductive pathway and prevents disulfide bond isomerization from occurring efficiently, highlighting the crucial role played by glutathione in native disulfide bond formation within the mammalian endoplasmic reticulum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号