首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
D L Spector  X D Fu    T Maniatis 《The EMBO journal》1991,10(11):3467-3481
SC-35 is a non-snRNP spliceosome component that is specifically recognized by the anti-spliceosome monoclonal antibody alpha SC-35. In this paper we provide direct evidence that SC-35 is an essential splicing factor and we examine the immunolocalization of SC-35 by confocal laser scanning microscopy and by electron microscopy. We have found that the speckled staining pattern observed by fluorescence microscopy corresponds to structures previously designated as interchromatin granules and perichromatin fibrils. Although snRNP antigens are also concentrated in these nuclear regions, we show that the two types of spliceosome components are localized through different molecular interactions: The distribution of SC-35 was not affected by treatment with DNase I or RNase A, or when the cells were heat shocked. In contrast, snRNP antigens become diffusely distributed after RNase A digestion or heat shock. Examination of cells at different stages of mitosis revealed that the SC-35 speckled staining pattern is lost during prophase and speckles containing SC-35 begin to reform in the cytoplasm of anaphase cells. In contrast, snRNP antigens do not associate with speckled regions until late in telophase. These studies reveal a dynamic pattern of assembly and disassembly of the splicing factor SC-35 into discrete nuclear structures that colocalize with interchromatin granules and perichromatin fibrils. These subnuclear regions may therefore be nuclear organelles involved in the assembly of spliceosomes, or splicing itself.  相似文献   

4.
The mammalian cell nucleus is functionally compartmentalized into various substructures. Nuclear speckles, also known as interchromatin granule clusters, are enriched with SR splicing factors and are implicated in gene expression. Here we report that nuclear speckle formation is developmentally regulated; in certain cases phosphorylated SR proteins are absent from the nucleus and are instead localized at granular structures in the cytoplasm. To investigate how the nuclear architecture is formed, we performed a phenotypic screen of HeLa cells treated with a series of small interfering RNAs. Depletion of Ran-binding protein 2 induced cytoplasmic intermediates of nuclear speckles in G1 phase. Detailed analyses of these structures suggested that a late step in the sequential nuclear entry of mitotic interchromatin granule components was disrupted and that phosphorylated SR proteins were sequestered in an SR protein kinase-dependent manner. As a result, the cells had an imbalanced subcellular distribution of phosphorylated and hypophosphorylated SR proteins, which affected alternative splicing patterns. This study demonstrates that the speckled distribution of phosphorylated pre-mRNA processing factors is regulated by the nucleocytoplasmic transport system in mammalian cells and that it is important for alternative splicing.  相似文献   

5.
6.
SC35 is a non-snRNP spliceosome component purified from mammalian cells by Fu and Maniatis in 1990. In vitro splicing assays showed that SC35 plays a key role in splicing site selection and ATP-dependent pre-spliceosome assembly. In the mammalian nucleus, SC35 has been localized to distinct and dynamic nuclear domains: immunofluorescence observations revealed the presence of SC35 in speckles distributed in various regions throughout the nucleoplasm, which, as identified with immunoelectron microscopy, correspond to the interchromatin granules (IGs) and perichromatin fibrils (PFs). However, there has been no report regarding the presence and distribution pattern of SC35 in higher plant nuclei. Engage in such studies will surely contribute to our understanding of RNA processing and the spatial organization or structure basis of this process in higher plant. In this article, we studied the distribution pattern of SC35 in the nucleus of the root meristematic cells of Vicia faba by immunoelectron microscopy. After immunolabeling with anti-SC35 mAb and protein A-colloidal gold, IGs and PFs in the nucleoplasm and dense fibrillar component (DFC) of the nucleolus were heavily labeled with gold particles, while only a few of the gold particles were found in fibrillar centers (FC) and nucleolar vacuoles (NV) of the nucleolus and the central domains of the condensed chromatin. Densities of gold particles in the areas of DFC and the area of IGs plus PFs were 65.89/microns 2 and 36.28/microns 2 respectively, much higher than that of the central domain of condensed chromatin and that of FC plus NV, which were only 5.90/microns 2 and 6.26/microns 2 respectively. This indicates that DFC of the nucleolus and the area of IGs plus PFs of the nucleoplasm are enriched with SC35 or SC35-like protein. The distribution pattern of SC35 or SC35-like protein in the nucleoplasm of Vicia faba is similar to that of the mammalian nuclei. To the authors' knowledge, it is a new finding that SC35 or SC35-like protein exists in the nucleolus.  相似文献   

7.
8.
9.
Subnuclear organization and spatiotemporal regulation of pre-mRNA processing factors is essential for the production of mature protein-coding mRNAs. We have discovered that a large protein called Son has a novel role in maintaining proper nuclear organization of pre-mRNA processing factors in nuclear speckles. The primary sequence of Son contains a concentrated region of multiple unique tandem repeat motifs that may support a role for Son as a scaffolding protein for RNA processing factors in nuclear speckles. We used RNA interference (RNAi) approaches and high-resolution microscopy techniques to study the functions of Son in the context of intact cells. Although Son precisely colocalizes with pre-mRNA splicing factors in nuclear speckles, its depletion by RNAi leads to cell cycle arrest in metaphase and causes dramatic disorganization of small nuclear ribonuclear protein and serine-arginine rich protein splicing factors during interphase. Here, we propose that Son is essential for appropriate subnuclear organization of pre-mRNA splicing factors and for promoting normal cell cycle progression.  相似文献   

10.
The great majority of snRNP and hnRNP ribonucleoproteins have been shown to be confined to the nucleus except during periods of cell division. We have now determined the fine structure distribution of polypeptides associated with these RNP complexes during interphase and mitosis in mammalian tissue culture cells using immunoelectron microscopy. Many hnRNP antigens are found at the periphery of heterochromatin masses, known to be the sites of non-rRNP proteins initially surround areas of condensing chromatin and later become generally dispersed throughout the mitotic cell. The Sm protein antigens of snRNP complexes are found diffusely distributed in interphase nuclei as well as concentrated in fields of interchromatin granules (ICG). Proteins of snRNP complexes, unlike those of hnRNP, are associated with discernible cellular structures during mitosis. By prometaphase/metaphase, dense granular clusters are observed to contain a high concentration of snRNPs. These mitotic granule clusters (MGCs) are often in close proximity to chromosomal masses by late anaphase/telophase. The MGC structures are morphologically similar to interchromatin granule fields found in interphase nuclei. Furthermore, like interchromatin granules, they are sites of a high concentration of snRNP antigens and do not contain detectable hnRNP proteins or DNA.  相似文献   

11.
12.
PTP-S2 is a tyrosine specific protein phosphatase that binds to DNA and is localized to the nucleus in association with chromatin. It plays a role in the regulation of cell proliferation. Here we show that the subcellular distribution of this protein changes during cell division. While PTP-S2 was localized exclusively to the nucleus in interphase cells, during metaphase and anaphase it was distributed throughout the cytoplasm and excluded from condensed chromosomes. At telophase PTP-S2 began to associate with chromosomes and at cytokinesis it was associated with chromatin in the newly formed nucleus. It was hyperphosphorylated and showed retarded mobility in cells arrested in metaphase. In vitro experiments showed that it was phosphorylated by CK2 resulting in mobility shift. Using a deletion mutant we found that CK2 phosphorylated PTP-S2 in the C-terminal non-catalytic domain. A heparin sensitive kinase from mitotic cell extracts phosphorylated PTP-S2 resulting in mobility shift. These results are consistent with the suggestion that during metaphase PTP-S2 is phosphorylated (possibly by CK2 or a CK2-like enzyme), resulting in its dissociation from chromatin.  相似文献   

13.
14.
In the present work we have studied the distribution of some proteins participating in the nuclear envelope assembly (lamins A/C, B and LAP2 alpha) in mitotic cells and after hypotonic treatment with 15% Hank's solution. In untreated cells, these proteins are localized in the nuclei of interphase cells migrate to the cytoplasm during mitosis. Hypotonic treatment of interphase, prophase and telophase cells does not lead to considerable relocalization of lamins A/C and B. However, unlike normal mitosis, in prometaphase and metaphase cells their chromosomes acquire affinity to lamins and LAP2 alpha. Comparative analysis of lamins and LAP2 alpha distribution have revealed that chromosomes have special sites for binding with different proteins.  相似文献   

15.
16.
Murine hybridomas were generated to DNA/tight binding proteins complex isolated from the residual nuclear structure following a procedure analogous to that yielding "empty" shells of nuclear envelope. A monoclonal antibody designated 2A8 was selected because of its differential immunostaining of mitotic cells of a synchronized mouse fibroblast cell culture L-929. The target antigen was rendered insoluble by a sequence of extractions of isolated nuclei of diverse cell types with detergents, urea, DNase I and alkali thus reproducing some solubility properties of proteins constituting an operationally defined residual nuclear matrix. The cognate polypeptide was localized on a subset of proteins of Mr 58-65 kDa, 70 kDa in isolated fibroblast nuclear matrices. The functional implication of the antigen in mitosis-related disassembly-assembly process of the nuclear matrix/envelope was detected. At prophase the antibody decorated the nuclear periphery and nuclear envelope fixed inward filaments. A fibrous network of cytoplasmic localization was stained in metaphase. At anaphase the antigen was dispositioned into peripheral fibrogranular clusters of polar orientation predominantly on one side of the nucleus. Proceeding to telophase a spreading fluorescence was manifested over the entire contour of the nuclear periphery to delineate the reforming nucleus. By immunogold electron microscopy of interphase cells the antigen was identified as evenly distributed in chromatin and interchromatin regions. At initiation of chromosome condensation in mitosis the label was detected predominantly in the chromosomal area.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号