首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The antitumoral and antibacterial drug pactamycin can be radioactively labeled by iodination without loss of biological activity. Using the labeled pactamycin, the ribosomal binding site of the drug on rat liver ribosomes has been studied by affinity labeling techniques taking advantage of the photoreactive acetophenone group present in the molecule. When 40 S ribosomal subunits are labeled, one major spot of radioactivity is found associated to protein S25. In addition, weaker spots related to proteins S14/15, S10, S17 and S7 can also be detected in the autoradiogram of the two-dimensional gel slab. Since pactamycin inhibits protein synthesis initiation, the proteins forming its binding site must be related to some step of this process. By comparison with results from pactamycin affinity labeling of Escherichia coli ribosomes (Tejedor, F., Amils, R. and Ballesta, J.P.G. (1985) Biochemistry 24, 3667-3672) these proteins could lie in the mRNA and initiation factors binding region of the rat liver ribosome.  相似文献   

2.
The affinity of ribosomes for the elongation factors EF1 and EF2 changes while the ribosome is going through the different steps of the elongation cycle. In this communication we provide evidence that the affinity of the EF1-aa-tRNA-GTP complex for the ribosomal acceptor site differs for ribosomes having their donor site either vacant or occupied by peptidyl-tRNA or by uncharged tRNA. Ribosomes having peptidyl-tRNA at their donor site bind the EF1 complex with the highest affinity.Results are discussed in light of recent findings that the two elongation factors are not bound to the ribosome simultaneously.  相似文献   

3.
4.
5.
Complexes containing rat liver 80 S ribosomes, poly(uridylic acid), phenylalanyl-tRNA, elongation factor 1 alpha, and guanylyl(beta, gamma-methylene)-diphosphonate were prepared. Neighboring proteins in the complexes were cross-linked with the bifunctional reagent 2-iminothiolane. Proteins were extracted and then separated into 26 fractions by chromatography on carboxymethylcellulose. Each protein fraction was subjected to diagonal polyacrylamide-sodium dodecyl sulfate gel electrophoresis. Four cross-linked pairs containing elongation factor 1 alpha were on the vertical line below the diagonal. The ribosomal protein spot of each pair was cut out from the gel plate and labeled with 125I. The labeled proteins were extracted from the gel and identified by two-dimensional gel electrophoresis, followed by autoradiography. The following proteins of both 60 S and 40 S subunits were identified: L12, L23, L39, S23/S24, and S26, three proteins of which had been found to be cross-linked also to elongation factor 2 (Uchiumi, T., Kikuchi, M., Terao, K., Iwasaki, K., and Ogata, K. (1986) Eur. J. Biochem. 156, 37-44). These results afford direct evidence that both elongation factors interact with partially overlapping sites on rat liver ribosomes.  相似文献   

6.
Oligo(U) derivatives with [14C]-4-(N-2-chloroethyl-N-methylamino)benzaldehyde attached to 3'-end cis-diol group via acetal bond, p(Up)n-1UCHRCl as well as with [14C]-4-(N-2-chloroethyl-N-methylamino)benzylamine attached to 5'-phosphate via amide bond, ClRCH2NHpU(pU)6 were used to modify 70S E. coli ribosomes near mRNA binding centre. Within ternary complex with ribosome and tRNAPhe all reagents covalently bind to ribosome the extent of modification being 0.1-0.4 mole/mole 70S. p(Up)n-1UCHRCl alkylates either 30S (n=5,7) or both subunits (n=6,8). rRNA is preferentially modified within 30S subunit. ClRCH2NHpU(pU)6 alkylates both subunits the proteins being mainly modified. The distribution of the label among proteins differ for various reagents. S4, S5, S7, S9, S11, S13, S15, S18 and S21 are found to be alkylated within 30S subunit, proteins L1, L2, L6, L7/L12, L19, L31 and L32 are modified in the 50S subunit. Most proteins modified within 30S subunit are located at the "head" of this subunit and proteins modified within 50S subunit are located at the surface of the contact between this subunit and the "head" of 30S subunit at the model of Stoffler.  相似文献   

7.
8.
9.
10.
11.
12.
13.
A comparison of the proteins of chicken and rat liver ribosomes using immunochemical techniques was undertaken. The procedures included quantitative precipitation, passive hemagglutination, and immunodiffusion on Ouchterlony plates. The results indicate that antisera specific for chicken or rat liver ribosomes recognize only about 20% of common determinants. While there are important reservations, the results suggest extensive differences in the proteins of rat and chicken liver ribosomes. Despite those differences, rat and chicken liver ribosomal proteins maintain some homologous sequences present in bacterial ribosomal proteins. An enriched antibody preparation against chicken 80 S ribosomes inhibited the poly(U)-directed synthesis of polyphenylalanine and the elongation factor G (EF-G)-catalyzed binding of [3H]GDP to Escherichia coli ribosomes. Thus, chicken liver ribosomes, like ribosomes from rat liver and yeast, must have proteins homologous with those of E. coli ribosomes.  相似文献   

14.
15.
Free- and EF-2-bound 80 S ribosomes, within the high-affinity complex with the non-hydrolysable GTP analog: guanylylmethylenediphosphonate (GuoPP(CH2)P), and the low-affinity complex with GDP, were treated with trypsin under conditions that modified neither their protein synthesis ability nor their sedimentation constant nor the bound EF-2 itself. Proteins extracted from trypsin-digested ribosomes were unambiguously identified using three different two-dimensional gel electrophoresis systems and 5 S RNA release was checked by submitting directly free- and EF-2-bound 80 S ribosomes, incubated with trypsin, to two-dimensional gel electrophoresis. Our results indicate that the binding of (EF-2)-GuoPP[CH2]P to 80 S ribosomes modified the behavior of a cluster of five proteins which were trypsin-resistant within free 80 S ribosomes and trypsin-sensitive within the high-affinity complex (proteins: L3, L10, L13a, L26, L27a). As for the binding of (EF-2)-GDP to 80 S ribosomes, it induced an intermediate conformational change of ribosomes, unshielding only protein L13a and L27a. Quantitative release of free intact 5 S RNA which occurred in the first case but not in the second one, should be related to the trypsinolysis of protein(s) L3 and/or L10 and/or L26. Results were discussed in relation to structural and functional data available on the ribosomal proteins we found to be modified by EF-2 binding.  相似文献   

16.
17.
The influence of peptidyl-tRNA on the dissociation of yeast 80 S ribosomes into subunits was studied. For this purpose temperature-sensitive (ts) suppressor strain of yeastSaccharomyces cerevisiae carrying a defect in peptide chain termination was used. It was found that peptidyl-tRNA did not influence the dissociation of ribosomes either at high salt concentration or in the presence of dissociation factor (DF) from yeast. After dissociation of yeast ribosomes in 0.5 M KCl, peptidyl-tRNA remains bound to the 60 S subunit. Some characteristics of the termination process and release of nascent polypeptides from yeast ribosomes are discussed.  相似文献   

18.
19.
Summary Zymograms obtained by polyacrylamide gel electrophoresis of alcohol dehydrogenase (EC 1.1.1.1.) and aspartate aminotransferase (EC 2.6.1.1.) from 5 different soybean-Nicotiana hybrid cell lines showed enzymatic characteristics derived from both parents. Variations in the zymogram of the cell lines were observed during a culture period of 8 months (more than 100 generations). These variations may be related to chromosomal loss from the hybrid, particularly those of the Nicotiana parent.NRCC No. 15669  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号