首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Plants have inducible defenses to combat attacking organisms. Hence, some herbivores have adapted to suppress these defenses. Suppression of plant defenses has been shown to benefit herbivores by boosting their growth and reproductive performance.

Results

We observed in field-grown tomatoes that spider mites (Tetranychus urticae) establish larger colonies on plants already infested with the tomato russet mite (Aculops lycopersici). Using laboratory assays, we observed that spider mites have a much higher reproductive performance on russet mite-infested plants, similar to their performance on the jasmonic acid (JA)-biosynthesis mutant def-1. Hence, we tested if russet mites suppress JA-responses thereby facilitating spider mites. We found that russet mites manipulate defenses: they induce those mediated by salicylic acid (SA) but suppress those mediated by JA which would otherwise hinder growth. This suppression of JA-defenses occurs downstream of JA-accumulation and is independent from its natural antagonist SA. In contrast, spider mites induced both JA- and SA-responses while plants infested with the two mite species together display strongly reduced JA-responses, yet a doubled SA-response. The spider mite-induced JA-response in the presence of russet mites was restored on transgenic tomatoes unable to accumulate SA (nahG), but russet mites alone still did not induce JA-responses on nahG plants. Thus, indirect facilitation of spider mites by russet mites depends on the antagonistic action of SA on JA while suppression of JA-defenses by russet mites does not. Furthermore, russet mite-induced SA-responses inhibited secondary infection by Pseudomonas syringae (Pst) while not affecting the mite itself. Finally, while facilitating spider mites, russet mites experience reduced population growth.

Conclusions

Our results show that the benefits of suppressing plant defenses may diminish within communities with natural competitors. We show that suppression of defenses via the JA-SA antagonism can be a consequence, rather than the cause, of a primary suppression event and that its overall effect is determined by the presence of competing herbivores and the distinct palette of defenses these induce. Thus, whether or not host-defense manipulation improves an herbivore’s fitness depends on interactions with other herbivores via induced-host defenses, implicating bidirectional causation of community structure of herbivores sharing a plant.
  相似文献   

2.
Methyl salicylate production in tomato affects biotic interactions   总被引:1,自引:0,他引:1  
The role of methyl salicylate (MeSA) production was studied in indirect and direct defence responses of tomato (Solanum lycopersicum) to the spider mite Tetranychus urticae and the root‐invading fungus Fusarium oxysporum f. sp. lycopersici, respectively. To this end, we silenced the tomato gene encoding salicylic acid methyl transferase (SAMT). Silencing of SAMT led to a major reduction in SAMT expression and MeSA emission upon herbivory by spider mites, without affecting the induced emission of other volatiles (terpenoids). The predatory mite Phytoseiulus persimilis, which preys on T. urticae, could not discriminate between infested and non‐infested SAMT‐silenced lines, as it could for wild‐type tomato plants. Moreover, when given the choice between infested SAMT‐silenced and infested wild‐type plants, they preferred the latter. These findings are supportive of a major role for MeSA in this indirect defence response of tomato. SAMT‐silenced tomato plants were less susceptible to a virulent strain of F. oxysporum f. sp. lycopersici, indicating that the direct defense responses in the roots are also affected in these plants. Our studies show that the conversion of SA to MeSA can affect both direct and indirect plant defence responses.  相似文献   

3.
Li C  Williams MM  Loh YT  Lee GI  Howe GA 《Plant physiology》2002,130(1):494-503
The octadecanoid signaling pathway has been shown to play an important role in plant defense against various chewing insects and some pathogenic fungi. Here, we examined the interaction of a cell-content feeding arachnid herbivore, the two-spotted spider mite (Tetranychus urticae Koch), with cultivated tomato (Lycopersicon esculentum) and an isogenic mutant line (defenseless-1 [def-1]) that is deficient in the biosynthesis of the octadecanoid pathway-derived signal, jasmonic acid (JA). Spider mite feeding and fecundity on def-1 plants was significantly greater than on wild-type plants. Decreased resistance of def-1 plants was correlated with reduced JA accumulation and expression of defensive proteinase inhibitor (PI) genes, which were induced in mite-damaged wild-type leaves. Treatment of def-1 plants with methyl-JA restored resistance to spider mite feeding and reduced the fecundity of female mites. Plants expressing a 35S::prosystemin transgene that constitutively activates the octadecanoid pathway in a Def-1-dependent manner were highly resistant to attack by spider mites and western flower thrips (Frankliniella occidentalis), another cell-content feeder of economic importance. These findings indicate that activation of the octadecanoid signaling pathway promotes resistance of tomato to a broad spectrum of herbivores. The techniques of amplified fragment length polymorphism (AFLP) and bulk segregant analysis were used to map the Def-1 gene to a region on the long arm of chromosome 3 that is genetically separable from the map position of known JA biosynthetic genes. Tight linkage of Def-1 to a T-DNA insertion harboring the maize (Zea mays) Dissociation transposable element suggests a strategy for directed transposon tagging of the gene.  相似文献   

4.
Two cDNAs encoding geranylgeranyl pyrophosphate (GGPP) synthases from tomato (Lycopersicon esculentum) have been cloned and functionally expressed in Escherichia coli. LeGGPS1 was predominantly expressed in leaf tissue and LeGGPS2 in ripening fruit and flower tissue. LeGGPS1 expression was induced in leaves by spider mite (Tetranychus urticae)-feeding and mechanical wounding in wild type tomato but not in the jasmonic acid (JA)-response mutant def-1 and the salicylic acid (SA)-deficient transgenic NahG line. Furthermore, LeGGPS1 expression could be induced in leaves of wild type tomato plants by JA- or methyl salicylate (MeSA)-treatment. In contrast, expression of LeGGPS2 was not induced in leaves by spider mite-feeding, wounding, JA- or MeSA-treatment. We show that emission of the GGPP-derived volatile terpenoid (E,E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene (TMTT) correlates with expression of LeGGPS1. An exception was MeSA-treatment, which resulted in induction of LeGGPS1 but not in emission of TMTT. We show that there is an additional layer of regulation, because geranyllinalool synthase, catalyzing the first dedicated step in TMTT biosynthesis, was induced by JA but not by MeSA.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

5.
Two benzenoid esters, methyl salicylate (MeSA) and methyl benzoate (MeBA), were detected from insect-damaged rice plants. By correlating metabolite production with gene expression analysis, five candidate genes encoding putative carboxyl methyltransferases were identified. Enzymatic assays with Escherichia coli-expressed recombinant proteins demonstrated that only one of the five candidates, OsBSMT1, has salicylic acid (SA) methyltransferase (SAMT) and benzoic acid (BA) methyltransferase (BAMT) activities for producing MeSA and MeBA, respectively. Whereas OsBSMT1 is phylogenetically relatively distant from dicot SAMTs, the three-dimensional structure of OsBSMT1, which was determined using homology-based structural modeling, is highly similar to those of characterized SAMTs. Analyses of OsBSMT1 expression in wild-type rice plants under various stress conditions indicate that the jasmonic acid (JA) signaling pathway plays a critical role in regulating the production and emission of MeSA in rice. Further analysis using transgenic rice plants overexpressing NH1, a key component of the SA signaling pathway in rice, suggests that the SA signaling pathway also plays an important role in governing OsBSMT1 expression and emission of its products, probably through a crosstalk with the JA signaling pathway. The role of the volatile products of OsBSMT1, MeSA and MeBA, in rice defense against insect herbivory is discussed.  相似文献   

6.
Plants infested with the spider mite Tetranychus urticae Koch, may indirectly defend themselves by releasing volatiles that attract the predatory mite Phytoseiulus persimilis Athias-Henriot. Several plants from different plant families that varied in the level of spider mite acceptance were tested in an olfactometer. The predatory mites were significantly attracted to the spider mite-infested leaves of all test plant species. No differences in attractiveness of the infested plant leaves were found for predatory mites reared on spider mites on the different test plants or on lima bean. Thus, experience with the spider mite-induced plant volatiles did not affect the predatory mites. Jasmonic acid was applied to ginkgo leaves to induce a mimic of a spider mite-induced volatile blend, because the spider mites did not survive when incubated on ginkgo. The volatile blend induced in ginkgo by jasmonic acid was slightly attractive to predatory mites. Plants with a high degree of direct defence were thought to invest less in indirect defence than plants with a low degree of direct defence. However, plants that had a strong direct defence such as ginkgo and sweet pepper, did emit induced volatiles that attracted the predatory mite. This indicates that a combination of direct and indirect defence is to some extent compatible in plant species.  相似文献   

7.
Systemic acquired resistance (SAR) develops in response to local microbial leaf inoculation and renders the whole plant more resistant to subsequent pathogen infection. Accumulation of salicylic acid (SA) in noninfected plant parts is required for SAR, and methyl salicylate (MeSA) and jasmonate (JA) are proposed to have critical roles during SAR long-distance signaling from inoculated to distant leaves. Here, we address the significance of MeSA and JA during SAR development in Arabidopsis thaliana. MeSA production increases in leaves inoculated with the SAR-inducing bacterial pathogen Pseudomonas syringae; however, most MeSA is emitted into the atmosphere, and only small amounts are retained. We show that in several Arabidopsis defense mutants, the abilities to produce MeSA and to establish SAR do not coincide. T-DNA insertion lines defective in expression of a pathogen-responsive SA methyltransferase gene are completely devoid of induced MeSA production but increase systemic SA levels and develop SAR upon local P. syringae inoculation. Therefore, MeSA is dispensable for SAR in Arabidopsis, and SA accumulation in distant leaves appears to occur by de novo synthesis via isochorismate synthase. We show that MeSA production induced by P. syringae depends on the JA pathway but that JA biosynthesis or downstream signaling is not required for SAR. In compatible interactions, MeSA production depends on the P. syringae virulence factor coronatine, suggesting that the phytopathogen uses coronatine-mediated volatilization of MeSA from leaves to attenuate the SA-based defense pathway.  相似文献   

8.
不同诱导因子对落叶松毛虫嗅觉和产卵选择的影响   总被引:7,自引:1,他引:7  
试验测定了落叶松毛虫幼虫和成虫对茉莉酮、茉莉酸甲酯和水杨酸甲酯3种挥发性信号化合物以及对剪叶损伤、昆虫取食、茉莉酸和水杨酸等诱导因子处理的兴安落叶松的行为反应.结果表明:在0.1%~10% V/V浓度下,茉莉酸甲酯和水杨酸甲酯对幼虫有驱避作用;机械损伤、茉莉酮、茉莉酸、茉莉酸甲酯和水杨酸甲酯均能诱导落叶松产生防御,明显减少了幼虫的取食选择.落叶松毛虫成虫对茉莉酮和水杨酸甲酯有明显的触角电位反应,且雌虫反应敏感性随浓度增加而增强.在诱导因子处理后的落叶松上,成虫产卵量明显减少.  相似文献   

9.
【目的】探讨菜豆对昆虫取食防御反应的生化机制。【方法】研究了西花蓟马Frankliniella occidentalis取食、机械损伤以及外源水杨酸甲酯(MeSA)和茉莉酸(JA)处理后菜豆叶片防御酶活性的变化。【结果】西花蓟马取食、机械损伤及MeSA和JA处理均能明显提高过氧化物酶(POD)的活性,前2种处理POD活性在72 h上升到最高峰,而后2种处理则在48 h达到最高峰。蛋白酶抑制剂(PI)活性在西花蓟马取食后升高最明显。JA途径关键酶脂氧合酶(LOX)和多酚氧化酶(PPO)的活性在西花蓟马取食、机械损伤和JA诱导处理均升高,但外源MeSA诱导处理则不能诱导它们的活性(P>0.05)。SA途径的关键酶苯丙氨酸解氨酶(PAL)在西花蓟马取食和机械损伤后均有一个先升高后下降的过程,外源MeSA诱导只在24 h引起PAL活性升高,其余时间下和对照没有明显的区别,外源JA诱导未能引起PAL活性的显著变化(P>0.05)。西花蓟马取食、JA和MeSA诱导以及机械损伤均能诱导β-1,3 葡聚糖酶(PR-2)活性上升(P<0.05)。【结论】结果说明,不同处理可诱导菜豆植株产生明显的防御反应,但酶活性的变化与处理方式和处理时间有关。  相似文献   

10.
11.
12.
Jasmonic acid (JA) and salicylic acid (SA) have both been implicated as important signal molecules mediating induced defenses of Nicotiana tabacum L. against herbivores and pathogens. Since the application of SA to a wound site can inhibit both wound-induced JA and a defense response that it elicits, namely nicotine production, we determined if tobacco mosaic virus (TMV) inoculation, with its associated endogenous systemic increase in SA, reduces a plant's ability to increase JA and nicotine levels in response to mechanical damage, and evaluated the consequences of these interactions for the amount of tissue removed by a nicotine-tolerant herbivore, Manduca sexta. Additionally, we determined whether the release of volatile methyl salicylic acid (MeSA) from inoculated plants can reduce wound-induced JA and nicotine responses in uninoculated plants sharing the same chamber. The TMV-inoculated plants, though capable of inducing nicotine normally in response to methyl jasmonate applications, had attenuated wound-induced JA and nicotine responses. Moreover, larvae consumed 1.7- to 2.7-times more leaf tissue from TMV-inoculated plants than from mock-inoculated plants. Uninoculated plants growing in chambers downwind of either TMV-inoculated plants or vials releasing MeSA at 83- to 643-times the amount TMV-inoculated plants release, exhibited normal wound-induced responses. We conclude that tobacco plants, when inoculated with TMV, are unable to elicit normal wound responses, due likely to the inhibition of JA production by the systemic increase in SA induced by virus-inoculation. The release of volatile MeSA from inoculated plants is not sufficient to influence the wound-induced responses of neighboring plants. Received: 6 January 1999 / Accepted: 11 January 1999  相似文献   

13.
Plants under herbivore attack often respond defensively by mounting chemical and physical defences. However, some herbivores can manipulate plant defences to their own benefit by suppressing the expression of induced defences. These herbivore‐induced changes specific to the attacking herbivore can either facilitate or impede the colonization and establishment of a second herbivore. Although recent studies have focused on the effect of multiple herbivory on plant induced response and the third trophic level, few have examined the ecological relevance of multiple herbivores sharing the host. Here, we investigated whether herbivory by the white mealybug Planococcus minor (Maskell) (Hemiptera: Pseudococcidae) or the red spider mite Olygonychus ilicis (McGregor) (Acari: Tetranychidae), two herbivores that peak in coffee plantations during the dry season, may facilitate the colonization and establishment of the other species in coffee plants. Dual‐choice arena tests showed that white mealybugs preferred mite‐infested over uninfested coffee plants as hosts. Fifteen days after the release of 50 first‐instar P. minor nymphs, greater numbers of nymphs and adults were found on mite‐infested than uninfested plants, indicating superior performance on mite‐infested plants. On the other hand, female red spider mites did not show clear preference between uninfested and mealybug‐infested plants and deposited similar numbers of eggs on both treatments. In a no‐choice test, red spider mites performed poorly on mealybug‐infested plants with a smaller number of eggs, nymphs, females and males found in mealybug‐infested plants relative to uninfested plants. Thus, our results indicate that coffee plants are more likely to be infested by the red spider mite before white mealybug, rather than the inverse sequence (i.e. mealybug infestation followed by red spider mites). Our findings are discussed in the context of plant manipulation reported for pseudococcid mealybugs and spider mites.  相似文献   

14.
Plants can defend themselves indirectly against herbivores by emitting a volatile blend upon herbivory that attracts the natural enemies of these herbivores, either predators or parasitoids. Although signal transduction in plants from herbivory to induced volatile production depends on jasmonic acid (JA) and salicylic acid (SA), the pathways downstream of JA and SA are unknown. Use of Arabidopsis provides a unique possibility to study signal transduction by use of signalling mutants, which so far has not been exploited in studies on indirect plant defence. In the present study it was demonstrated that jar1‐1 and npr1‐1 mutants are not affected in caterpillar (Pieris rapae)‐induced attraction of the parasitoid Cotesia rubecula. Both JAR1 and NPR1 (also known as NIM1) are involved in signalling downstream of JA in induced defence against pathogens such as induced systemic resistance (ISR). NPR1 is also involved in signalling downstream of SA in defence against pathogens such as systemic acquired resistance (SAR). These results demonstrate that signalling downstream of JA and SA differs between induced indirect defence against herbivores and defence against pathogens such as SAR and ISR. Furthermore, it was demonstrated that herbivore‐derived elicitors are involved in induced attraction of the parasitoid Cotesia rubecula  相似文献   

15.
We compared volatiles from lima bean leaves (Phaseolus lunatus) infested by either beet armyworm (Spodoptera exigua), common armyworm [Mythimna (Pseudaletia) separata], or two-spotted spider mite (Tetranychus urticae). We also analyzed volatiles from the leaves treated with jasmonic acid (JA) and/or methyl salicylate (MeSA). The volatiles induced by aqueous JA treatment were qualitatively and quantitatively similar to those induced by S. exigua or M. separata damage. Furthermore, both S. exigua and aqueous JA treatment induced the expression of the same basic PR genes. In contrast, gaseous MeSA treatment, and aqueous JA treatment followed by gaseous MeSA treatment, induced volatiles that was qualitatively and quantitatively more similar to the T. urticae-induced volatiles than those induced by aqueous JA treatment. In addition, T. urticae damage resulted in the expression of the acidic and basic PR genes that were induced by gaseous MeSA treatment and by aqueous JA treatment, respectively. Based on these data, we suggest that in lima bean leaves, the JA-related signaling pathway is involved in the production of caterpillar-induced volatiles, while both the SA-related signaling pathway and the JA-related signaling pathway are involved in the production of T. urticae-induced volatiles.  相似文献   

16.
Spider mites (Tetranychidae sp.) are widely occurring arthropod pests on cultivated plants. Feeding by the two‐spotted spider mite T. urticae, a generalist herbivore, induces a defense response in plants that mainly depends on the phytohormones jasmonic acid and salicylic acid (SA). On tomato (Solanum lycopersicum), however, certain genotypes of T. urticae and the specialist species T. evansi were found to suppress these defenses. This phenomenon occurs downstream of phytohormone accumulation via an unknown mechanism. We investigated if spider mites possess effector‐like proteins in their saliva that can account for this defense suppression. First we performed an in silico prediction of the T. urticae and the T. evansi secretomes, and subsequently generated a short list of candidate effectors based on additional selection criteria such as life stage‐specific expression and salivary gland expression via whole mount in situ hybridization. We picked the top five most promising protein families and then expressed representatives in Nicotiana benthamiana using Agrobacterium tumefaciens transient expression assays to assess their effect on plant defenses. Four proteins from two families suppressed defenses downstream of the phytohormone SA. Furthermore, T. urticae performance on N. benthamiana improved in response to transient expression of three of these proteins and this improvement was similar to that of mites feeding on the tomato SA accumulation mutant nahG. Our results suggest that both generalist and specialist plant‐eating mite species are sensitive to SA defenses but secrete proteins via their saliva to reduce the negative effects of these defenses.  相似文献   

17.
It has been suggested that previous infection by a vascular fungus causes induced resistance against two-spotted spider mites. To test the generality of this phenomenon, a series of experiments was carried out using two lines of tomato, differing only in resistance againstFusarium. In addition, tests were done in order to see whether the defense response against the fungus also affects the phytophagous mite directly. Inoculation of tomato plants with a vascular fungus (Fusarium oxysporum f.sp.lycopersici race 1) prior to infestation with spider mites caused a decrease in the rate of oviposition of two-spotted spider mites (Tetranychus urticae) on aFusarium-susceptible line, but only when plants were moderately to severely wilted. Spider mite oviposition did not change significantly of a previously inoculatedFusarium-resistant line.AsFusarium causes vascular occlusion and wilting of the plants, drought stress was experimentally induced to determine its influence on the reduction of oviposition. Drought caused a significant reduction in spider mite oviposition. We conclude that the effect of previousFusarium-inoculation on spider mite oviposition is primarily due to the fungus affecting the quality of the host plant (including the effect it may have on the composition of defensive compounds), rather than due to the stimulation of the defense system of the plant. SinceFusarium seals off the xylem vessels, thereby causing wilting of susceptible plants, the reduction in mite oviposition may well be due to drought stress in the leaves, rather than due to the production of phytoalexins.  相似文献   

18.
We tested the extent to which resistance of common bean (Phaseolus vulgaris) cultivars to the spider mite Tetranychus urticae parallels the extent to which these plants display indirect defenses via the induced attraction of the predatory mite Phytoseiulus persimilis. First, via field and greenhouse trials on 19 commercial bean cultivars, we selected two spider mite-resistant (Naz and Ks41128) and two susceptible (Akthar and G11867) cultivars and measured the spider mite-induced volatiles and the subsequently induced attraction of predatory mites via olfactory choice assays. The two major volatiles, 4,8,12-trimethyltrideca-1,3,7,11-tetraene (TMTT) and (Z)-3-hexenyl-acetate, were induced in the resistant but not in the susceptible cultivars. However, uninfested susceptible cultivars emitted these volatiles at levels similar to those of mite-infested resistant cultivars. Significant induction of several minor components was observed for all four cultivars except for the infested-susceptible cultivar G11867. Both, the spider mite-resistant cultivar Naz and the susceptible cultivar G11867, attracted more predatory mites when they were infested. In contrast, spider mites induced increased emission of two major and five minor volatiles in Ks41128, but predatory mites did not discriminate between infested and uninfested plants. Overall, the attraction of predatory mites appeared to correlate positively with the presence of TMTT and (Z)-3-hexenyl acetate and negatively with β-caryophyllene and α-pinene in the bean headspace. Taken together, our data suggest that resistance and attraction of natural enemies via induced volatiles are independent traits. We argue that it should be possible to cross predator-attraction promoting traits into resistant cultivars that lack sufficiently inducible indirect defenses.  相似文献   

19.
Efficacy of rosemary, Rosmarinus officinalis L., essential oil was assessed against twospotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae), as well as effects on the tomato, Lycopersicum esculatum Mill., host plant and biocontrol agents. Laboratory bioassay results indicated that pure rosemary oil and EcoTrol (a rosemary oil-based pesticide) caused complete mortality of spider mites at concentrations that are not phytotoxic to the host plant. The predatory mite Phytoseiulus persimilis Athias-Henriot is less susceptible to rosemary oil and EcoTrol than twospotted spider mite both in the laboratory and the greenhouse. Rosemary oil repels spider mites and can affect oviposition behavior. Moreover, rosemary oil and rosemary oil-based pesticides are nonpersistent in the environment, and their lethal and sublethal effects fade within 1 or 2 d. EcoTrol is safe to tomato foliage, flowers, and fruit even at double the recommended label rate. A greenhouse trial indicated that a single application of EcoTrol at its recommended label rate could reduce a twospotted spider mite population by 52%. At that rate, EcoTrol did not cause any mortality in P. persimilis nor did it affect their eggs. In general, EcoTrol was found to be a suitable option for small-scale integrated pest management programs for controlling twospotted spider mites on greenhouse tomato plants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号