首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
On the assumption that the dependence of the electrophoretic mobility of superhelical DNA upon the number of tertiary turns (Wr) is a monotonously increasing function devoid of points of inflection, it is concluded that the inflection (change of sign of the first derivative) observed on the curve gives evidence for a conformational transition in DNA secondary structure that begins long before the BZ or B cruciform transitions. The transition consumes 60% of the topological turns at native levels of supercoiling. It is proposed that the conformation produced belongs to the A-family. Provided that this transition indeed yields the A form (11 base pairs per turn), the energy of the BA conformational transition is estimatd to be 5.8–10.3 cal per base pair for different nucleotide sequences at physiological ionic strength. The energies of BZ and B cruciform transitions in superhelical DNA estimated from electrophoretic mobilities by the present method coincide perfectly with the values obtained by other authors using other methods. In addition, on the basis of the data of Brady et al. (1983) on the number of tertiary turns in superhelical DNA determined by X-ray scattering, it is concluded that the initial assumption is justified and the ratio of bending to twisting stiffnesses of superhelical DNA is estimated as 71 (in the fully supercoiled molecule containing 50% of the supposed A-conformation).  相似文献   

2.
Li X  Peng Y  Qu X 《Nucleic acids research》2006,34(13):3670-3676
Single-walled carbon nanotubes (SWNTs) have been considered as the leading candidate for nanodevice applications ranging from gene therapy and novel drug delivery to membrane separations. The miniaturization of DNA-nanotube devices for biological applications requires fully understanding DNA-nanotube interaction mechanism. We report here, for the first time, that DNA destabilization and conformational transition induced by SWNTs are sequence-dependent. Contrasting changes for SWNTs binding to poly[dGdC]:poly[dGdC] and poly[dAdT]:poly[dAdT] were observed. For GC homopolymer, DNA melting temperature was decreased 40°C by SWNTs but no change for AT-DNA. SWNTs can induce B–A transition for GC-DNA but AT-DNA resisted the transition. Our circular dichroism, competitive binding assay and triplex destabilization studies provide direct evidence that SWNTs induce DNA B–A transition in solution and they bind to the DNA major groove with GC preference.  相似文献   

3.
Three synthetically produced glycolipids, N-(β-D-glucopyranosyl)-N-octadecyl-stearoylamide (OSGA), N-(β-D-glucopyranosyl-N-octadecyl-oleoylamide (OOGA), N-(β-D-galactopyranosyl)-N-octadecyl-lauroylamide (OLGA) have been studied in different mixtures with water by x-ray diffraction and dielectric measurements with microwaves at 9.4 GHz. The measurements were performed in the temperature range -50-70°C. X-Ray diffraction revealed a direct Lβ' → H transition at 20°C, 60°C, and 45°C depending on the glycolipid species but nearly not on the water content. The hexagonal phases are saturated at a water content of ≈20 wt%. The lamellar phase absorbs even less water (< 10 wt%). The dielectric data show that in the H phase the binding of water is stronger than in the Lβ' phase. In the temperature range below 0°C, OSGA and OOGA show a “subzero transition” due to the freeze-out of water in a separate ice phase. This transition can be seen in an abrupt decrease of the dielectric function because the dielectric response of ice is much smaller at microwave frequencies. OLGA does not show the subzero transition but an additional transition, hexagonal → distorted hexagonal at 60°C.  相似文献   

4.
Left-handed Z-DNA is radically different from the most common right-handed B-DNA and can be stabilized by interactions with the Zα domain, which is found in a group of proteins, such as human ADAR1 and viral E3L proteins. It is well-known that most Zα domains bind to Z-DNA in a conformation-specific manner and induce rapid B–Z transition in physiological conditions. Although many structural and biochemical studies have identified the detailed interactions between the Zα domain and Z-DNA, little is known about the molecular basis of the B–Z transition process. In this study, we successfully converted the B–Z transition-defective Zα domain, vvZαE3L, into a B–Z converter by improving B-DNA binding ability, suggesting that B-DNA binding is involved in the B–Z transition. In addition, we engineered the canonical B-DNA binding protein GH5 into a Zα-like protein having both Z-DNA binding and B–Z transition activities by introducing Z-DNA interacting residues. Crystal structures of these mutants of vvZαE3L and GH5 complexed with Z-DNA confirmed the significance of conserved Z-DNA binding interactions. Altogether, our results provide molecular insight into how Zα domains obtain unusual conformational specificity and induce the B–Z transition.  相似文献   

5.
The crystal structure of the DNA dodecamer duplex CATGGGCCCATG lies on a structural continuum along the transition between A- and B-DNA. The dodecamer possesses the normal vector plot and inclination values typical of B-DNA, but has the crystal packing, helical twist, groove width, sugar pucker, slide and x-displacement values typical of A-DNA. The structure shows highly ordered water structures, such as a double spine of water molecules against each side of the major groove, stabilizing the GC base pairs in an A-like conformation. The different hydration of GC and AT base pairs provides a physical basis for solvent-dependent facilitation of the A↔B helix transition by GC base pairs. Crystal structures of CATGGGCCCATG and other A/B-DNA intermediates support a ‘slide first, roll later’ mechanism for the B→A helix transition. In the distribution of helical parameters in protein–DNA crystal structures, GpG base steps show A-like properties, reflecting their innate predisposition for the A conformation.  相似文献   

6.
A small quantity of (1→3)-β-d-glucan was extracted with a (1→3),(1→4)-β-d-glucan by hot water after treatment of the insoluble fraction of a buffer homogenate of Zea shoots with 3 molar LiCl. An ammonium sulfate precipitation procedure effected a separation of the (1→3)-β-d-glucan from the more prevalent (1→3),(1→4)-β-d-glucan. The minor component polysaccharide precipitated at a concentration of 20% ammonium sulfate (w/v) and was, as a consequence of precipitation, rendered insoluble in water. The insoluble products were dissolved in 1 normal NaOH followed by neutralization with CH3COOH. The purified polysaccharide accounted for approximately 0.3% of total hot water extract. It consisted mostly of glucose and its average mol wt was estimated to be about 7.0 × 104, based on elution from a calibrated Sepharose CL-4B column. Methylation analysis and enzymic hydrolysis or partial acid-hydrolysis of the polysaccharide followed by analysis of the hydrolysate showed that the polysaccharide consisted of (1→3)-β-linked glucose residues.  相似文献   

7.
The TREX enzymes process DNA as the major 3′→5′ exonuclease activity in mammalian cells. TREX2 and TREX1 are members of the DnaQ family of exonucleases and utilize a two metal ion catalytic mechanism of hydrolysis. The structure of the dimeric TREX2 enzyme in complex with single-stranded DNA has revealed binding properties that are distinct from the TREX1 protein. The TREX2 protein undergoes a conformational change in the active site upon DNA binding including ordering of active site residues and a shift of an active site helix. Surprisingly, even when a single monomer binds DNA, both monomers in the dimer undergo the structural rearrangement. From this we have proposed a model for DNA binding and 3′ hydrolysis for the TREX2 dimer. The structure also shows how TREX proteins potentially interact with double-stranded DNA and suggest features that might be involved in strand denaturation to provide a single-stranded substrate for the active site.  相似文献   

8.
We performed a detailed analysis of conformational transition pathways for a set of 10 proteins, which undergo large hinge-bending-type motions with 4–12 Å RMSD (root mean-square distance) between open and closed crystal structures. Anisotropic network model-Monte Carlo (ANM-MC) algorithm generates a targeted pathway between two conformations, where the collective modes from the ANM are used for deformation at each iteration and the conformational energy of the deformed structure is minimized via an MC algorithm. The target structure was approached successfully with an RMSD of 0.9–4.1 Å when a relatively low cutoff radius of 10 Å was used in ANM. Even though one predominant mode (first or second) directed the open-to-closed conformational transition, changes in the dominant mode character were observed for most cases along the transition. By imposing radius of gyration constraint during mode selection, it was possible to predict the closed structure for eight out of 10 proteins (with initial 4.1–7.1 Å and final 1.7–2.9 Å RMSD to target). Deforming along a single mode leads to most successful predictions. Based on the previously reported free energy surface of adenylate kinase, deformations along the first mode produced an energetically favorable path, which was interestingly facilitated by a change in mode shape (resembling second and third modes) at key points. Pathway intermediates are provided in our database of conformational transitions (http://safir.prc.boun.edu.tr/anmmc/method/1).  相似文献   

9.
Oxidative DNA damage may play an important role in human disease including cancer. Previously, mutational spectra have been determined using systems that include transition metal ions and hydrogen peroxide (H2O2). G→T transversions and C→T transitions were the most common mutations observed including some CC→TT tandem mutations. C→T transition mutations at methylated CpG dinucleotides are the most common mutations in human genetic diseases. It has been hypothesized that oxidative stress may increase the frequency of mutations at methylated CpG sequences. Here we have used a CpG-methylated shuttle vector to derive mutational spectra of copper/H2O2-induced DNA damage upon passage of the shuttle vector through human fibroblasts. We find that copper/H2O2 treatment produces higher numbers of CpG transition mutations when the CpGs are methylated but does not create clear C→T hotspots at these sites. More strikingly, we observed that this treatment produces a substantial frequency of mutations that were mCG→TT tandem mutations. Six of seven tandem mutations were of this type. mCG→TT mutations (6/63 = 10% of all mutations) were observed only in nucleotide excision repair-deficient (XP-A) cells but were not found in repair-proficient cells. The data suggest that this novel type of mutation may be produced by vicinal or cross-linked base damage involving 5-methylcytosine and a neighboring guanine, which is repaired by nucleotide excision repair. We suggest that the underlying oxidative lesions could be responsible for the progressive neurodegeneration seen in XP-A individuals.  相似文献   

10.
Scanning force spectroscopy was used to measure the mechanical properties of double stranded RNA molecules in comparison with DNA. We find that, similar to the B–S transition in DNA, RNA molecules are stretched from the assumed A′ conformation to a stretched conformation by applying a defined force (plateau force). The force depends on the G + C content of the RNA and is distinct from that required for the B–S transition of a homologous DNA molecule. After the conformational change, DNA can be further extended by a factor of 0.7 ± 0.2 (S-factor) before melting occurs and the binding of the molecule to the cantilever is finally disrupted. For RNA, the S-factor was higher (1.0 ± 0.2) and more variable. Experiments to measure secondary structures in single stranded RNA yielded a large number of different force-distance curves, suggesting disruption and stretching of various secondary structures. Oriented attachment of the molecules to the substrate, a defined pick-up point and an increased resolution of the instrument could provide the means to analyse RNA secondary structures by scanning force spectroscopy.  相似文献   

11.

Background

Human apurinic/apyrimidinic endonuclease 1 (APE1) is a key DNA repair enzyme involved in both base excision repair (BER) and nucleotide incision repair (NIR) pathways. In the BER pathway, APE1 cleaves DNA at AP sites and 3′-blocking moieties generated by DNA glycosylases. In the NIR pathway, APE1 incises DNA 5′ to a number of oxidatively damaged bases. At present, physiological relevance of the NIR pathway is fairly well established in E. coli, but has yet to be elucidated in human cells.

Methodology/Principal Finding

We identified amino acid residues in the APE1 protein that affect its function in either the BER or NIR pathway. Biochemical characterization of APE1 carrying single K98A, R185A, D308A and double K98A/R185A amino acid substitutions revealed that all mutants exhibited greatly reduced NIR and 3′→5′ exonuclease activities, but were capable of performing BER functions to some extent. Expression of the APE1 mutants deficient in the NIR and exonuclease activities reduced the sensitivity of AP endonuclease-deficient E. coli xth nfo strain to an alkylating agent, methylmethanesulfonate, suggesting that our APE1 mutants are able to repair AP sites. Finally, the human NIR pathway was fully reconstituted in vitro using the purified APE1, human flap endonuclease 1, DNA polymerase β and DNA ligase I proteins, thus establishing the minimal set of proteins required for a functional NIR pathway in human cells.

Conclusion/Significance

Taken together, these data further substantiate the role of NIR as a distinct and separable function of APE1 that is essential for processing of potentially lethal oxidative DNA lesions.  相似文献   

12.
Crystallographic studies have shown that the binding of calcium to domain III of annexin V is accompanied by a large conformational change involving surface exposure of Trp187. Here we examine this conformational transition using computer simulation. It is found that the burial of Trp187 is accompanied by a large increase in conformational strain, compensated by improved protein-protein interaction energies. A low energy pathway for the conformational change is determined using the conjugate peak refinement method [Fischer, S., and Karplus, M. (1992) Chem. Phys. Lett. 194, 252-261] with solvent effects taken into account using nonuniform charge scaling. The pathway obtained is complex, involving >300 dihedral angle transitions and the complete unwinding of one helix. Acidic residues play a key role in the conformational pathway, via a succession of direct hydrogen bonds with the indole ring of Trp187. This finding is discussed in the light of experimentally determined pH, calcium ion and mutational effects on the conformational transition.  相似文献   

13.
It was found that the birefringence of aqueous solutions of sodium DNA is anomalous when electric fields of high intensity (≥104 v/cm) are applied. The magnitude of the birefringence first rose upon application of the orienting pulse, then fell as the field was sustained above a critical value. The occurrence of the effect depended upon macromolecular and electrolyte concentrations. Upon removal of the field, the birefringence was rapidly restored and then it decayed with an increase of the reorientational relaxation times, relative to those observed below the critical field. It is proposed that the electric field may cause aggregation of the macromolecules and then produce a structural transition concomitant with the electric field orientation effect. This transition may correspond to the “B” “A” structures identified in x-ray studies, or to a “B” “V” structure change, where “V” is a postulated new helical form stabilized by cooperative interactions of base and dipoles in the electric field. Field induced transitions of this type would be of interest in connection with molecular mechanisms of transport through membranes, nerve impulse transmission, or information storage.  相似文献   

14.
Tyrosine kinases of the Src-family are large allosteric enzymes that play a key role in cellular signaling. Conversion of the kinase from an inactive to an active state is accompanied by substantial structural changes. Here, we construct a coarse-grained model of the catalytic domain incorporating experimental structures for the two stable states, and simulate the dynamics of conformational transitions in kinase activation. We explore the transition energy landscapes by constructing a structural network among clusters of conformations from the simulations. From the structural network, two major ensembles of pathways for the activation are identified. In the first transition pathway, we find a coordinated switching mechanism of interactions among the αC helix, the activation-loop, and the β strands in the N-lobe of the catalytic domain. In a second pathway, the conformational change is coupled to a partial unfolding of the N-lobe region of the catalytic domain. We also characterize the switching mechanism for the αC helix and the activation-loop in detail. Finally, we test the performance of a Markov model and its ability to account for the structural kinetics in the context of Src conformational changes. Taken together, these results provide a broad framework for understanding the main features of the conformational transition taking place upon Src activation.  相似文献   

15.
The conformational properties of wheat germ hexokinase LI, a monomeric enzyme showing non-Michaelian kinetics, have been studied by polarised pulse fluorimetry using synchrotron radiation as an excitation light source.The fluorescence decays and the fluorescence anisotropy decays of tryptophyl residues were measured with excitation at 300 nm. At pH 8.5, we found that the mnemonical temperature-dependent transition did not induce any detectable structural change in the protein. This rules out modifications of the aggregation state of hexokinase during the transition as well as important conformational changes in the tertiary structure. At pH 6.1, a temperature-dependent transition of the enzyme-glucose binary complex is observed: rapid, large amplitude, internal motions appear in the structure when the temperature is raised from-1°C to 30°C. Full standard activity is retained during this dynamic change.In the experiments described here we obtained an active fluorescent derivative by reacting hexokinase with N-(iodoacetylaminoethyl)-5-naphtylamine-1-sulfonic acid (1,5-IAEDANS), in the presence of glucose. Polarised fluorescence decay measurements indicate that the label is exposed to the solvent and very mobile, which makes it ineffective as a probe for the conformational properties of hexokinase.Abbreviations 1,5-IAEDANS N-(iodoacetylaminoethyl)-5-napthylamine-1-sulfonic acid - DTNB 5,5-dithiobis(2-nitrobenzoic acid)  相似文献   

16.
17.
By simulation of the circular dichroic spectra (Greenfield and Fasman (1969)) and using reference spectra of Chen et al. (1974), native ovalbumin was estimated to contain 33% -helix, 5% -structure, and 62% random coil. Ovalbumin resisted conformational changes in solutions of urea and of SDS. However, guanidine induced transition, starting at about 2 M and completing at about 4.5 M. At concentrations exceeding 4.5 M guanidine, ovalbumin existed as 6–7% -helical, 12–13% -structure, and 80–81% random coil. Ovalbumin after denaturation in 6 M guanidine or in 8 M urea (incubated at 4°C for 24 hr) did not recover the native conformation but acquired a new conformation in each case, with a somewhat destabilized helical structure.Abbreviation used CD circular dichroism - SDS sodium dodecyl sulfate  相似文献   

18.
The effects on amylose conformation of percentage water in dimethyl sulfoxide (DMSO)/water mixtures were measured by following changes in specific optical rotation, limiting viscosity number, and 13C-NMR chemical shifts. The temperature dependence of specific optical rotation showed differences in amylose conformation at four chosen ratios of dimethyl sulfoxide/water. An amylose conformational change was also deduced from 13C-NMR chemical shift data. Changes in limiting viscosity of amylose in different proportions of DMSO/water, and the effect of tetramethylurea on the specific rotation of amylose, indicate that intramolecular hydrogen bonding decreases with increased water content. 66.6% DMSO appears to be a crossover concentration, below which the helical conformation is progressively lost as water is added. When water content is over 60%, transition to a conformation which allows iodine complexation to take place is complete. A transition of amylose conformation from helix to loose helix to random coil with increasing water content was deduced from the experimental results.  相似文献   

19.
Recognition and biochemical processing of DNA requires that proteins and other ligands are able to distinguish their DNA binding sites from other parts of the molecule. In addition to the direct recognition elements embedded in the linear sequence of bases (i.e. hydrogen bonding sites), these molecular agents seemingly sense and/or induce an "indirect" conformational response in the DNA base-pairs that facilitates close intermolecular fitting. As part of an effort to decipher this sequence-dependent structural code, we have analyzed the extent of B-->A conformational conversion at individual base-pair steps in protein and drug-bound DNA crystal complexes. We take advantage of a novel structural parameter, the position of the phosphorus atom in the dimer reference frame, as well as other documented measures of local helical structure, e.g. torsion angles, base-pair step parameters. Our analysis pinpoints ligand-induced conformational changes that are difficult to detect from the global perspective used in other studies of DNA structure. The collective data provide new structural details on the conformational pathway connecting A and B-form DNA and illustrate how both proteins and drugs take advantage of the intrinsic conformational mechanics of the double helix. Significantly, the base-pair steps which exhibit pure A-DNA conformations in the crystal complexes follow the scale of A-forming tendencies exhibited by synthetic oligonucleotides in solution and the known polymorphism of synthetic DNA fibers. Moreover, most crystallographic examples of complete B-to-A deformations occur in complexes of DNA with enzymes that perform cutting or sealing operations at the (O3'-P) phosphodiester linkage. The B-->A transformation selectively exposes sugar-phosphate atoms, such as the 3'-oxygen atom, ordinarily buried within the chain backbone for enzymatic attack. The forced remodeling of DNA to the A-form also provides a mechanism for smoothly bending the double helix, for controlling the widths of the major and minor grooves, and for accessing the minor groove edges of individual base-pairs.  相似文献   

20.
The catalytic activity of thrombin and other enzymes of the blood coagulation and complement cascades is enhanced significantly by binding of Na+ to a site >15 Å away from the catalytic residue S195, buried within the 180 and 220 loops that also contribute to the primary specificity of the enzyme. Rapid kinetics support a binding mechanism of conformational selection where the Na+-binding site is in equilibrium between open (N) and closed (N) forms and the cation binds selectively to the N form. Allosteric transduction of this binding step produces enhanced catalytic activity. Molecular details on how Na+ gains access to this site and communicates allosterically with the active site remain poorly defined. In this study, we show that the rate of the NN transition is strongly correlated with the analogous EE transition that governs the interaction of synthetic and physiologic substrates with the active site. This correlation supports the active site as the likely point of entry for Na+ to its binding site. Mutagenesis and structural data rule out an alternative path through the pore defined by the 180 and 220 loops. We suggest that the active site communicates allosterically with the Na+ site through a network of H-bonded water molecules that embeds the primary specificity pocket. Perturbation of the mobility of S195 and its H-bonding capabilities alters interaction with this network and influences the kinetics of Na+ binding and allosteric transduction. These findings have general mechanistic relevance for Na+-activated proteases and allosteric enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号