首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have investigated by Southern blot hybridization the rate of IS10 transposition and other Tn10/IS10-promoted rearrangements in Escherichia coli and Salmonella strains bearing single chromosomal insertions of Tn10 or a related Tn10 derivative. We present evidence for three primary conclusions. First, the rate of IS10 transposition is approximately 10(-4) per cell per bacterial generation when overnight cultures are grown and plated on minimal media and is at least ten times more frequent than any other Tn10/IS10-promoted DNA alteration. Second, all of the chromosomal rearrangements observed can be accounted for by two previously characterized Tn10-promoted rearrangements: deletion/inversions and deletions. Together these rearrangements occur at about 10% the rate of IS10 transposition. Third, the data suggest that intramolecular Tn10-promoted rearrangements preferentially use nearby target sites, while the target sites for IS10 transposition events are scattered randomly around the chromosome.  相似文献   

2.
Abortive gap repair: underlying mechanism for Ds element formation.   总被引:6,自引:0,他引:6       下载免费PDF全文
The mechanism by which the maize autonomous Ac transposable element gives rise to nonautonomous Ds elements is largely unknown. Sequence analysis of native maize Ds elements indicates a complex chimeric structure formed through deletions of Ac sequences with or without insertions of Ac-unrelated sequence blocks. These blocks are often flanked by short stretches of reshuffled and duplicated Ac sequences. To better understand the mechanism leading to Ds formation, we designed an assay for detecting alterations in Ac using transgenic tobacco plants carrying a single copy of Ac. We found frequent de novo alterations in Ac which were excision rather than sequence dependent, occurring within Ac but not within an almost identical Ds element and not within a stable transposase-producing gene. The de novo DNA rearrangements consisted of internal deletions with breakpoints usually occurring at short repeats and, in some cases, of duplication of Ac sequences or insertion of Ac-unrelated fragments. The ancient maize Ds elements and the young Ds elements in transgenic tobacco showed similar rearrangements, suggesting that Ac-Ds elements evolve rapidly, more so than stable genes, through deletions, duplications, and reshuffling of their own sequences and through capturing of unrelated sequences. The data presented here suggest that abortive Ac-induced gap repair, through the synthesis-dependent strand-annealing pathway, is the underlying mechanism for Ds element formation.  相似文献   

3.
C Turlan  M Chandler 《The EMBO journal》1995,14(21):5410-5421
A system is described which permits visualization and analysis of a number of molecular species associated with transposition activity of the bacterial insertion sequence, IS1, in vivo. The technique involves induction of an IS1 transposase gene carried by a plasmid which also includes an IS1-based transposable element. It is, in principle, applicable to the identification of transposition intermediates as well as unstable transposition products and those which are not detectable by genetic means. Thirteen novel molecular species were detected after 4 h of induction. Five major species were characterized, based on their behaviour as a function of time, on their hybridization patterns and on the nucleotide sequences of the transposon-backbone junctions. All result from intramolecular IS1 transposition events. The two reciprocal partner products of IS1-mediated deletions, the intramolecular equivalent of co-integrates generated by intermolecular transposition, have been identified. Both carry a single copy of the transposable element and present complementary distributions of deletion endpoints. These results establish, by direct physical means, that adjacent IS1-mediated deletions are accompanied by duplication of the element. A second type of molecule identified was an excised circular copy of the transposon, raising the possibility that IS1 is capable of following an intermolecular transposition pathway, via excised transposon circles, leading to direct insertion.  相似文献   

4.
Martin C  Mackay S  Carpenter R 《Genetics》1988,119(1):171-184
The transposable element, Tam3, gives rise to large-scale (greater than 1 kb) chromosomal rearrangements at a low frequency, when it is inserted at the nivea locus of Antirrhinum majus. Although some deletions may result from imprecise excision of Tam3, rearrangements involving deletion, dispersion and inverted duplication of flanking sequences, where Tam3 remains in situ, have also been identified. These rearrangements have been mapped at the molecular level, and the behavior of Tam3 following rearrangement has been observed. It is clear that Tam3 has enormous potential to restructure chromosomes through successive rounds of large-scale rearrangements. The mechanisms by which such rearrangements might arise are discussed.  相似文献   

5.
The maize Ac/Ds transposable element (TE) transposes by a "cut and paste" mechanism. Previous studies in maize showed that when the TE ends are in reversed orientation with respect to each other, alternative transposition reactions can occur resulting in large scale genome rearrangements including deletions and inversions. To test whether similar genome rearrangements can also occur in other plants, we studied the efficacy of such alternative transposition-mediated genome rearrangements in Arabidopsis. Here we present our analysis of 33 independent chromosome rearrangements. Transposition at the reversed ends Ds element can cause deletions over 1 Mbp, and inversions up to 2.4 Mbp in size. We identified additional rearrangements including a reciprocal translocation and a putative ring chromosome. Some of the deletions and inversions are germinally transmitted.  相似文献   

6.
Genetic studies of the hemB gene in Escherichia coli have resulted in the recovery of both stable and unstable mutant strains. The stable strains have been shown to result from large deletions. This study demonstrates that unstable strains result from the insertion of transposable element IS2 primarily into the 5' region of the structural gene; the instability results from precise excision of the element, producing strains with both high and low frequencies of reversion. This first report of IS2 insertion into hemB suggests that this gene may be a preferred target for insertion of this transposable element.  相似文献   

7.
Is10 Promotes Adjacent Deletions at Low Frequency   总被引:4,自引:2,他引:2       下载免费PDF全文
Some transposable elements move by a replicative mechanism involving cointegrate formation. Intramolecular cointegration can generate a product called an ``adjacent deletion' in which a contiguous chromosomal segment adjacent to the transposon is deleted while the element responsible remains intact. Insertion sequence IS10 is thought to transpose by a nonreplicative mechanism. In the simplest models, nonreplicative transposition cannot give rise to an adjacent deletion because an intrinsic feature of such transposition is excision of the IS element from the donor location. We report here that IS10 can generate adjacent deletions, but at a frequency which is approximately 1/30th the frequency of transposition for the same element. We suggest that these deletions might arise either by nonreplicative transposition events that involve two IS10 elements located on sister chromosomes or by aberrant nonreplicative events involving cleavage and ligation at only one end of the element.  相似文献   

8.
Lin S  Haas S  Zemojtel T  Xiao P  Vingron M  Li R 《Gene》2011,473(2):139-149
Transposable elements are widely distributed in archaea, bacteria and eukarya domains. Considerable discrepancies of transposable elements in eukaryotes have been reported, however, the studies focusing on the diversity of transposable element systems in prokaryotes were scarce. Understanding the transposable element system in cyanobacteria by the genome-wide analysis will greatly improve the knowledge of cyanobacterial diversity. In this study, the transposable elements of seventeen cyanobacterial genomes were analyzed. The abundance of insertion sequence (IS) elements differs significantly among the cyanobacterial genomes examined. In particular, water bloom forming Microcystis aeruginosa NIES843 was shown to have the highest abundance of IS elements reaching 10.85% of the genome. IS family is a widely acceptable IS classification unit, and IS subfamily, based on probe sequences, was firstly proposed as the basic classification unit for IS element system, therefore both IS family and IS subfamily were suggested as the two hierarchical units for evaluating the IS element system diversity. In total, 1980 predicted IS elements, within 21 IS families and 132 subfamilies, were identified in the examined cyanobacterial genomes. Families IS4, IS5, IS630 and IS200-605 are widely distributed, and therefore supposed to be the ancestral IS families. Analysis on the intactness of IS elements showed that the percentage of the intact IS differs largely among these cyanobacterial strains. Higher percentage of the intact IS detected in the two hot spring cyanobacterial strains implied that the intactness of IS elements may be related to the genomic stabilization of cyanobacteria inhabiting in the extreme environments. The frequencies between IS elements and miniature inverted-repeat transposable elements (MITEs) were shown to have a linear positive correlation. The transposable element system in cyanobacterial genomes is of hypervariability. With characterization of easy definition and stability, IS subfamily is considered as a reliable lower classification unit in IS element system. The abundance of intact IS, the composition of IS families and subfamilies, the sequence diversity of IS element nucleotide and transposase amino acid are informative and suitable as the indicators for studies on cyanobacterial diversity. Practically, the transposable system may provide us a new perspective to realize the diversity and evolution of populations of water bloom forming cyanobacterial species.  相似文献   

9.
A deletion analysis of transposon Tn9   总被引:2,自引:0,他引:2  
  相似文献   

10.
O Amster  A Zamir 《FEBS letters》1986,197(1-2):93-98
Electrophoretic resolution of topoisomers was used to compare the in vivo superhelicity of recombinant plasmids containing a fragment of cDNA for an immunoglobulin light chain, cloned in the two possible orientations into the BamHI site of pBR313 or pBR322. Previously, frequent transpositions of IS1 or IS5 were observed into the sequence upstream to the cloned fragment in recombinants in one orientation [(+) plasmids] but not in recombinants in the opposite, (-) orientation [(1982) Nucleic Acids Res. 10, 4525-4542]. The results of the present analyses show that, on average, (-) plasmids are less negatively supercoiled than (+) plasmids, or pBR322. These results suggest that primary sequence rearrangements in plasmids could affect their in vivo topological state, and consequently, perhaps, their effectiveness as recipients of transposable elements.  相似文献   

11.
P Prentki  A Binda  A Epstein 《Gene》1991,103(1):17-23
We have constructed two plasmid vectors which allow selection for in vivo deletions within cloned DNA fragments. The plasmids are derivatives of pBR322 which carry the Escherichia coli rpsL (strA) gene, known to confer a dominant streptomycin (Sm)-sensitivity phenotype to the host cell, and a copy of the IS1 transposable element. Sm-resistant strains that harbor these plasmids display sensitivity to Sm. Spontaneous IS1-promoted deletions across the rpsL gene can be isolated simply by selection for Sm resistance. Hence, nested sets of deletions of a cloned DNA can be obtained and sequenced with an IS1-specific primer. Using this approach, we have determined the complete nucleotide sequence of the omega interposon [Prentki and Krisch, Gene 29 (1984) 303-313].  相似文献   

12.
A series of plasmids carrying an IRL-kan-IRR transposable cassette, in which IRL and IRR are the left- and right-terminal sequences of IS91, have been constructed. These cassettes could be complemented for transposition with similar efficiency when IS91 transposase was provided either in cis or in trans. A total of 87% of IS91 transposition products were simple insertions of the element, while the remaining 13% were plasmid fusions and co-integrates. When transposase expression was induced from an upstream lac promoter, transposition frequency increased approximately 100-fold. An open reading frame (ORF) present upstream of the transposase gene, ORF121, could be involved in target selection, as mutations affecting this ORF were altered in their insertion specificity. Intramolecular rearrangements were analysed by looking at transposition events disrupting a chloramphenicol resistance gene (cat ) located outside the transposable cassette. Plasmid instability resulting from insertion of an extra copy of IRL-kan-IRR within the cat gene was observed; transposition products contained a second copy of the cassette inserted either as a direct or as an inverted repeat. No deletion or inversion of the intervening DNA was observed. These results could be explained as a consequence of intramolecular transposition of IS91 according to a model of rolling-circle transposition.  相似文献   

13.
Ling A  Cordaux R 《PloS one》2010,5(12):e15654
Transposable elements are widely distributed and diverse in both eukaryotes and prokaryotes, as exemplified by DNA transposons. As a result, they represent a considerable source of genomic variation, for example through ectopic (i.e. non-allelic homologous) recombination events between transposable element copies, resulting in genomic rearrangements. Ectopic recombination may also take place between homologous sequences located within transposable element sequences. DNA transposons are typically bounded by terminal inverted repeats (TIRs). Ectopic recombination between TIRs is expected to result in DNA transposon inversions. However, such inversions have barely been documented. In this study, we report natural inversions of the most common prokaryotic DNA transposons: insertion sequences (IS). We identified natural TIR-TIR recombination-mediated inversions in 9% of IS insertion loci investigated in Wolbachia bacteria, which suggests that recombination between IS TIRs may be a quite common, albeit largely overlooked, source of genomic diversity in bacteria. We suggest that inversions may impede IS survival and proliferation in the host genome by altering transpositional activity. They may also alter genomic instability by modulating the outcome of ectopic recombination events between IS copies in various orientations. This study represents the first report of TIR-TIR recombination within bacterial IS elements and it thereby uncovers a novel mechanism of structural variation for this class of prokaryotic transposable elements.  相似文献   

14.
The genome of Sulfolobus solfataricus P2 carries a larger number of transposable elements than any other sequenced genome from an archaeon or bacterium and, as a consequence, may be particularly susceptible to rearrangement and change. In order to gain more insight into the natures and frequencies of different types of mutation and possible rearrangements that can occur in the genome, the pyrEF locus was examined for mutations that were isolated after selection with 5-fluoroorotic acid. About two-thirds of the 130 mutations resulted from insertions of mobile elements, including insertion sequence (IS) elements and a single nonautonomous mobile element, SM2. For each of these, the element was identified and shown to be present at its original genomic position, consistent with a progressive increase in the copy numbers of the mobile elements. In addition, several base pair substitutions, as well as small deletions, insertions, and a duplication, were observed, and about one-fifth of the mutations occurred elsewhere in the genome, possibly in an orotate transporter gene. One mutant exhibited a 5-kb genomic rearrangement at the pyrEF locus involving a two-step IS element-dependent reaction, and its boundaries were defined using a specially developed "in vitro library" strategy. Moreover, while searching for the donor mobile elements, evidence was found for two major changes that had occurred in the genome of strain P2, one constituting a single deletion of about 4% of the total genome (124 kb), while the other involved the inversion of a 25-kb region. Both were bordered by IS elements and were inferred to have arisen through recombination events. The results underline the caution required in working experimentally with an organism such as S. solfataricus with a continually changing genome.  相似文献   

15.
The prokaryotic transposable element IS1 is known to exert a strong polar effect upon integration into an operon. To elucidate this polar effect, we constructed a plasmid which has an IS1 integrated between the 5' half of the tet gene for tetracycline resistance and the cat structural gene for chloramphenicol resistance. The cat gene is expressed by the tet promoter and the presence of IS1 in orientation I, in which the IS1 transposase genes insA and insB are in the same orientation as the cat gene, reduced the cat expression. By introducing deletions or insertions within the IS1 sequence, we were able to map a rho-dependent terminator TIS1A between the insA and insB genes. Translational interruption between these ins genes is important for TIS1A to be an active terminator.  相似文献   

16.
The 37 kb transposable bacteriophage Mu genome encodes a transposase protein which can recognize and bind to a consensus sequence repeated three times at each extremity of its genome. A subset of this consensus sequence (5'-PuCGAAA(A)-3') is found in the ends of many class II prokaryotic transposable elements. These elements, like phage Mu, cause 5 bp duplications at the site of element insertion, and transpose by a cointegrate mechanism. Using the band retardation assay, we have found that crude protein extracts containing overexpressed Mu transposase can form high-affinity protein-DNA complexes with Mu att R and the ends of the class II elements Tn 3 (right) and IS101. No significant protein-DNA complex formation was observed with DNA fragments containing the right end of the element IS102, or a non-specific pBR322 fragment of similar size. These results suggest that the Mu transposase protein can specifically recognize the ends of other class II transposable elements and that these elements may be evolutionarily related.  相似文献   

17.
Chromosomal rearrangements associated with one Ty1 element in the iso-1-cytochrome c (CYC1) region of Saccharomyces cerevisiae yeast cells were examined. Most of the rearrangements were deletions of the three linked genes, CYC1, OSM1, and RAD7, and resulted from recombination involving the single Ty1 element and a solo delta in the same orientation. These deletions differed by the number of Ty1 elements (zero, one, or two) remaining after deletion and by restriction site heterogeneities associated with these elements. A single Ty1 element remained at the deletion junction point much more frequently than no Ty1. Apparently the Ty1-associated delta element nearer to the solo delta was involved more often in recombination than the more distal Ty1-associated delta element. The restriction site data implicate gene conversion and suggest that site-specific recombination within the deltas, if occurring, is not the only mechanism of delta-delta recombination. Three other rearrangements bore deletions which began at the end of the Ty1 element and extended into regions not bearing Ty1 or delta sequences. Two of these deletions eliminated 7 kilobases of DNA, although they differed by an associated reciprocal translocation. The third involved a deletion of 14.7 kilobases of DNA associated with an overlapping inversion.  相似文献   

18.
A derivative of Tn5 with direct terminal repeats can transpose   总被引:9,自引:0,他引:9  
The 5.7 kb4 transposable kanamycin resistance determinant Tn5 contains 1.5 kb terminal inverted repeats which we here call arms. Tn5's arms contain the genes and sites necessary for Tn5 transposition, and are not homologous to previously described transposable elements. To determine whether one or both arms is a transposable (IS) element, we transposed Tn5 to pBR322 and used restriction endonuclease digestion and ligation in vitro to generate plasmid derivatives designated pTn5-DR1 and pTn5-DR2 in which Tn5's arms were present in direct rather than in inverted orientation. Analysis of transposition products from dimeric forms of the pTn5-DR1 plasmid to phage λ showed that the outside and inside termini of right and of left arms could function in transposition. We conclude that both of Tn5's arms are transposable elements and name them IS50L (left) and IS50R (right). IS50R, which encodes transposase, was used several-fold more frequently than IS50L, which contain an ochre mutant allele of transposase: this implies that Tn5's transposase acts preferentially on the DNA segment which encodes it. Analysis of transpositions of the amprkanr element Tn5-DR2 to the lac operon showed that Tn5-DR2, like Tn5 wild-type, exhibits regional preference without strict site specificity in the choice of insertion sites.  相似文献   

19.
G C Machray  D Vakeria  G A Codd  W D Stewart 《Gene》1988,67(2):301-305
A cloned DNA fragment, previously demonstrated to encode ribulose bisphosphate carboxylase/oxygenase (RuBisCO) of Chlorogloeopsis fritschii strain CCAP1411/1b, is shown also to include the entire transposable element, IS2, normally a resident in the Escherichia coli genome. Southern-blot hybridisation experiments confirm the presence of IS2 in the C. fritschii genome. This finding adds a new and unrelated species to the known host range of this element and provides evidence of genetic transfer between the Gram-negative E. coli and cyanobacteria. This may also have significance in relation to the nucleotide sequence rearrangements known to occur adjacent to RuBisCO and nif genes in other nitrogen-fixing cyanobacteria.  相似文献   

20.
The Hardness (Ha) locus controls grain hardness in hexaploid wheat (Triticum aestivum) and its relatives (Triticum and Aegilops species) and represents a classical example of a trait whose variation arose from gene loss after polyploidization. In this study, we investigated the molecular basis of the evolutionary events observed at this locus by comparing corresponding sequences of diploid, tertraploid, and hexaploid wheat species (Triticum and Aegilops). Genomic rearrangements, such as transposable element insertions, genomic deletions, duplications, and inversions, were shown to constitute the major differences when the same genomes (i.e., the A, B, or D genomes) were compared between species of different ploidy levels. The comparative analysis allowed us to determine the extent and sequences of the rearranged regions as well as rearrangement breakpoints and sequence motifs at their boundaries, which suggest rearrangement by illegitimate recombination. Among these genomic rearrangements, the previously reported Pina and Pinb genes loss from the Ha locus of polyploid wheat species was caused by a large genomic deletion that probably occurred independently in the A and B genomes. Moreover, the Ha locus in the D genome of hexaploid wheat (T. aestivum) is 29 kb smaller than in the D genome of its diploid progenitor Ae. tauschii, principally because of transposable element insertions and two large deletions caused by illegitimate recombination. Our data suggest that illegitimate DNA recombination, leading to various genomic rearrangements, constitutes one of the major evolutionary mechanisms in wheat species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号