首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DEG/ENaC channel subunits are two transmembrane domain proteins that assemble into heteromeric complexes to perform diverse biological functions that include sensory perception, electrolyte balance, and synaptic plasticity. Hyperactivation of neuronally expressed DEG/ENaCs that conduct both Na+ and Ca2+, however, can potently induce necrotic neuronal death in vivo. For example, Caenorhabditis elegans DEG/ENaC MEC-4 comprises the core subunit of a touch-transducing ion channel critical for mechanosensation that when hyperactivated by a mec-4(d) mutation induces necrosis of the sensory neurons in which it is expressed. Thus, studies of the MEC-4 channel have provided insight into both normal channel biology and neurotoxicity mechanisms. Here we report on intragenic mec-4 mutations identified in a screen for suppressors of mec-4(d)-induced necrosis, with a focus on detailed characterization of allele bz2 that has the distinctive phenotype of inducing dramatic neuronal swelling without being fully penetrant for toxicity. The bz2 mutation encodes substitution A745T, which is situated in the intracellular C-terminal domain of MEC-4. We show that this substitution renders both MEC-4 and MEC-4(d) activity strongly temperature sensitive. In addition, we show that both in Xenopus oocytes and in vivo, substitution A745T disrupts channel trafficking or maintenance of the MEC-4 subunit at the cell surface. This is the first demonstration of a C-terminal domain that affects trafficking of a neuronally expressed DEG/ENaC. Moreover, this study reveals that neuronal swelling occurs prior to commitment to necrotic death and defines a powerful new tool for inducible necrosis initiation.  相似文献   

2.
Ion channel hyperactivation can result in neuronal loss in injury, stroke and neurodegenerative disease. Acidosis-associated hyperactivation of the Degenerin/epithelial amiloride-sensitive Na(+) channel (DEG/ENaC) acid-sensing ion channel 1a (ASIC1a), a proton-gated channel expressed in the mammalian brain, contributes significantly to neuronal loss in ischemia. Analogously, in invertebrates, genetic hyperactivation of the Caenorhabditis elegans mechanosensory (MEC) channel (MEC-4(d)) of the DEG/ENaC ion channel superfamily induces neuronal necrosis. Similarly substituted MEC-10(d) mutant subunits of the same MEC channel are only marginally neurotoxic, and we therefore exploited the weak necrosis phenotype of mec-10(d) lines to screen for novel extragenic mutations that enhance neuronal death. Here, we report on one mec-10(d) necrosis enhancer, which we show is MEC-4 variant MEC-4(A149V). MEC-4(A149V) executes normal MEC-4 function in touch sensation and does not induce necrosis on its own, but rather combines with MEC-10(d) to create a strongly neurotoxic channel. The MEC-4(A149V)+MEC-10(d) channel conducts elevated Na(+) and Ca(2+) currents (with a disproportionate increase in Ca(2+) current) in the Xenopus oocyte expression system, and exhibits altered binding of the channel inhibitor amiloride. Our data document the first example of synergistically toxic intersubunit interactions in the DEG/ENaC channel class and provide evidence that Ca(2+) current levels may be decisive factors in tipping the balance between neuronal survival and necrosis.  相似文献   

3.
Recent studies have suggested a central role for Ca(2+) in the signaling pathway of apoptosis and certain anti-apoptotic effects of Bcl-2 family of proteins have been attributed to changes in intracellular Ca(2+) homeostasis. Here we report that depletion of Ca(2+) from endoplasmic reticulum (ER) leads to apoptosis in Chinese hamster ovary cells. Stable expression of ryanodine receptor (RyR) in these cells enables rapid and reversible changes of both cytosolic Ca(2+) and ER Ca(2+) content via activation of the RyR/Ca(2+) release channel by caffeine and ryanodine. Sustained depletion of the ER Ca(2+) store leads to apoptosis in Chinese hamster ovary cells, whereas co-expression of Bcl-xL and RyR in these cells prevents apoptotic cell death but not necrotic cell death. The anti-apoptotic effect of Bcl-xL does not correlate with changes in either the Ca(2+) release process from the ER or the capacitative Ca(2+) entry through the plasma membrane. The data suggest that Bcl-xL likely prevents apoptosis of cells at a stage downstream of ER Ca(2+) release and capacitative Ca(2+) entry.  相似文献   

4.
Functional specialization of calreticulin domains   总被引:5,自引:0,他引:5       下载免费PDF全文
Calreticulin is a Ca2+-binding chaperone in the endoplasmic reticulum (ER), and calreticulin gene knockout is embryonic lethal. Here, we used calreticulin-deficient mouse embryonic fibroblasts to examine the function of calreticulin as a regulator of Ca2+ homeostasis. In cells without calreticulin, the ER has a lower capacity for Ca2+ storage, although the free ER luminal Ca2+ concentration is unchanged. Calreticulin-deficient cells show inhibited Ca2+ release in response to bradykinin, yet they release Ca2+ upon direct activation with the inositol 1,4,5-trisphosphate (InsP3). These cells fail to produce a measurable level of InsP3 upon stimulation with bradykinin, likely because the binding of bradykinin to its cell surface receptor is impaired. Bradykinin binding and bradykinin-induced Ca2+ release are both restored by expression of full-length calreticulin and the N + P domain of the protein. Expression of the P + C domain of calreticulin does not affect bradykinin-induced Ca2+ release but restores the ER Ca2+ storage capacity. Our results indicate that calreticulin may play a role in folding of the bradykinin receptor, which affects its ability to initiate InsP3-dependent Ca2+ release in calreticulin-deficient cells. We concluded that the C domain of calreticulin plays a role in Ca2+ storage and that the N domain may participate in its chaperone functions.  相似文献   

5.
To study the role of calreticulin in Ca(2+) homeostasis and apoptosis, we generated cells inducible for full-length or truncated calreticulin and measured Ca(2+) signals within the cytosol, the endoplasmic reticulum (ER), and mitochondria with "cameleon" indicators. Induction of calreticulin increased the free Ca(2+) concentration within the ER lumen, [Ca(2+)](ER), from 306 +/- 31 to 595 +/- 53 microm, and doubled the rate of ER refilling. [Ca(2+)](ER) remained elevated in the presence of thapsigargin, an inhibitor of SERCA-type Ca(2+) ATPases. Under these conditions, store-operated Ca(2+) influx appeared inhibited but could be reactivated by decreasing [Ca(2+)](ER) with the low affinity Ca(2+) chelator N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine. In contrast, [Ca(2+)](ER) decreased much faster during stimulation with carbachol. The larger ER release was associated with a larger cytosolic Ca(2+) response and, surprisingly, with a shorter mitochondrial Ca(2+) response. The reduced mitochondrial signal was not associated with visible morphological alterations of mitochondria or with disruption of the contacts between mitochondria and the ER but correlated with a reduced mitochondrial membrane potential. Altered ER and mitochondrial Ca(2+) responses were also observed in cells expressing an N-truncated calreticulin but not in cells overexpressing calnexin, a P-domain containing chaperone, indicating that the effects were mediated by the unique C-domain of calreticulin. In conclusion, calreticulin overexpression increases Ca(2+) fluxes across the ER but decreases mitochondrial Ca(2+) and membrane potential. The increased Ca(2+) turnover between the two organelles might damage mitochondria, accounting for the increased susceptibility of cells expressing high levels of calreticulin to apoptotic stimuli.  相似文献   

6.
P2X7 receptor (P2X7R) activation by extracellular ATP triggers influx of Na(+) and Ca(2+), cytosolic Ca(2+) overload and consequently cytotoxicity. Whether disturbances in endoplasmic reticulum (ER) Ca(2+) homeostasis and ER stress are involved in P2X7R-mediated cell death is unknown. In this study, a P2X7R agonist (BzATP) was used to activate P2X7R in differentiated NG108-15 neuronal cells. In a concentration-dependent manner, application of BzATP (10-100 μM) immediately raised cytosolic Ca(2+) concentration ([Ca(2+)]i) and caused cell death after a 24-h incubation. P2X7R activation for 2 h did not cause cell death but resulted in a sustained reduction in ER Ca2+ pool size, as evidenced by a diminished cyclopiazonic acid-induced Ca(2+) discharge (fura 2 assay) and a lower fluorescent signal in cells loaded with Mag-fura 2 (ER-specific Ca(2+)-fluorescent dye). Furthermore, P2X7R activation (2 h) led to the appearance of markers of ER stress [phosphorylated α subunit of eukaryotic initiation factor 2 (p-eIF2α) and C/EBP homologous protein (CHOP)] and apoptosis (cleaved caspase 3). Xestospongin C (XeC), an antagonist of inositol-1,4,5-trisphosphate (IP3) receptor (IP3R), strongly inhibited BzATP-triggered [Ca(2+)]i elevation, suggesting that the latter involved Ca(2+) release via IP3R. XeC pretreatment not only attenuated the reduction in Ca(2+) pool size in BzATP-treated cells, but also rescued cell death and prevented BzATP-induced appearance of ER stress and apoptotic markers. These novel observations suggest that P2X7R activation caused not only Ca(2+) overload, but also Ca(2+) release via IP3R, sustained Ca(2+) store depletion, ER stress and eventually apoptotic cell death.  相似文献   

7.
Calreticulin is an endoplasmic reticulum (ER) luminal Ca(2+)-binding chaperone involved in folding of newly synthesized glycoproteins via the "calreticulin-calnexin cycle." We reconstituted ER of calreticulin-deficient cells with N-terminal histidine (His25, His82, His128, and His153) calreticulin mutants and carried out a functional analysis. In crt(-/-) cells bradykinin-dependent Ca2+ release is altered, and the reestablishment of bradykinin-dependent Ca2+ release was used as a marker for calreticulin function. Bradykinin-dependent Ca2+ release from the ER was rescued by wild type calreticulin and by the His25, His82, or His128 mutant but not by the His153 mutant. Wild type calreticulin and the His25, His82, and His128 mutants all prevented in vitro thermal aggregation of malate dehydrogenase and IgY, whereas the His153 mutant did not, indicating that His153 chaperone function was impaired. Biophysical analysis of His153 mutant revealed that conformation changes in calreticulin mutant may be responsible for the loss of its chaperone activity. We conclude that mutation of a single amino acid residue in calreticulin has devastating consequences for its chaperone function, indicating that mutations in chaperones may play a significant role in protein folding disorders.  相似文献   

8.
Defecation in the nematode Caenorhabditis elegans is a readily observable ultradian behavioral rhythm that occurs once every 45-50 s and is mediated in part by posterior body wall muscle contraction (pBoc). pBoc is not regulated by neural input but instead is likely controlled by rhythmic Ca(2+) oscillations in the intestinal epithelium. We developed an isolated nematode intestine preparation that allows combined physiological, genetic, and molecular characterization of oscillatory Ca(2+) signaling. Isolated intestines loaded with fluo-4 AM exhibit spontaneous rhythmic Ca(2+) oscillations with a period of approximately 50 s. Oscillations were only detected in the apical cell pole of the intestinal epithelium and occur as a posterior-to-anterior moving intercellular Ca(2+) wave. Loss-of-function mutations in the inositol-1,4,5-trisphosphate (IP(3)) receptor ITR-1 reduce pBoc and Ca(2+) oscillation frequency and intercellular Ca(2+) wave velocity. In contrast, gain-of-function mutations in the IP(3) binding and regulatory domains of ITR-1 have no effect on pBoc or Ca(2+) oscillation frequency but dramatically increase the speed of the intercellular Ca(2+) wave. Systemic RNA interference (RNAi) screening of the six C. elegans phospholipase C (PLC)-encoding genes demonstrated that pBoc and Ca(2+) oscillations require the combined function of PLC-gamma and PLC-beta homologues. Disruption of PLC-gamma and PLC-beta activity by mutation or RNAi induced arrhythmia in pBoc and intestinal Ca(2+) oscillations. The function of the two enzymes is additive. Epistasis analysis suggests that PLC-gamma functions primarily to generate IP(3) that controls ITR-1 activity. In contrast, IP(3) generated by PLC-beta appears to play little or no direct role in ITR-1 regulation. PLC-beta may function instead to control PIP(2) levels and/or G protein signaling events. Our findings provide new insights into intestinal cell Ca(2+) signaling mechanisms and establish C. elegans as a powerful model system for defining the gene networks and molecular mechanisms that underlie the generation and regulation of Ca(2+) oscillations and intercellular Ca(2+) waves in nonexcitable cells.  相似文献   

9.
Intercellular communication between germ cells and neighboring somatic cells is essential for reproduction. Caenorhabditis elegans oocytes are surrounded by and coupled via gap junctions to smooth muscle-like myoepithelial sheath cells. Rhythmic sheath cell contraction drives ovulation and is triggered by a factor secreted from oocytes undergoing meiotic maturation. We demonstrate for the first time that signaling through the epidermal growth factor-like ligand LIN-3 and the LET-23 tyrosine kinase receptor induces ovulatory contractions of sheath cells. Reduction-of-function mutations in the inositol 1,4,5-trisphosphate (IP(3)) receptor gene itr-1 and knockdown of itr-1 expression by RNA interference inhibit sheath contractile activity. itr-1 gain-of-function mutations increase the rate and force of basal contractions and induce tonic sheath contraction during ovulation. Sheath contractile activity is disrupted by RNAi of plc-3, one of six phospholipase C-encoding genes in the C. elegans genome. PLC-3 is a PLC-gamma homolog and is expressed in contractile sheath cells of the proximal gonad. Maintenance of sheath contractile activity requires plasma membrane Ca(2+) entry. We conclude that IP(3) generated by LET-23 mediated activation of PLC-gamma induces repetitive intracellular Ca(2+) release that drives rhythmic sheath cell contraction. Calcium entry may function to trigger Ca(2+) release via IP(3) receptors and/or refill intracellular Ca(2+) stores.  相似文献   

10.
Epithelial cells in the urinary bladder (urothelium) trigger sensory signals in micturition by releasing ATP in response to distention of the bladder wall. Our previous study revealed the distinct roles of extracellular Ca(2+) and the Ca(2+) stores in the endoplasmic reticulum (ER) in urothelial ATP release. In the present study, we investigated the regulation of urothelial ATP release by Ca(2+) influx from the extracellular space and Ca(2+) release from the ER using a distention assay of the mouse bladder wall in a small Ussing chamber. Stimulation of Ca(2+) release from the ER in the mucosal side of the bladder induced significant ATP release without distention. Blockade of the inositol 1,4,5-triphosphate receptor reduced distention-induced ATP release, suggesting that Ca(2+) release from the ER is essential for the induction of urothelial ATP release. On the other hand, blockade of store-operated Ca(2+) entry (SOCE) from the extracellular space significantly enhanced distention-induced ATP release. Thus Ca(2+) release from the ER causes urothelial ATP release and depletion of Ca(2+) stores in the ER, which in turn causes the depletion-inducing SOCE to suppress the amount of urothelial ATP released.  相似文献   

11.
Interleukin-1 (IL-1)-induced Ca2+ signaling in fibroblasts is constrained by focal adhesions. This process involves the proteintyrosine phosphatase SHP-2, which is critical for IL-1-induced phosphorylation of phospholipase Cgamma1, thereby enhancing IL-1-induced Ca2+ release and ERK activation. Currently, the mechanisms by which SHP-2 modulates Ca2+ release from the endoplasmic reticulum are not defined. We used immunoprecipitation and fluorescence protein-tagged SHP-2 or endoplasmic reticulum (ER)-protein expression vectors, and an ER-specific calcium indicator, to examine the functional relationships between SHP-2, focal adhesions, and IL-1-induced Ca2+ release from the ER. By total internal reflection fluorescence microscopy to image subplasma membrane compartments, SHP-2 co-localized with the ER-associated proteins calnexin and calreticulin at sites of focal adhesion formation in fibroblasts. IL-1beta promoted time-dependent recruitment of SHP-2 and ER proteins to focal adhesions; this process was blocked in cells treated with small interfering RNA for SHP-2 and in cells expressing a Y542F SHP-2 mutant. IL-1 stimulated inositol 1,4,5-trisphosphate receptor-mediated Ca2+ release from the ER subjacent to the plasma membrane that was tightly localized around fibronectin-coated beads and was reduced 4-fold in cells expressing Tyr-542 SHP-2 mutant. In subcellular fractions enriched for ER proteins, immunoprecipitation demonstrated that IL-1-enhanced association of SHP-2 with the type 1 inositol 1,4,5-trisphosphate receptor was dependent on Tyr-542 of SHP-2. We conclude that Tyr-542 of SHP-2 modulates IL-1-induced Ca2+ signals and association of the ER with focal adhesions.  相似文献   

12.
We address the specific role of cytoplasmic Ca(2+) overload as a cell death trigger by expressing a receptor-operated specific Ca(2+) channel, vanilloid receptor subtype 1 (VR1), in Jurkat cells. Ca(2+) uptake through the VR1 channel, but not capacitative Ca(2+) influx stimulated by the muscarinic type 1 receptor, induced sustained intracellular [Ca(2+)] rises, exposure of phosphatidylserine, and cell death. Ca(2+) influx was necessary and sufficient to induce mitochondrial damage, as assessed by opening of the permeability transition pore and collapse of the mitochondrial membrane potential. Ca(2+)-induced cell death was inhibited by ruthenium red, protonophore carbonyl cyanide m-chlorophenylhydrazone, or cyclosporin A treatment, as well as by Bcl-2 expression, indicating that this process requires mitochondrial calcium uptake and permeability transition pore opening. Cell death occurred without caspase activation, oligonucleosomal/50-kilobase pair DNA cleavage, or release of cytochrome c or apoptosis inducer factor from mitochondria, but it required oxidative/nitrative stress. Thus, Ca(2+) influx triggers a distinct program of mitochondrial dysfunction leading to paraptotic cell death, which does not fulfill the criteria for either apoptosis or necrosis.  相似文献   

13.
Necrosis is associated with an increase in plasma membrane permeability, cell swelling, and loss of membrane integrity with subsequent release of cytoplasmic constituents. Severe redox imbalance by overproduction of reactive oxygen species is one of the main causes of necrosis. Here we demonstrate that H(2)O(2) induces a sustained activity of TRPM4, a Ca(2+)-activated, Ca(2+)-impermeant nonselective cation channel resulting in an increased vulnerability to cell death. In HEK 293 cells overexpressing TRPM4, H(2)O(2) was found to eliminate in a dose-dependent manner TRPM4 desensitization. Site-directed mutagenesis experiments revealed that the Cys(1093) residue is crucial for the H(2)O(2)-mediated loss of desensitization. In HeLa cells, which endogenously express TRPM4, H(2)O(2) elicited necrosis as well as apoptosis. H(2)O(2)-mediated necrosis but not apoptosis was abolished by replacement of external Na(+) ions with sucrose or the non-permeant cation N-methyl-d-glucamine and by knocking down TRPM4 with a shRNA directed against TRPM4. Conversely, transient overexpression of TRPM4 in HeLa cells in which TRPM4 was previously silenced re-established vulnerability to H(2)O(2)-induced necrotic cell death. In addition, HeLa cells exposed to H(2)O(2) displayed an irreversible loss of membrane potential, which was prevented by TRPM4 knockdown.  相似文献   

14.
Previous studies have demonstrated that Ca(2+) is released from the endoplasmic reticulum (ER) in some models of apoptosis, but the mechanisms involved and the functional significance remain obscure. We confirmed that apoptosis induced by some (but not all) proapoptotic stimuli was associated with caspase-independent, BCL-2-sensitive emptying of the ER Ca(2+) pool in human PC-3 prostate cancer cells. This mobilization of ER Ca(2+) was associated with a concomitant increase in mitochondrial Ca(2+) levels, and neither ER Ca(2+) mobilization nor mitochondrial Ca(2+) uptake occurred in Bax-null DU-145 cells. Importantly, restoration of DU-145 Bax expression via adenoviral gene transfer restored ER Ca(2+) release and mitochondrial Ca(2+) uptake and dramatically accelerated the kinetics of staurosporine-induced cytochrome c release, demonstrating a requirement for Bax expression in this model system. In addition, an inhibitor of the mitochondrial Ca(2+) uniporter (RU-360) attenuated mitochondrial Ca(2+) uptake, cytochrome c release, and DNA fragmentation, directly implicating the mitochondrial Ca(2+) changes in cell death. Together, our data demonstrate that Bax-mediated alterations in ER and mitochondrial Ca(2+) levels serve as important upstream signals for cytochrome c release in some examples of apoptosis.  相似文献   

15.
Calcium signal transmission between endoplasmic reticulum (ER) and mitochondria is supported by a local [Ca(2+)] control that operates between IP(3)receptor Ca(2+)release channels (IP(3)R) and mitochondrial Ca(2+)uptake sites, and displays functional similarities to synaptic transmission. Activation of IP(3)R by IP(3)is known to evoke quantal Ca(2+)mobilization that is associated with incremental elevations of mitochondrial matrix [Ca(2+)] ([Ca(2+)](m)). Here we report that activation of IP(3)R by adenophostin-A (AP) yields non-quantal Ca(2+)mobilization in mast cells. We also show that the AP-induced continuous Ca(2+)release causes relatively small [Ca(2+)](m)responses, in particular, the sustained phase of Ca(2+)release is not sensed by the mitochondria. Inhibition of ER Ca(2+)pumps by thapsigargin slightly increases IP(3)-induced [Ca(2+)](m)responses, but augments AP-induced [Ca(2+)](m)responses in a large extent. In adherent permeabilized cells exposed to elevated [Ca(2+)], ER Ca(2+)uptake fails to affect global cytosolic [Ca(2+)], but attenuates [Ca(2+)](m)responses. Moreover, almost every mitochondrion exhibits a region very close to ER Ca(2+)pumps visualized by BODIPY-FL-thapsigargin or SERCA antibody. Thus, at the ER-mitochondrial junctions, localized ER Ca(2+)uptake provides a mechanism to attenuate the mitochondrial response during continuous Ca(2+)release through the IP(3)R or during gradual Ca(2+)influx to the junction between ER and mitochondria.  相似文献   

16.
The nematode Caenorhabditis elegans provides numerous experimental advantages for developing an integrative molecular understanding of physiological processes and has proven to be a valuable model for characterizing Ca(2+) signaling mechanisms. This review will focus on the role of Ca(2+) release activated Ca(2+) (CRAC) channel activity in function of the worm gonad and intestine. Inositol 1,4,5-trisphosphate (IP(3))-dependent oscillatory Ca(2+) signaling regulates contractile activity of the gonad and rhythmic posterior body wall muscle contraction (pBoc) required for ovulation and defecation, respectively. The C. elegans genome contains a single homolog of both STIM1 and Orai1, proteins required for CRAC channel function in mammalian and Drosophila cells. C. elegans STIM-1 and ORAI-1 are coexpressed in the worm gonad and intestine and give rise to robust CRAC channel activity when coexpressed in HEK293 cells. STIM-1 or ORAI-1 knockdown causes complete sterility demonstrating that the genes are essential components of gonad Ca(2+) signaling. Knockdown of either protein dramatically inhibits intestinal cell CRAC channel activity, but surprisingly has no effect on pBoc, intestinal Ca(2+) oscillations or intestinal ER Ca(2+) store homeostasis. CRAC channels thus do not play obligate roles in all IP(3)-dependent signaling processes in C. elegans. Instead, we suggest that CRAC channels carry out highly specialized and cell specific signaling roles and that they may function as a failsafe mechanism to prevent Ca(2+) store depletion under pathophysiological and stress conditions.  相似文献   

17.
Sarcoplasmic/endoplasmic reticulum (ER) Ca(2+) is the most abundant store of intracellular Ca(2+), and its release is an important trigger of physiological and cell death pathways. Previous work in our laboratory revealed the importance of ER Ca(2+) in toxicant-induced renal proximal tubular cell (RPTC) death. The purpose of this study was to evaluate the use of confocal microscopy and Fluo5F, a low affinity Ca(2+) indicator, to directly monitor changes in RPTC ER Ca(2+). Fluo5F staining reflected ER Ca(2+), resolved ER structure, and showed no colocalization with tetramethyl rhodamine methyl ester (TMRM), a marker of mitochondrial membrane potential. Thapsigargin, an ER Ca(2+) pump inhibitor, decreased ER fluorescence by 30% and 55% at 5 and 15 min, respectively, whereas A23187, a Ca(2+) ionophore caused more rapid ER Ca(2+) release (55% and 75% decrease in fluorescence at 5 and 15 min). Carbonylcyanide-p-trifluoromethoxyphenylhydrazone (FCCP), a mitochondrial uncoupler, added at the end of the experiment, further decreased ER fluorescence after thapsigargin treatment, revealing that thapsigargin did not release all ER Ca(2+). In contrast, FCCP did not decrease ER fluorescence after A23187 treatment, suggesting complete ER Ca(2+) release. ER Ca(2+) release in response to A23187 or thapsigargin resulted in a modest but significant decrease in mitochondrial membrane potential. These data provide evidence that confocal microscopy and Fluo5F are useful and effective tools for directly monitoring ER Ca(2+) in live cells.  相似文献   

18.
It is known that the Na/K-ATPase alpha1 subunit interacts directly with inositol 1,4,5-triphosphate (IP(3)) receptors. In this study we tested whether this interaction is required for extracellular stimuli to efficiently regulate endoplasmic reticulum (ER) Ca(2+) release. Using cultured pig kidney LLC-PK1 cells as a model, we demonstrated that graded knockdown of the cellular Na/K-ATPase alpha1 subunit resulted in a parallel attenuation of ATP-induced ER Ca(2+) release. When the knockdown cells were rescued by knocking in a rat alpha1, the expression of rat alpha1 restored not only the cellular Na/K-ATPase but also ATP-induced ER Ca(2+) release. Mechanistically, this defect in ATP-induced ER Ca(2+) release was neither due to the changes in the amount or the function of cellular IP(3) and P2Y receptors nor the ER Ca(2+) content. However, the alpha1 knockdown did redistribute cellular IP(3) receptors. The pool of IP(3) receptors that resided close to the plasma membrane was abolished. Because changes in the plasma membrane proximity could reduce the efficiency of signal transmission from P2Y receptors to the ER, we further determined the dose-dependent effects of ATP on protein kinase Cepsilon activation and ER Ca(2+) release. The data showed that the alpha1 knockdown de-sensitized the ATP-induced ER Ca(2+) release but not PKCepsilon activation. Moreover, expression of the N terminus of Na/K-ATPase alpha1 subunit not only disrupted the formation of the Na/K-ATPase-IP(3) receptor complex but also abolished the ATP-induced Ca(2+) release. Finally, we observed that the alpha1 knockdown was also effective in attenuating ER Ca(2+) release provoked by angiotensin II and epidermal growth factor.  相似文献   

19.
Endoplasmic reticulum Ca(2+) signaling and calpains mediate renal cell death   总被引:17,自引:0,他引:17  
The goal of the current study was to determine the roles of ATP content, endoplasmic reticulum (ER) Ca(2+) stores, cytosolic free Ca(2+) (Ca(2+)(f)) and calpain activity in the signaling of rabbit renal proximal tubular (RPT) cell death (oncosis). Increasing concentrations (0.3-10 microM) of the mitochondrial inhibitor antimycin A produced rapid ATP depletion that correlated to a rapid and sustained increase in Ca(2+)(f), but not phospholipase C activation. The ER Ca(2+)-ATPase inhibitors thapsigargin (5 microM) or cyclopiazonic acid (100 microM) alone produced similar but transient increases in Ca(2+)(f). Pretreatment with thapsigargin prevented antimycin A-induced increases in Ca(2+)(f) and antimycin A pretreatment prevented thapsigargin-induced increases in Ca(2+)(f). Calpain activity increased in conjunction with ER Ca(2+) release. Pretreatment, but not post-treatment, with thapsigargin or cyclopiazonic acid prevented antimycin A-induced cell death. These data demonstrate that extensive ATP depletion signals oncosis through ER Ca(2+) release, a sustained increase in Ca(2+)(f) and calpain activation. Depletion of ER Ca(2+) stores prior to toxicant exposure prevents increases in Ca(2+)(f) and oncosis.  相似文献   

20.
Autosomal dominant polycystic kidney disease is caused by loss-of-function mutations in the PKD1 or PKD2 genes encoding respectively polycystin-1 and polycystin-2. Polycystin-2 stimulates the inositol trisphosphate (IP(3)) receptor (IP(3)R), a Ca(2+)-release channel in the endoplasmic reticulum (ER). The effect of ER-located polycystin-1 is less clear. Polycystin-1 has been reported both to stimulate and to inhibit the IP(3)R. We now studied the effect of polycystin-1 and of polycystin-2 on the IP(3)R activity under conditions where the cytosolic Ca(2+) concentration was kept constant and the reuptake of released Ca(2+) was prevented. We also studied the interdependence of the interaction of polycystin-1 and polycystin-2 with the IP(3)R. The experiments were done in conditionally immortalized human proximal-tubule epithelial cells in which one or both polycystins were knocked down using lentiviral vectors containing miRNA-based short hairpins. The Ca(2+) release was induced in plasma membrane-permeabilized cells by various IP(3) concentrations at a fixed Ca(2+) concentration under unidirectional (45)Ca(2+)-efflux conditions. We now report that knock down of polycystin-1 or of polycystin-2 inhibited the IP(3)-induced Ca(2+) release. The simultaneous presence of the two polycystins was required to fully amplify the IP(3)-induced Ca(2+) release, since the presence of polycystin-1 alone or of polycystin-2 alone did not result in an increased Ca(2+) release. These novel findings indicate that ER-located polycystin-1 and polycystin-2 operate as a functional complex. They are compatible with the view that loss-of-function mutations in PKD1 and in PKD2 both cause autosomal dominant polycystic kidney disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号