首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Membrane potential (delta psi) and pH difference (delta pH) were simultaneously determined in liposomes using a photodiode array spectrophotometer. By the use of a cyanine dye (DiS-C3(5)) and 9-aminoacridine for delta psi and delta pH probes, respectively, both changes of delta psi and delta pH could be successfully determined by photodiode array spectrometry. Each dye did not disturb the fluorescence spectrum of the other probe when its concentration was lower than 5 microM. The K+-diffusion potential-driven, FCCP(protonophore)-mediated H+-influx process in the K+-loaded liposomes was analyzed by this method. Results indicate that the kinetic behavior of H+ influx changes at a FCCP concentration of approx. 30 nM. The rate of delta pH formation increased quantitatively with increasing concentrations of FCCP up to 30 nM, but was markedly enhanced at higher concentrations, although the maximal delta pH attained was about 3 pH units in any case when a K+-diffusion potential of -180 mV was applied.  相似文献   

2.
The effects of imposed proton motive force on the kinetic properties of the alkalophilic Bacillus sp. strain N-6 Na+/H+ antiport system have been studied by looking at the effect of delta psi (membrane potential, interior negative) and/or delta pH (proton gradient, interior alkaline) on Na+ efflux or H+ influx in right-side-out membrane vesicles. Imposed delta psi increased the Na+ efflux rate (V) linearly, and the slope of V versus delta psi was higher at pH 9 than at pH 8. Kinetic experiments indicated that the delta psi caused a pronounced increase in the Vmax for Na+ efflux, whereas the Km values for Na+ were unaffected by the delta psi. As the internal H+ concentration increased, the Na+ efflux reaction was inhibited. This inhibition resulted in an increase in the apparent Km of the Na+ efflux reaction. These results have also been observed in delta pH-driven Na+ efflux experiments. When Na(+)-loaded membrane vesicles were energized by means of a valinomycin-induced inside-negative K+ diffusion potential, the generated acidic-interior pH gradients could be detected by changes in 9-aminoacridine fluorescence. The results of H+ influx experiments showed a good coincidence with those of Na+ efflux. H+ influx was enhanced by an increase of delta psi or internal Na+ concentration and inhibited by high internal H+ concentration. These results are consistent with our previous contentions that the Na+/H+ antiport system of this strain operates electrogenically and plays a central role in pH homeostasis at the alkaline pH range.  相似文献   

3.
The electrical potential (delta psi) and proton gradient (alpha pH) across the membranes of isolated bovine chromaffin granules and ghosts were simultaneously and quantitatively measured by using the membrane- permeable dyes 3,3'dipropyl-2,2'thiadicarbocyanine (diS-C3-(5)) to measure delta psi and 9-aminoacridine or atebrin to measure delta pH. Increases or decreases in the delta psi across the granular membrane could be monitored by fluorescence or transmittance changes of diS-C3- (5). Calibration of the delta psi was achieved by utilization of the endogenous K+ and H+ gradients, and valinomycin or carbonyl cyanide-p- trifluoromethoxyphenylhydrazone (FCCP), respectively, with the optical response of diS-C3-(5) varying linearly with the Nernst potential for H+ and K+ over the range -60 to +90 mV. The addition of chromaffin granules to a medium including 9-aminoacridine or atebrin resulted in a rapid quenching of the dye fluorescence, which could be reversed by agents known to cause collapse of pH gradients. From the magnitude of the quenching and the intragranular water space, it was possible to calculate the magnitude of the alpha pH across the chromaffin granule membrane. The time-course of the potential-dependent transmittance response of diS-C3-(5) and the delta pH-dependent fluorescence of the acridine dyes were studied simultaneously and quantitatively by using intact and ghost granules under a wide variety of experimental conditions. These results suggest that membrane-permeable dyes provide an accurate method for the kinetic measurement of delta pH and delta psi in an amine containing subcellular organelle.  相似文献   

4.
Valinomycin-induced potassium diffusion potential (delta psi, inside negative) in the liposomes made of phosphatidylcholine and various amounts of cholesterol was measured by uptake of 86Rb+, tetraphenylphosphonium (TPP+) or triphenylmethylphosphonium (TPMP+). In any liposome, the values of membrane potential obtained by 86Rb+ uptake (delta psi Rb) agreed well with those calculated from the imposed potassium concentration gradient using the Nernst equation, and were not affected by the presence of cholesterol. However, both delta psi TPP and delta psi TPMP showed smaller values than delta psi Rb when the cholesterol content in liposomes increased. delta psi TPMP at a stationary state was much smaller than delta psi TPP. The orientational order parameter of the lipids' bilayer with various cholesterol content was estimated from fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene. The results indicated that the permeation of TPP+ or TPMP+ into liposomes containing a large amount of cholesterol is strongly restricted by the high ordering of phosphatidylcholine acyl chains.  相似文献   

5.
D McLaggan  M Keyhan    A Matin 《Journal of bacteriology》1990,172(3):1485-1490
The protonophore-mediated collapse of the large delta pH that acidophiles maintain across their cytoplasmic membranes was augmented by the presence of Cl-, and Cl- influx into the cells occurred evidently in response to the protonophore-induced increase in the inside-positive membrane potential (+ delta psi). In respiring cells, the addition of Cl- but not SO4(2-) salts caused a rapid and precipitous decrease in the + delta psi. A Nernstian relationship between the imposed transmembrane K+ gradient and the valinomycin-induced K+ diffusion potentials was observed when everted membrane vesicles were loaded with K2SO4 or KH2PO4 but not when loaded with KCl or KNO3. Thus, electrogenic Cl- transport occurred in Bacillus coagulans. In addition, a nonelectrogenic temperature-sensitive Cl- transport mechanism, with the net Cl- efflux coefficient (PCl-) ranging from 1.5 x 10(-4) to 6.1 x 10(-6) cm/s, accounted for the massive Cl- efflux from Cl(-)-loaded cells. Thus, B. coagulans, despite its dependence on the + delta psi and therefore the need to exclude anions, apparently possesses specific mechanisms for Cl- permeation. Active cells of B. coagulans prevented Cl- accumulation from attaining an electrochemical equilibrium, maintaining a delta micro Cl- of ca. -63 mV. B. coagulans therefore also possesses an energy-dependent mechanism for Cl- exclusion from the cells.  相似文献   

6.
Transport of Na+ and its relationship with membrane potential (delta psi m) was examined in Anabaena L-31 (a fresh water cyanobacterium) and Anabaena torulosa (a brackish water cyanobacterium) which require Na+ for diazotrophic growth. The data on the effect of N,N'-dicyclohexylcarbodiimide indicated that delta psi m was generated by electrogenic proton extrusion predominantly mediated by ATPase(s). In addition, operation of a plasmalemmabound, non-ATP-requiring, H+-pumping terminal oxidase was suggested by the sensitivity of delta psi m to anaerobiosis, cyanide and azide, all of which inhibit aerobic respiration. The response of delta psi m to external pH and external Na+ or K+ concentrations indicated that a diffusion potential of Na+ or K+ may not contribute significantly to delta psi m. Kinetic studies showed that Na+ influx was unlikely to be a result of Na+/NA+ exchange but was a carrier-mediated secondary active transport insensitive to low concentrations (less than 10 mM) of external K+. There was a close correspondence between changes in delta psi m and Na+ influx; all the treatments which caused depolarisation (such as low temperature, dark, cyanide, azide, anaerobiosis, ATPase inhibitors) lowered Na+ influx whereas treatments which caused hyperpolarisation (such as 2,4-dinitrophenol, nigericin) enhanced Na+ influx. Remarkably low intracellular Na+ concentrations were maintained by these cyanobacteria by means of active efflux of the cation. The basic mechanism of Na+ transport in the fresh water and the brackish water cyanobacterium was similar but the latter demonstrated less influx, more efficient efflux, more affinity of carriers for Na+ and less accumulation of Na+, all attributes favouring salt tolerance.  相似文献   

7.
The transmembrane movement of radiolabeled, nonmetabolizable glucose analogs in Streptococcus mutants Ingbritt was studied under conditions of differing transmembrane electrochemical potentials (delta psi) and pH gradients (delta pH). The delta pH and delta psi were determined from the transmembrane equilibration of radiolabeled benzoate and tetraphenylphosphonium ions, respectively. Growth conditions of S. mutants Ingbritt were chosen so that the cells had a low apparent phosphoenolpyruvate (PEP)-dependent glucose:phosphotransferase activity. Cells energized under different conditions produced transmembrane proton potentials ranging from -49 to -103 mV but did not accumulate 6-deoxyglucose intracellularly. An artificial transmembrane proton potential was generated in deenergized cells by creating a delta psi with a valinomycin-induced K+ diffusion potential and a delta pH by rapid acidification of the medium. Artificial transmembrane proton potentials up to -83 mV, although producing proton influx, could not accumulate 6-deoxyglucose in deenergized cells or 2-deoxyglucose or thiomethylgalactoside in deenergized, PEP-depleted cells. The transmembrane diffusion of glucose in PEP-depleted, KF-treated cells did not exhibit saturation kinetics or competitive inhibition by 6-deoxyglucose or 2-deoxyglucose, indicating that diffusion was not facilitated by a membrane carrier. As proton-linked membrane carriers have been shown to facilitate diffusion in the absence of a transmembrane proton potential, the results therefore are not consistent with a proton-linked glucose carrier in S. mutans Ingbritt. This together with the lack of proton-linked transport of the glucose analogs suggests that glucose transmembrane movement in S. mutans Ingbritt is not linked to the transmembrane proton potential.  相似文献   

8.
The proton gradient (delta pH) and electrical potential (delta psi) across the neurosecretory vesicles were measured using the optical probes 9-aminoacridine and Oxanol VI, respectively. The addition of neurosecretory vesicles to 9-aminoacridine resulted in a rapid quenching of the dye fluorescence which was reversed when the delta pH was collapsed with ammonium chloride or K+ in the presence of nigericin. From fluorescence quenching data and the intravesicular volume, delta pH across the membrane was calculated. Mg2+ ATP caused a marked carbonyl cyanide p-trifluoromethoxyphenylhydrazone-sensitive change in the membrane potential measured using Oxanol VI (plus 100 mV inside positive), presumably due to H+ translocation across the neurosecretory vesicle membrane. Imposition of this membrane potential was responsible for the lysis of vesicles in the presence of permeant anions. The effectiveness of these anions to support lysis reflected the relative permeability of the anion which followed the order acetate greater than I- greater than Cl greater than F- greater than SO4- = isethionate = methyl sulfate. These data showed that the neurosecretory vesicles possess a membrane H+-translocating system and prompted the study of Mg2+-dependent ATPase activities in the vesicle fractions. In intact vesicles a Mg2+ ATPase appeared to be coupled to electrogenic proton translocation, since the enzyme activity was enhanced by uncoupling the electrical potential, using proton ionophores. Inhibition of this enzyme with dicyclohexylcarbodiimide also inhibited the carbonyl cyanide p-trifluoromethoxyphenylhydrazone-sensitive delta psi across the vesicle membrane caused by H+ translocation. A second Mg2+ ATPase was also found on the vesicle membranes which is sensitive to vanadate. Complete inhibition of this enzyme with vanadate had little effect on the proton ionophore-uncoupled ATPase activity or on the Mg2+ ATP-induced membrane potential change.  相似文献   

9.
Safranine and the cyanine dye, 3',3'-dipropylthiadicarbocyanine (diSC3-5), were examined as membrane potential probes in cytochrome c oxidase vesicles. The spectra of the vesicle-associated dyes resemble those of the same dyes in organic solvents, indicating that safranine and diSC3-5 probably dissolve in a hydrophobic region of the proteoliposomal membrane. This binding of safranine to proteoliposomes occurs with a dye-membrane dissociation constant in the micromolar range. The binding of safranine and of diSC3-5 to liposomes or proteoliposomes is accompanied by fluorescence enhancement. This enhanced fluorescence is quenched by respiration or by the establishment of a K+ diffusion potential by valinomycin (negative interior). An optimal dye/lipid ratio was required to secure maximum fluorescence quenching of the dyes, whether that quenching was active or passive. Calibrations of both the safranine and the diSC3-5 responses with K+ diffusion potentials were also affected by the dye/lipid ratio. At lower dye/lipid ratios, the calibration curve was linear at higher potentials but deviated from linearity at lower potentials. The converse was true at higher dye/lipid ratios. The non-linearity of the calibration curve at higher potential was attributed to a 'saturation' effect; it may also involve increased permeability of proteoliposomal membrane to protons. Destacking of dye at the lower dye/lipid ratio was probably responsible for the non-linearity of the calibration curves at lower potentials. When all these effects are taken into account, the steady-state value of delta psi generated during maximal proteoliposomal respiration was calculated to be between 140 and 160 mV (interior negative) when measured with either safranine or diSC3-5. We conclude that quantitative estimates of delta psi values can be made using these probes in cytochrome c oxidase reconstituted proteoliposomes provided that appropriate precautions are taken.  相似文献   

10.
The Na+/H+ antiporter of Bacillus alcalophilus was studied by measuring 22Na+ efflux from starved, cyanide-inhibited cells which were energized by means of a valinomycin-induced potassium diffusion potential, positive out (delta psi). In the absence of a delta psi, 22Na+ efflux at pH 9.0 was slow and appreciably inhibited by N-ethylmaleimide. Upon imposition of a delta psi, a very rapid rate of 22Na+ efflux occurred. This rapid rate of 22Na+ efflux was competitively inhibited by Li+ and varied directly with the magnitude of the delta psi. Kinetic experiments with B. alcalophilus and alkalophilic Bacillus firmus RAB indicated that the delta psi caused a pronounced increase in the Vmax for 22Na+ efflux. The Km values for Na+ were unaffected by the delta psi. Upon imposition of a delta psi at pH 7.0, a retardation of the slow 22Na+ efflux rate at pH 7.0 was caused by the delta psi. This showed that inactivity of the Na+/H+ antiporter at pH 7.0 was not secondary to a low delta psi generated by respiration at this pH. Indeed, 22Na+ efflux activity appeared to be inhibited by a relatively high internal proton concentration. By contrast, at a constant internal pH, there was little variation in the activity at external pH values from 7.0 to 9.0; at an external pH of 10.0, the rate of 22Na+ efflux declined. This decline at typical pH values for growth may be due to an insufficiency of protons when a diffusion potential rather than respiration is the driving force. Non-alkalophilic mutant strains of B. alcalophilus and B. firmus RAB exhibited a slow rate of 22Na+ efflux which was not enhanced by a delta psi at either pH 7.0 or 9.0.  相似文献   

11.
Generation of membrane potential (inside-positive) and delta pH (inside-acidic) at two kinds of NADH:quinone oxidoreductase segments, the Na(+)-motive segment and another segment, of Vibrio alginolyticus was examined by monitoring the quenching of fluorescence of oxonol V and that of quinacrine, respectively, with inside-out membrane vesicles. Transient generation of membrane potential at the segment occurred when ubiquinone-1 was added in the presence of KCN and NADH. The membrane potential was resistant to a proton conductor, carbonylcyanide m-chlorophenylhydrazone, indicating that the membrane potential was generated specifically at the Na(+)-motive segment. On the other hand, neither membrane potential nor delta pH was generated at another segment. The Na(+)-motive segment did not generate delta pH, indicating that only Na+ is extruded at this segment. Furthermore, generation of membrane potential and delta pH at the NADH:quinone oxidoreductase segment of V. anguillarum was examined by using the fluorescence quenching technique. This segment of the bacterium was also found to generate delta psi by the extrusion of Na+ but not H+. These results revealed that the fluorescence quenching technique is useful for the rapid identification and characterization of the respiratory segment involved in Na+ translocation.  相似文献   

12.
In previous studies, respiring Bradyrhizobium sp. strain 32H1 cells grown under 0.2% O2, conditions that derepress N2 fixation, were found to have a low proton motive force of less than -121 mV, because of a low membrane potential (delta psi). In contrast, cells grown under 21% O2, which do not fix N2, had high proton motive force values of -175 mV or more, which are typical of respiring bacteria, because of high delta psi values. In the present study, we found that a delta psi of 0 mV in respiring cells requires growth in relatively high-[K+] media (8 mM), low O2 tension, and high internal [K+]. When low-[O2], high-[K+]-grown cells were partially depleted of K+, the delta psi was high. When cells were grown under 21% O2 or in media low in K+ (50 microM K+), the delta psi was again high. The transmembrane pH gradient was affected only slightly by varying the growth or assay conditions. In addition, low-[O2], high-[K+]-grown cells had a greater proton permeability than did high-[O2]-grown cells. To explain these findings, we postulate that cells grown under conditions that derepress N2 fixation contain an electrogenic K+/H+ antiporter that is responsible for the dissipation of the delta psi. The consequence of this alteration in K+ cycling is rerouting of proton circuits so that the putative antiporter becomes the major pathway for H+ influx, rather than the H+-ATP synthase.  相似文献   

13.
The effect of the plasma membrane potential delta psi p on the transport rate and steady state distribution of Li+ was assessed in rat cortical synaptosomes. Up to 15 mM Li+ failed to saturate Li+ influx into polarized synaptosomes in a Na+-based medium with 3 mM external K+. Veratridine increased and tetrodotoxin, ouabain, or high external K+ decreased the rate of Li+ influx. At steady state, Li+ was concentrated about 3-fold in resting synaptosomes at 0.3 to 1 mM Li+ externally. Subsequent depolarization of the plasma membrane by veratridine or high external K+ induced an immediate release of Li+. When graded depolarizations were imposed onto the plasma membrane by varying concentrations of ouabain, veratridine, or external K+, steady state distribution of Li+ was linearly related with K+ distribution or electrochemical activity coefficients. It was concluded that uptake rate and steady state distribution of Li+ depend significantly on delta psi p. However, Li+ gradients were lower than predicted from delta psi p, suggesting that (secondary) active transport systems counteracted passive equilibration by uphill extrusion of Li+. The electrochemical potential difference delta mu Li+ maintained at a delta psi p of -72 mV was calculated to 4.2 kJ/mol of Li+. At physiological external K+, Li+ was not actively transported by the sodium pump. The ouabain sensitivity resulted from the coupling of Li+ uptake to the pump-dependent K+ diffusion potential. In low K+ and K+-free media, however, active transport of Li+ by the sodium pump contributed to total uptake. In the absence of K+, Li+ substituted for K+ in generating a delta psi p of -64 mV maximally, as calculated from TPMP+ distribution at 40 mM external Li+. Since Li+ gradients were far too low to account for a diffusion potential, it was assumed that Li+ gave rise to an electrogenic pump potential.  相似文献   

14.
The lysosomal proton pump is electrogenic   总被引:11,自引:0,他引:11  
Lysosomes were purified approximately 40-fold from rat kidney cortex by differential and Percoll density gradient centrifugation. In a sucrose medium, the lysosomes quenched the fluorescence of the potential sensitive dye diS-C3-(5) (3,3'-dipropylthiocarbo-cyanine iodide) in a time-dependent manner, indicating that the dye accumulates within the lysosomal interior. After treatment of the lysosomes with valinomycin, the dye fluorescence displayed a logarithmic dependence upon the external K+ concentration; thus, the fluorescence signal provides a semiquantitative measure of the lysosomal membrane potential (delta psi). In the absence of valinomycin, lysosomal quenching of diS-C3-(5) fluorescence was partially reversed by agents which collapse the lysosomal pH gradient (ammonium sulfate, chloroquine, and K nigericin), suggesting that the proton gradient across the lysosomal membrane contributes to delta psi. A rapid increase in diS-C3-(5) fluorescence, indicative of an increase in delta psi, was observed upon the addition of Mg-ATP to the lysosomes. The ATP-dependent fluorescence change was inhibited by protonophores, K valinomycin, permeable anions, and N-ethylmaleimide, but was unaffected by ammonium sulfate, K nigericin, or sodium vanadate. Oligomycin had no effect at concentrations below 2 micrograms/ml; at higher concentrations, oligomycin partially inhibited the fluorescence response to Mg-ATP, but it also inhibited the fluorescence response to K valinomycin, suggesting that it had modified the permeability of the lysosomal membrane. Dicylohexylcarbodiimide behaved similarly to oligomycin. Mg-ATP also altered the lysosomal distribution of 86Rb+ (in the presence of valinomycin) and S[14C]CN-, consistent with an increase in the potential of the lysosomal interior of 40-50 mV. The results demonstrate that the lysosomal proton pump is electrogenic.  相似文献   

15.
The addition of 5 . 10(-5) M or less of dicyclohexylcarbodiimide to Mycoplasma mycoides var. Capri preferentially influences K+ influx rather than efflux and reduces by 30--40% the activity of the membrane-bound Mg2+- ATPase. Adding valinomycin to metabolizing cells does not markedly affect K+ distribution but induces a rapid and complete loss of intracellular K+ in non-metabolizing cells. Uncoupling agents such as dinitrophenol, carbonylcyanide p-trifluoromethoxyphenylhydrazone, dissipate the K+ concentration gradient only when combined with valinomycin. Variations in the merocyanine fluorescence intensity indicate that a transmembrane electrical potential (delta psi) is generated on cell energization. This delta psi, not affected by valinomycin or uncouplers when used alone, is collapsed by a mixture of both. No change in fluorescence intensity can be detected when glucose is added to dicyclohexylcarbodiimide treated organisms. These experiments suggest that the membrane-bound Mg-ATPase activity control K+ distribution in these organisms through the generation of a transmembrane electrical potential difference.  相似文献   

16.
We have confirmed that the respiration rate of rat liver mitochondria can be substantially inhibited with only a small drop in proton motive force. We have directly measured the passive proton permeability as a function of delta psi by using K+ diffusion potentials and have shown that there is a large increase in proton permeability at high delta psi. This can quantitatively account for the inhibitor titrations of respiration. delta psi and delta pH were shown to have roughly equal effects on the relatively high respiration rate in static head. The permeabilities to K+, tetramethylammonium+ and choline+ were shown to increase greatly at high delta psi, in a similar way to proton permeability, indicating a similar mechanism of entry.  相似文献   

17.
Adenosine 5'-triphosphate (ATP) synthesis energized by an artificially imposed protonmotive force (delta p) in adenosine 5'-diphosphate-loaded membrane vesicles of Escherichia coli was investigated. The protonmotive force is composed of an artificially imposed pH gradient (delta pH) or membrane potential (deltapsi), or both. A delta pH was established by a rapid alteration of the pH of the assay medium. A delta psi was created by the establishment of diffusion potential of K+ in the presence of valinomycin. The maximal amount of ATP synthesized was 0.4 to 0.5 nmol/mg of membrane protein when energized by a delta pH and 0.2 to 0.3 nmol/mg of membrane protein when a delta psi was imposed. Simultaneous imposition of both a delta pH and delta psi resulted in the formation of greater amounts of ATP (0.8 nmol/mg of membrane protein) than with either alone. The amount of ATP synthesized was roughly proportional to the magnitude of the artificially imposed delta p. Although p-chloromercuribenzoate, 2-heptyl-4-hydroxyquinoline-N-oxide, or NaCN each inhibits oxidation of D-lactate, and thus oxidative phosphorylation, none inhibited ATP synthesis driven by an artificially imposed delta p. Membrane vesicles prepared from uncA or uncB strains, which are defective in oxidative phosphorylation, likewise were unable to catalyze ATP synthesis when energy was supplied by an artificially imposed delta p.  相似文献   

18.
The role of K+ and Na+ in the maintenance of the proton motive force (delta p) was studied in Escherichia coli incubated in alkaline media. Cells respiring in Tris buffer (pH 7.8) that contained less than 100 microEq of K+ and Na+ per liter had a normal delta p of about -165 mV. At pH 8.2, however, the delta p was reduced significantly. The decrease in delta p at pH 8.2 was due to a marked decrease in the transmembrane potential (delta psi), while the internal pH remained at 7.5 to 7.7. When KCl or NaCl, but not LiCl or choline chloride, was added to the cells, the delta psi rose to the values seen at an external pH of 7.8. In addition, choline chloride inhibited the enhancement of delta psi by K+. None of the salts had a significant effect on the internal pH. The effects can be attributed to alterations of K+ or Na+ cycling in and out of the cells via the known K+ and Na+ transport systems.  相似文献   

19.
The proton motive force (PMF) was determined in Rhodobacter sphaeroides under anaerobic conditions in the dark and under aerobic-dark and anaerobic-light conditions. Anaerobically in the dark in potassium phosphate buffer, the PMF at pH 6 was -20 mV and was composed of an electrical potential (delta psi) only. At pH 7.9 the PMF was composed of a high delta psi of -98 mV and was partially compensated by a reversed pH gradient (delta pH) of +37 mV. ATPase inhibitors did not affect the delta psi, which was most likely the result of a K+ diffusion potential. Under energized conditions in the presence of K+ the delta psi depolarized due to electrogenic K+ uptake. This led to the generation of a delta pH (inside alkaline) in the external pH range of 6 to 8. This delta pH was dependent on the K+ concentration and was maximal at external K+ concentrations larger than 1.2 mM. In energized cells in 50 mM KPi buffer containing 5 mM MgSO4, a delta pH (inside alkaline) was present at external pHs from pH 6 to 8. As a result the overall magnitude of the PMF at various external pHs remained constant at -130 mV, which was significantly higher than the PMF under anaerobic-dark conditions. In the absence of K+, in 50 mM NaPi buffer containing 5 mM MgSO4, no depolarization of the delta psi was found and the PMF was composed of a large delta psi and a small delta pH. The delta pH became even reversed (inside acidic) at alkaline pHs (pH>7.3), resulting in a lowering of the PMF. These results demonstrate that in R. sphaeroides K+ uptake is essential for the generation of a delta pH and plays a central role in the regulation of the internal pH.  相似文献   

20.
The influence of transmembrane ion fluxes on mycoplasma membrane potentials was studied. Electric membrane potential was calibrated vs fluorescence intensity of a potential-sensitive carbocyanine dye according to delta psi = (RT/F) X log([aIN(1 - IN) - b]/Kint), where IN = I/I0, I0 = maximal fluorescence intensity (obtained for delta psi----infinity), and a and b are constants. Fluorescence intensity was calibrated vs membrane potential by inducing a K+ diffusion potential. The calibration procedure was based on the assumption that in the presence of valinomycin the membrane potential was determined entirely by K+ diffusion. Then the dependence of fluorescence intensity on the external K+ concentration, Kext, could be described by Ival = I0[1 + a/(Kext + b)]-1. For Mycoplasma mycoides subsp. capri and enterococci, the constants were determined from experimental data using nonlinear least-squares computer-assisted methods. The validity of our assumption was proved using the "null-point" method. Here the Ca2+ ionophore A23187 and varying external Ca2+ concentrations were used to change the membrane potential experimentally. K+ and Na+ diffusion potentials significantly contributed to mycoplasma membrane potential whereas Cl- had no influence. Under growth conditions the mycoplasma membrane potential was estimated to be delta psi = -68 mV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号