首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The development of rete testis in the rat, rabbit and guinea pig foetuses has been studied, as well as the influence of prolactin and thyrotropin on differentiation of its cells. It was shown that the rete testis tubules, as well as the seminiferous tubules develop from sex cords, which were derived from coelomic epithelium cells and gonocytes. The development of seminiferous tubules and rete testis was described at various stages of prenatal ontogenesis. Thyrotropin and prolactin exert different effects on differentiation of the rete testis cells: the former increases the mitotic activity of gonocytes and the latter increases that of epithelial cells and enhances degenerative processes in primary germ cells.  相似文献   

2.
In this study, the anterior testicular ducts of the North American natricine snake Seminatrix pygaea are described using light and electron microscopy. From the seminiferous tubules, the rete testis passes into the epididymal sheath, a structure along the medial border of the testis heavily invested with collagen fibers. The rete testis consists of simple, nonciliated cuboidal epithelium (principal cells). The intratesticular ducts of the rete testis are narrow (50–70 μm) at their junction with the seminiferous tubules, widen (80–100 μm) as they extend extratesticularly, and divide into smaller branches as they anastomose with the next tubules, the ductuli efferentes. The ductuli efferentes are lined by simple cuboidal epithelium but possess nonciliated principal cells as well as ciliated cells. These are the only ducts in the male reproductive system with ciliated cells. The ductuli efferentes are narrow (25–45 μm), divide into numerous branches, and are highly convoluted. The ductus epididymis is the largest duct in diameter (240–330 μm), and the diameter widens and the epithelium thins posteriorly. The ductus epididymis is lined by nonciliated, columnar principal cells and basal cells. No regional differences in the ductus epididymis are apparent. Ultrastructural evidence suggests that all of the nonciliated principal cells in each of the anterior testicular ducts function in both absorption and secretion. Absorption occurs via small endocytic vesicles, some of which appear coated. Secretion is by a constitutive pathway in which small vesicles and a flocculent material are released via a merocrine process or through the formation of apocrine blebs. The secretory product is a glycoprotein. Overall, the characteristics of the anterior testicular ducts of this snake are concordant with those of other amniotes, and the traditional names used for snakes are changed to conform with those used for other sauropsids and mammals. J. Morphol., 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
The cellular composition of the testicular capsule, seminiferous peritubular tissue, the epithelia as well as periductal muscle cell layers of the excurrent ducts was studied, in sexually mature and active Masked Weaver (Ploceus velatus) birds of the passerine family, Ploceidae. Ultrastructure of the contractile cells in the testicular capsule, peritubular and periductal tissues showed that these cells were smooth muscles of typical morphological characteristics. Variability in the immunohistochemical co-expression of microfilaments and intermediate filaments in the different tissues was evident. Actin and desmin proteins were co-expressed immunohistochemically in the testicular capsule and seminiferous peritubular smooth muscle layer. Actin was singly and very weakly expressed in the rete testis epithelium while cytokeratins and desmin were co-expressed in the epithelium of the excurrent ducts. The periductal muscle layer of all ducts of the epididymis, the ductus deferens as well as the seminal glomus, strongly co-expressed actin and desmin. Vimentin was absent in all cells and tissue types studied. There is clear evidence that the tissues of the male gonad and its excurrent ducts in the Masked Weaver, as has been reported for members of the Galloanserae and Ratitae, contain well-formed contractile tissues whose function would include the transportation of luminal through-flow from the testis into, and through, its excurrent ducts. The microtubule helix in the head and of the mid-piece, of elongating spermatids, as well as of the mature spermatozoa in the various excurrent ducts, including some spermatozoa in the seminal glomus, also co-expressed these three proteins.  相似文献   

4.
革胡子鲇原始生殖细胞的起源、迁移及性腺分化   总被引:19,自引:0,他引:19  
革胡子鲇又称埃及胡子鲇,是一种多次产卵类型的硬骨鱼。作者用组织学、组织化学、电子显微镜等方法对革胡子鲇的原始生殖细胞(Primordial germ cells,PGCs)的起源、特征、迁移方式和性腺分化进行了研究。实验结果:PGCs来源于内胚层;PGCs的细胞质中存在着一种与生殖细胞有关的电子致密物--生殖质(Germ plasm);PGCs在迁移过程中有主动迁移的能力;PGCs到达生殖嵴的部位后,与生殖上皮细胞(Epithelisl cells)一起共同形成原始性腺;原始性腺分别逐步向精巢和卵巢分化;生殖质与性腺的分化有密切关系;卵巢的分化比精巢早。    相似文献   

5.
Acid alpha-glucosidase and L-carnitine (a well-known epididymal marker) were measured in rete testis and epididymal fluids of adult male rams. These fluids were collected by selective catheterization or by a micropuncture technique, respectively. Both parameters remained at a low and constant level in rete testis and all along caput and corpus epididymidis. Then they increased at equivalent rates in cauda epididymidis to much higher levels than those in seminal plasma (5 mU/mg protein and 10 mM, respectively). An optimum pH study of alpha-glucosidase activity in these fluids showed two well-separated peaks in rete testis and caput epididymal fluids around pH 4 and 7, respectively, but only a single peak at pH 4 in cauda epididymidis that was comparable to the one in seminal plasma. Sucrose density gradient fractions analyzed for their enzyme content in the absence or presence of sodium dodecyl sulfate (1% w/v), a selective inhibitor of acid alpha-glucosidase activity, allowed the demonstration of two enzyme forms at pH 6.8 in rete testis fluid sedimenting in the 7S and 4S regions of the gradient, while a unique 4S form was encountered in cauda epididymidis and in seminal plasma. Although the fate of the minor 7S component of the rete testis fluid in its epididymal transit is presently unknown, similarities between the enzyme in cauda epididymidis and seminal plasma are strong enough to support the hypothesis that epididymis contributes primarily to the acid alpha-glucosidase content of ram seminal plasma.  相似文献   

6.
The histology and fine structure of the epithelial cells of the intratesticular excurrent ducts were studied in material collected from fourteen adult camels and fixed by perfusion. The intratesticular excurrent ducts consisted of a terminal segment of the seminiferous tubule, a tubulus rectus, and a rete testis. The terminal segment was lined with modified Sertoli cells which formed a plug-like structure in the receptacle. The tubulus rectus was subdivided into the receptacle, the narrow main part, and the wider distal part, and these parts were lined with different types of epithelium. The rete testis occupied an axial mediastinum testis, and the height of its epithelium varied quite considerably. Degenerated spermatozoa were seen engulfed by the epithelial cells of the entire intratesticular duct system. Light cells, lymphocytes, and macrophages were observed. The fine structure of the epithelium of the intratesticular ducts is discussed in relation to its possible functions.  相似文献   

7.
This study investigated the morphology and immunoexpression of aquaporins (AQPs) 1 and 9 in the rete testis, efferent ducts, epididymis, and vas deferens in the Azara’s agouti (Dasyprocta azarae). For this purpose, ten adult sexually mature animals were used in histologic and immunohistochemical analyses. The Azara’s agouti rete testis was labyrinthine and lined with simple cubic epithelium. Ciliated and non-ciliated cells were observed in the epithelium of the efferent ducts. The epididymal cellular population was composed of principal, basal, apical, clear, narrow, and halo cells. The epithelium lining of vas deferens was composed of the principal and basal cells. AQPs 1 and 9 were not expressed in the rete testis. Positive reaction to AQP1 was observed at the luminal border of non-ciliated cells of the efferent ducts, and in the peritubular stroma and blood vessels in the epididymis, and vas deferens. AQP9 was immunolocalized in the epithelial cells in the efferent ducts, epididymis and vas deferens. The morphology of Azara’s agouti testis excurrent ducts is similar to that reported for other rodents such as Cuniculus paca. The immunolocalization results of the AQPs suggest that the expression of AQPs is species-specific due to differences in localization and expression when compared to studies in other mammals species. The knowledge about the expression of AQPs in Azara’s agouti testis excurrent ducts is essential to support future reproductive studies on this animal, since previous studies show that AQPs may be biomarkers of male fertility and infertility.  相似文献   

8.
In rats immunized systemically with tetanus toxoid the concentration of specific anti-tetanus-toxoid-specific IgG in fluid from the rete testis and cauda epididymidis were respectively 0.6% and 1.4% the concentration in blood serum. The extratesticular duct system reabsorbed 97% of the IgG and 99% of the fluid leaving the rete, but estradiol administration affected the site of reabsorption. In untreated rats, the ductuli efferentes reabsorbed 94% of the IgG and 96% of the fluid leaving the rete, whereas estradiol-treated rats reabsorbed 83% of the IgG and 86% of the fluid, and the ductus epididymidis fully compensated for these different effects of estradiol on the ductuli efferentes. The concentrations of IgG in secretions of the seminal vesicles and prostate gland were lower (0.1% and 0.3% respectively of the titers in blood serum) than in fluids from the extratesticular ducts, and were not affected by the administration of estradiol. RT-PCR showed that Fcgrt (neonatal Fc receptor, also known as FcRn) is expressed in the reproductive ducts, where IgG is probably transported across epithelium, being particularly strong in the ductuli efferentes (where most IgG was reabsorbed) and distal caput epididymidis. It is concluded that IgG enters the rete testis and is concentrated only 2.5-fold along the extratesticular duct system, unlike spermatozoa, which are concentrated 95-fold. Further, the ductus epididymidis can recognize and compensate for changes in function of the ductuli efferentes.  相似文献   

9.
The localization of sulfated glycoprotein-2 (clusterin; SGP-2) was investigated in the rete testis, efferent ducts, and epididymis of the rat using light (LM) and electron (EM) microscope immunocytochemistry. At the LM level, the epithelial cells of the rete testis and efferent ducts demonstrated an intense immunoperoxidase reaction over their apical and supranuclear regions, and sperm in the lumen of the efferent ducts were unreactive. In the EM, gold particles were found exclusively over the endocytic apparatus of these cells. In the proximal area of the epididymal initial segment, an insignificant immunostaining of epithelial cells and sperm was observed. However, the distal area of the initial segment showed a moderate staining over the epithelial principal cells and sperm, while in the intermediate zone of the epididymis a stronger reaction was observed over these cells. The strongest immunoperoxidase reaction was noted in the caput epididymidis, where it formed a distinct mottled pattern. Thus, while some principal cells were intensely stained, others were moderately or weakly stained; a few were completely unreactive. In the corpus and cauda epididymidis, the staining pattern was similar but not as intense. In the EM, only the secretory apparatus of these cells was found to be immunolabeled with gold particles. Sperm in the lumen of these different regions were also labeled. The epithelial clear cells were unreactive throughout the epididymis. Northern blot analysis substantiated these results and showed the presence of highest levels of SGP-2 mRNA in the caput epididymidis, especially in its proximal area, whereas increasingly lower levels were found in the corpus and cauda epididymidis. In summary, these results suggest that testicular SGP-2 dissociates from the sperm during passage through the rete testis and efferent ducts, where it is endocytosed by the epithelial cells lining these regions. In the epididymis, it is replaced by an epididymal SGP-2 that is secreted by the epithelial principal cells of the epididymis. Furthermore, in the epididymis, the principal cells appear to be in different functional states with respect to the secretion of epididymal SGP-2 within a given region of the duct as well as along the epididymal duct.  相似文献   

10.
Rete testis and epididymis are rare locations for primary tumors or metastasis. Assuming that this may be related to expression level of angiogenic inhibitors, we focused our study on the expression pattern of collagen 18/endostatin. In situ hybridization and immunohistochemistry for collagen 18 and endostatin were carried out on sections of human rete testis and epididymis as well as on epididymal adenoma and human testicular tissue with or without carcinoma in situ (CIS). In situ hybridization revealed strong expression of collagen 18 mRNA in rete testis, efferent ducts and epididymal duct. Immunostaining showed collagen 18 in epithelium and basement membrane as well as in blood vessels of rete testis. Further, in both efferent ducts and epididymal duct, collagen 18 was mainly localized in the basement membrane of these ducts and of the blood vessel wall. Endostatin immunostaining was localized in the epithelium of rete testis, efferent ducts and epididymal duct. This pattern of endostatin staining was absent in epididymal adenoma tissue while tumor associated blood vessels exhibited strong endostatin staining. No endostatin staining was detectable in normal germinal epithelium and CIS cells while Leydig cells exhibited strong endostatin staining. High endostatin expression in epididymis may protect this organ against tumor development. Gene therapeutic strategies providing high expression of endostatin in normal epithelia may be useful to prevent tumor development.  相似文献   

11.
The Notch signaling pathway is involved in a variety of developmental processes. Here, we characterize the phenotypes developing in the reproductive organs of male transgenic (Tg) mice constitutively expressing the activated mouse Notch1 intracellular domain (Notch1(intra)) under the regulatory control of the mouse mammary tumor virus (MMTV) long terminal repeat (LTR). Tg expression was detected in testis, vas deferens and epididymis by Northern blot analysis. In situ hybridization with a Notch1-specific probe lacked sensitivity to detect expression in normal-appearing cells, but demonstrated expression in hyperplastic epithelial cells of the vas deferens, epididymis and efferent ducts. Tg males from three independent founder lines were sterile. Histological analysis of reproductive organs of young Tg males (postnatal ages 8 and 21) showed no difference compared to those of non-Tg males. In contrast, in adult Tg mice from day 38 onwards, the efferent ducts, the vas deferens and most epididymal segments revealed bilateral epithelial cell hyperplasia with absence of fully differentiated epithelial cells. Electron microscopy confirmed the uniformly undifferentiated state of these cells. Immunohistochemistry with anti-PCNA antibody also revealed enhanced proliferation of Tg epididymis. In adult Tg testis, the different generations of germ cells of seminiferous tubules appeared normal, although some tubules were highly dilated and revealed an absence of early and/or late spermatids. The epithelial cells of the Tg tubuli recti and rete testis were not abnormal, but the rete testis was highly dilated and contained numerous spermatozoa, suggesting a downstream blockage. Consistent with a blockage of efferent ducts often seen at the rete testis/efferent duct interface, spermatozoa were absent in epididymis of all adult Tg mice and in all highly hyperplastic efferent duct tubules of these Tg mice. Such a blockage was visualized by injection of Evans blue dye into the rete testis lumen. Finally, the presence of ectopic hyperplastic efferent duct tubules was observed within the testicular parenchyma itself, outside their normal territory, suggesting that Notch1 signaling is involved in the establishment of these borders. This phenotype seems to represent a novel developmental defect in mammals. Together, these results show that constitutive Notch1 signaling significantly affects the development of male reproductive organs.  相似文献   

12.
13.
The amino acid taurine has been implicated in several aspects of reproductive system physiology. However, its localization in these organs has not been previously analyzed. The aim of this study was to characterize its distribution in male rat reproductive organs by immunohistochemical methods. Taurine was localized in the smooth muscle cells of the tissues studied and in the skeletal fibers of the cremaster muscle. In the testis, taurine was found in Leydig cells, vascular endothelial cells, and other interstitial cells. No immunoreactivity was observed in the cells of the seminiferous tubules, either in germ cells at all spermatogenic stages or in Sertoli cells. However, peritubular myoid cells were immunostained. Most epithelial cells of the efferent ducts were immunolabeled, whereas the epithelial cells of the rete testis (extratesticular segments), epididymis (caput, corpus, and cauda regions), and ductus deferens were unstained. However, most epithelial cells from the intratesticular segments of the rete were immunopositive. Some cells identified as intraepithelial macrophages and lymphocytes, apical cells, and narrow cells were intensely immunolabeled. Regional differences in the distribution of these cell types along the ducts studied were also noted. The possible functional roles for taurine in these cells are discussed.  相似文献   

14.
Immunohistochemical localization of sulfhydryloxidase (SOx) has been examined in the testis of the Axolotl (Ambystoma mexicanum). The urodelan testis contains germ cells in various phases of differentiation from primordial germ cells to mature spermatozoa. SOx immunoreactivity is present in mitochondria of primordial germ cells and primary spermatogonia and declines within the population of secondary spermatogonia, suggesting, that the antibody used to localize SOx may serve to estimate the developmental stage of spermatogonia towards meiosis, since more undifferentiated cells react positively. Intensity of immunostaining increases again in spermatocytes and becomes most intense in early round spermatids correlating on ultrastructural level with an accumulation of numerous mitochondria in that part of the cytoplasm, where the acrosome vesicle is formed. Mature sperm are immunonegative. Additionally, Leydig cells within the glandular tissue are stained by the antibody. Thus the distribution pattern of SOx immunoreactivity principally resembles that in the mammalian testis found during ontogenesis or in the adult seminiferous epithelium. The possible functional significance of mitochondrial SOx in germ cells and Leydig cells is discussed. These results suggest, that the amphibian testis is a model for experimental problems dealing with the investigation of germ cells in various developmental phases including very undifferentiated premeiotic germ cells. The cystic testis may be of value in studying influences of various experimental conditions on varied homogeneous populations of germ cells.  相似文献   

15.
Cultures of rete testis epithelial cell-enriched preparations from testes of adult rams have been investigated, and some of their properties have been determined. In monolayers, the cells form mosaic-like borders, and retain many ultrastructural features characteristic of rete epithelial cells in situ, including an indented nucleus with prominent heterochromatin clumps, short rod-shaped or round mitochondria that are easily distinguished from the elongated mitochondria of Sertoli cells, the presence of desmosomes, and few if any lipid droplets or vacuoles. Unlike Sertoli cell-enriched aggregates in culture, rete testis epithelial cell preparations do not form cytoplasmic extensions, and no associated germ cells are present. Rete cells in culture express cytokeratin and vimentin in the cytoskeleton, whereas Sertoli cells prepared from testes of adult rams contain vimentin but not cytokeratin. Both rete cells and Sertoli cells stain positively for laminin but not for fibronectin, Collagen Type I, or Collagen Type III. The rete cells synthesize and secrete several proteins into the culture medium, evident in gel electrophoresis patterns of radiolabeled proteins. This pattern is similar, but not identical, to that secreted by Sertoli cell-enriched preparations. Rete cells in culture in the presence of serum continue to undergo mitotic division, but Sertoli cells do not. A variety of criteria were employed to estimate the relative numbers of Sertoli cells present in the rete testis epithelial cell-enriched preparations from testes of adult rams, including morphological and ultrastructural differences between the two cell types, and the presence of desmosomal proteins and cytokeratin in rete cells but not in Sertoli cells. The relative number of fibroblast-like cells was determined by measuring the expression of fibronectin and Collagen Type I, and an immunocytochemical probe for the detection of Factor VIII was used to estimate the degree of contamination by vascular endothelial cells. Using these markers, we determined that the rete testis epithelial cell-enriched preparations were about 93% pure. Primary cultures under defined conditions contained relatively few Sertoli cells (0.4%), but were contaminated to a larger extent by fibroblast-like cells (approximately 4%) and by endothelial cells (about 3%). The possible functions of rete testis epithelial cells are discussed herein.  相似文献   

16.
The aim of this study was to evaluate the ability of rat mononuclear bone marrow cells to recover testis cell associations and multiplication in busulfan-treated rats, and to compare these data to germinative testicular cell transplant. The germinative testicular cells were obtained by the trypsin digestion method, and bone marrow cells were harvested from femurs and tibias, and purified using by Ficoll gradient. Cell transplantation was performed by the injection of cells through the efferent ducts into the rete testis in busulfan-treated animals. Fifteen days after transplantation, the recipient rats were sacrificed and the testes were collected and analyzed by histology (hematoxilin-eosin and DAPI staining). Results demonstrated that germ cells transplantation promoted cellular reorganization of seminiferous epithelium 15 days later. On the other hand, no improvement in spermatogenesis regeneration was found after heterologous mononuclear bone marrow cell transplantation.  相似文献   

17.
The epididymis and efferent duct system of the turtle Chrysemys picta were examined. Seminiferous tubules are drained by a series of ducts that form a rete exterior to the tunica albuginea. The rete is located lateral to the testis and consists of anastamosing tubules of varying diameters, lined by a simple epithelium consisting of squamous to cuboidal cells. The rete is highly vascularized. A series of tubules (efferent ductules) connect the rete to the epididymis proper. The efferent ductules are highly convoluted, running between the epididymal tubules and are of varying diameters. The simple columnar epithelium lining these tubules possesses tight junctions, with every third or fourth cell possessing long cilia that protrude into the lumen. The cytoplasm of these epithelial cells contains abundant mitochondria. In the central portion of the efferent ductule, epithelial cells possess granules that appear to be secreted into the lumen by an apocrine process. The epididymis proper is a single, long, highly convoluted tubule that receives efferent ductules along its entire length. It is lined by a pseudostratified epithelium containing several cell types. The most abundant cell (vesicular cell) lacks cilia, but has a darkly staining apical border due to numerous small vesicles immediately beneath the luminal membrane. The small vesicles appear to fuse with each other basally to form larger vesicles. These cells appear to have an absorptive function, and occasionally sperm are embedded in their cytoplasm. The second-most abundant cell is a basal cell found along the basement membrane. The number of these cells fluctuates throughout the year, being most abundant in late summer and early fall. A small narrow cell with an oval nucleus and darkly staining cytoplasm, extending from the basement membrane to the apical surface, is present in small numbers, particularly in the caudal regions of the epididymis. This cell is frequently found in association with another narrow cell having a rounded nucleus and abundant mitochondria in its cytoplasm.  相似文献   

18.
As luminal fluid moves from the seminiferous tubule and enters the rete testis, its protein concentration declines from approximately 6 mg/ml to 1 mg/ml. It was therefore suggested that protein is either 1) utilized by the spermatozoa, 2) transported across the epithelium of the terminal segment of the seminiferous tubule, the tubuli recti or rete testis, or 3) absorbed and degraded by the epithelium. Horseradish peroxidase (HRP), a protein marker, was microperfused into single seminiferous tubules or perfused directly into the rete. After fixation, the HRP was localized histochemically and the tissue observed under the light- and electron microscope. HRP was taken up via pinocytotic vesicles into the cytoplasm of the Sertoli cells and germ cells but did not permeate extracellularly beyond the tight junctions. Similar results were obtained in the cells lining the terminal segment and the tubuli recti. The rete epithelium showed uptake of HRP into coated and noncoated vesicles, while some cells additionally revealed diffuse cytoplasmic distribution of HRP. The terminal segment, tubuli recti, and rete testis may be important routes by which proteins may leave the testicular fluid either to be degraded or to enter the blood.  相似文献   

19.
The developmental fate of primordial germ cells in the mammalian gonad depends on their environment. In the XY gonad, Sry induces a cascade of molecular and cellular events leading to the organization of testis cords. Germ cells are sequestered inside testis cords by 12.5 dpc where they arrest in mitosis. If the testis pathway is not initiated, germ cells spontaneously enter meiosis by 13.5 dpc, and the gonad follows the ovarian fate. We have previously shown that some testis-specific events, such as mesonephric cell migration, can be experimentally induced into XX gonads prior to 12.5 dpc. However, after that time, XX gonads are resistant to the induction of cell migration. In current experiments, we provide evidence that this effect is dependent on XX germ cells rather than on XX somatic cells. We show that, although mesonephric cell migration cannot be induced into normal XX gonads at 14.5 dpc, it can be induced into XX gonads depleted of germ cells. We also show that when 14.5 dpc XX somatic cells are recombined with XY somatic cells, testis cord structures form normally; however, when XX germ cells are recombined with XY somatic cells, cord structures are disrupted. Sandwich culture experiments suggest that the inhibitory effect of XX germ cells is mediated through short-range interactions rather than through a long-range diffusible factor. The developmental stage at which XX germ cells show a disruptive effect on the male pathway is the stage at which meiosis is normally initiated, based on the immunodetection of meiotic markers. We suggest that at the stage when germ cells commit to meiosis, they reinforce ovarian fate by antagonizing the testis pathway.  相似文献   

20.
Benomyl is an effective fungicide that has been in use for many years. This chemical and its primary metabolite, carbendazim, are microtubule poisons that are relatively nontoxic to all mammalian organs, except for the male reproductive system. Its primary effects, at moderate to low dosages, are on the testis, where it causes sloughing of germ cells in a stage-dependent manner. Sloughing is caused by the effects of the chemical on microtubules and intermediate filaments of the Sertoli cell. These effects spread to dividing germ cells and also lead to abnormal development of the head of elongating spermatids. At higher dosages, it causes occlusion of the efferent ducts, blocking passage of sperm from the rete testis to epididymis. The mechanism of occlusion appears to be related to fluid reabsorption, sperm stasis, followed by leukocyte chemotaxis, sperm granulomas, fibrosis and often the formation of abnormal microcanals. The occlusion results in a rapid swelling of the testis and ultimately seminiferous tubular atrophy and infertility. In conclusion, studies that reveal long term testicular atrophy following chronic or subchronic exposure to a toxicant should be re-examined for histopathological lesions in the efferent ductules and head of the epididymis. Lesions in the male track that cause blockage may induce permanent testicular damage and a decrease in sperm production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号