首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Repair of UV-induced lesions in DNA was studied with various kinds of subcellular system prepared from Bacillus subtilis. The degree of repair during the post-irradiation incubation period was calculated from marker survivals in transforming DNA. Systems consisting mainly of non-viable spherical cells and subcellular fragments, as well as systems consisting of colony-forming protoplasts, were able to repair UV-induced lesions as efficiently as intact cell systems. A Teflon homogenate, a freeze-and-thawed product and an osmotic shockate were also examined. The former two systems showed high repair activity, but the last did not. Attempts to repair the lesions with a supernatant fraction of Teflon homogenate were unsuccessful. In contrast with the active protoplast derivatives, toluene-treated cells were inert with respect to repair even when supplemented with substrates and cofactors although they retained DNA-synthesizing activity under similar conditions.  相似文献   

3.
We found that, in the rabbit ear, the dermal protein contains 75.5% of cutaneous phenylalanine and 97.9% of cutaneous proline; the remaining 24.5% of phenylalanine and 2.1% of proline are in the epidermal protein. This finding led us to develop two novel models that use phenylalanine and proline tracers and the rabbit ear to quantify protein kinetics in the epidermis and dermis. The four-pool model calculates the absolute rates of protein kinetics and amino acid transport, and the two-pool model calculates the apparent rates of protein kinetics that are reflected in the blood. The results showed that both epidermis and dermis maintained their protein mass in the postabsorptive state. The rate of epidermal protein synthesis was 93.4 +/- 37.6 mg x 100 g(-1) x h(-1), which was 10-fold greater than that of the dermal protein (9.3 +/- 5.8 mg x 100 g(-1) x h(-1)). These synthetic rates were in agreement with those measured simultaneously by the tracer incorporation method. Comparison of the four-pool and two-pool models indicated that intracellular cycling of amino acids accounted for 75 and 90% of protein kinetics in the dermis and epidermis, respectively. We conclude that, in the skin, efficient reutilization of amino acids from proteolysis for synthesis enables the maintenance of protein mass in the postabsorptive state.  相似文献   

4.
The First joint meeting of the German DGDR (German Society for Research on DNA Repair) and the French SFTG (French Society of Genotoxicology) on DNA Repair was held in Toulouse, France, from September 15 to 19, 2007. It was organized by Lisa Wiesmüller and Bernard Salles together with the scientific committee consisting of Gilbert de Murcia, Jean-Marc Egly, Frank Grosse, Karl-Peter Hopfner, Georges Iliakis, Bernd Kaina, Markus Löbrich, Bernard Lopez, Daniel Marzin and Alain Sarasin. This report summarizes information presented by the speakers (invited lectures and oral communications) during the seven plenary sessions, which include (1) excision repair, (2) DNA repair and carcinogenesis, (3) double-strand break repair, (4) replication in repair and lesion bypass, (5) cellular responses to genotoxic stress, (6) DNA repair machinery within the chromatin context and (7) genotoxicology and testing. A total of 23 plenary lectures, 32 oral communications and 66 posters were presented in this rather intense 4 days meeting, which stimulated extensive discussions and highly interdisciplinary scientific exchanges among the ∼250 participants.  相似文献   

5.
A simple enzyme immunoassay procedure was developed for the quantitative determination of 254-nm uv-induced DNA damage in cells. With the use of specific antibodies to uv-irradiated DNA and horseradish peroxidase-conjugated antibody to rabbit IgG, the extent of damaged DNA in uv-irradiated rat spleen mononuclear cells was quantitatively measurable. Through the use of this method, the amount of damaged DNA present in 2 X 10(5) cells irradiated at a dose of 75 J/m2 was estimated to be 7 ng equivalents of the standard uv-irradiated DNA. In addition, when the cells, irradiated at 750 J/m2, were incubated for 1 h, the antigenic activity of DNA decreased by 40%, suggesting that a repair of the damaged sites in DNA had proceeded to some extent in the cells.  相似文献   

6.
The effects of cellular differentiation on the repair of DNA damage induced by uv radiation were investigated in the murine 3T3-T proadipocyte cell culture system. Upon exposure to human plasma, actively cycling 3T3-T cells (stem cells) undergo growth arrest, which is followed by terminal differentiation into lipid-laden adipocytes. In response to uv irradiation, the level of unscheduled DNA synthesis is significantly lower in adipocytes as compared to stem cells. The alkaline elution assay was used to monitor the appearance of repair-induced strand breaks in 3T3-T cells after uv irradiation. DNA strand breaks were detected in stem cells by 4 min post-uv with essentially no further increase after 8 min. When terminally differentiated adipocytes were irradiated and allowed to repair, however, more strand breaks were present at 4 min and, in marked contrast to stem cells, continued to accumulate in adipocytes for at least 16 min post-uv. Inhibition of repair-replication with hydroxyurea and cytosine arabinoside significantly increased accumulation of repair-induced strand breaks in stem cells, yet had little effect on this accumulation in adipocytes. For stem cells and adipocytes, incision activity was linear out to at least 10 Jm-2 without saturation. These data suggested that 3T3-T cell differentiation is accompanied by a defect in some postincision process of the excision-repair pathway.  相似文献   

7.
Cells in tissues and organs are continuously subjected to oxidative stress and free radicals on a daily basis. This free radical attack has exogenous or endogenous (intracellular) origin. The cells withstand and counteract this occurrence by the use of several and different defense mechanisms ranging from free radical scavengers like glutathione (GSH), vitamins C and E and antioxidant enzymes like catalase, superoxide dismutase and various peroxidases to sophisticated and elaborate DNA repair mechanisms. The outcome of this dynamic equilibrium is usually the induction of oxidatively induced DNA damage and a variety of lesions of small to high importance and dangerous for the cell i.e. isolated base lesions or single strand breaks (SSBs) to complex lesions like double strand breaks (DSBs) and other non-DSB oxidatively generated clustered DNA lesions (OCDLs). The accumulation of DNA damage through misrepair or incomplete repair may lead to mutagenesis and consequently transformation particularly if combined with a deficient apoptotic pathway. In this review, we present the current status of knowledge and evidence on the mechanisms and involvement of intracellular oxidative stress and DNA damage in human malignancy evolution and possible use of these parameters as cancer biomarkers. At the same time, we discuss controversies related to potential artifacts inherent to specific methodologies used for the measurement of oxidatively induced DNA lesions in human cells or tissues.  相似文献   

8.
The rate of repair of radiation-induced DNA damage in proliferating rat epidermal cells diminished progressively with increasing age of the animal. The dorsal skin was irradiated with 1200 rad of 0.8 MeV electrons at various ages, and the amount of DNA damage was determined as a function of time after irradiation by the method of alkaline unwinding followed by S1 nuclease digestion. The amount of DNA damage immediately after irradiation was not age dependent, while the rate of damage removal from the DNA decreased with increasing age. By fitting an exponential function to the relative amount of undamaged DNA as a function of time after irradiation, DNA repair halftimes of 20, 27, 69 and 107 min were obtained for 28, 100-, 200-, and 400-day-old animals, respectively.  相似文献   

9.
Alternative molecular mechanisms can be envisaged for the cellular repair of UV-damaged DNA. In the "random collision" model, DNA damage distributed throughout the genome is recognised and repaired by a process of random collision between DNA damage and repair enzymes. The other model assumes a "processive" mechanism, whereby DNA is scanned for damage by a repair complex moving steadily along its length. These two models give different predictions concerning the time course of repair. Random collision should result in a declining rate of repair with time as the concentration of lesions in the DNA falls; but the processive model predicts a constant rate of repair until scanning is complete. We have examined the time course of DNA repair in human fibroblasts given low (generally sublethal) doses of UV light. Using 3 distinct assays, we find no sign of a constant repair rate after 4 J/m2 or less, even when the first few hours after irradiation are examined. Thus DNA repair is likely to depend on random collision. The implications of this finding for the structural organisation of repair are discussed.  相似文献   

10.
11.
We have investigated the effects of hyperthermia treatment on sequential steps of the repair of UV-induced DNA damage in HeLa cells. DNA repair synthesis was inhibited by 40% after 15 min of hyperthermia treatment at 45 degrees C; greater inhibition of repair synthesis occurred with prolonged incubation at 45 degrees C. Enzymatic digestion of repair-labeled DNA with Exonuclease III indicated that once DNA repair was initiated, the DNA repair patch was synthesized to completion and that ligation of the DNA repair patch occurred. Thus the observed inhibition of UV-induced DNA repair synthesis by hyperthermia treatment may be the result of inhibition of enzymes involved in the initiating step(s) of DNA repair. DNA repair patches synthesized in UV-irradiated cells labeled at 37 degrees C with [3H]Thd were 2.2-fold more sensitive to micrococcal nuclease digestion than was parental DNA; if the length of the labeling period was prolonged, the nuclease sensitivity of the repair patch synthesized approached that of the parental DNA. DNA repair patches synthesized at 45 degrees C, however, remained sensitive to micrococcal nuclease digestion even after long labeling periods, indicating that heat treatment inhibits the reassembly of the DNA repair patch into nucleosomal structures.  相似文献   

12.
M G Simic 《Mutation research》1992,267(2):277-290
Endogenous oxidative processes are shown to generate hydrogen peroxide and .OH radicals, which react in vivo to form a variety of products. Thymidine glycol (Tg) and 8-hydroxydeoxyguanosine (8-dRG-OH) are such products. They result from the excision repair of DNA and are excreted in urine. Both products can be used as biomarkers in the dosimetry of oxidative damage to DNA. Since oxidative processes and accumulation of their effects contribute to carcinogenesis, the proposed rate-of-damage hypothesis provides a rationale for using these biomarkers in early diagnostics and in the assessment of carcinogenic and anticarcinogenic properties of diets, foods, and food components, as well as certain exogenous toxicants and agents. Approaches for measurement of urinary biomarkers of DNA damage are reviewed.  相似文献   

13.
Steady-state temperature distribution is investigated in human skin and subdermal tissue exposed to a dry and cool environment with negligible insensible perspiration. The mathematical model incorporates the effect of blood mass flow and metabolic heat generation. The rates of the two and the tissue thermal conductivity are assumed to have different values in all the three parts, namely epidermis, dermis and subdermal tissues. A simple variational finite element approach is used to find numerical values of the interface temperatures for a wide range of the values of skin surface temperature and for different thicknesses of the above parts. These values are used to obtain approximate temperature profiles in the whole region. The biological and physical implications of the results are also discussed.  相似文献   

14.
15.
A genetic model for some cases of excision-deficient xeroderma pigmentosum (XP) is proposed in which the trait (i.e., XP) is expressed if and only if the individual is homozygous or hemizygous for defective alleles at more than one of a specific set of loci. The model might also apply in some cases of certain other diseases associated with defective DNA repair. The model accounts for several paradoxical aspects of XP, including the large number of complementation groups despite the biochemically limited DNA-repair defect, the co-existence of XP and Cockayne's syndrome in two different complementation groups of XP, siblings with markedly different degrees of severity of XP in one family and transmission of the disease in an X-linked manner in another, the existence of some individuals who appear to have the DNA-repair defect but not clinical XP, and the seeming paradox of a disease associated with a marked defect in a DNA-repair mechanism but not associated with an obvious increase in incidence of internal cancer. The model predicts that a large proportion of the general population is a carrier of one or more of these defective genes for DNA-repair mechanisms. Such genes may be important in the etiology of much of human cancer.  相似文献   

16.
17.
Inflammation mediated by infection is an important factor causing carcinogenesis. Opisthorchis viverrini (OV) infection is a risk factor of cholangiocarcinoma (CHCA), probably through chronic inflammation. Formation of 8-nitroguanine and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), and expression of inducible nitric oxide synthase (iNOS) and heme oxygenase-1 (HO-1) were assessed in the liver of hamsters infected with OV. We newly produced specific anti-8-nitroguanine antibody without cross-reaction. Double immunofluorescence staining revealed that 8-oxodG and 8-nitroguanine were formed mainly in the same inflammatory cells and epithelium of bile ducts from day 7 and showed the strongest immunoreactivity on days 21 and 30, respectively. It is noteworthy that 8-oxodG and 8-nitroguanine still remained in epithelium of bile ducts on day 180, although amount of alanine aminotransferase activity returned to normal level. A time course of 8-nitroguanine was associated with iNOS expression. Furthermore, this study demonstrated that HO-1 expression and subsequent iron accumulation may be involved in enhancement of oxidative DNA damage in epithelium of small bile ducts. In conclusion, nitrative and oxidative DNA damage via iNOS expression in hamsters infected with OV may participate in CHCA carcinogenesis.  相似文献   

18.
Chronic inflammation induced by liver fluke (Opisthorchis viverrini) infection is the major risk factor for cholangiocarcinoma (CCA) in Northeastern Thailand. Increased levels of proinflammatory cytokines and nuclear factor kappa B that control cyclooxygenase-2 and inducible nitric oxide activities, disturb the homeostasis of oxidants/anti-oxidants and DNA repair enzymes, all of which appear to be involved in O. viverrini-associated inflammatory processes and CCA. Consequently oxidative and nitrative stress-related cellular damage occurs due to the over production of reactive oxygen and nitrogen species in inflamed target cells. This is supported by the detection of high levels of oxidized DNA and DNA bases modified by lipid peroxidation products in both animal and human tissues affected by O. viverrini-infection. Treatment of opisthorchiasis patients with praziquantel, an anti- trematode drug was shown to reduce inflammation-mediated tissue damage and carcinogenesis. The principal mechanisms that govern the effects of inflammation and immunity in liver fluke-associated cholangiocarcinogenesis are reviewed. The validity of inflammation-related biomolecules and DNA damage products to serve as predictive biomarkers for disease risk evaluation and intervention is discussed.  相似文献   

19.
20.
Immunosuppression by UV light contributes significantly to the induction of skin cancer by suppressing the cell-mediated immune responses which control the development of carcinogenesis. The B7/CD28-CTLA-4 signaling pathway provides costimulatory signals essential for Ag-specific T cell activation. To investigate the role of this pathway in photocarcinogenesis, we utilized transgenic (Tg) mice which constitutively express CTLA-4Ig, a high-affinity CD28/CTLA-4 antagonist that binds to both B7-1 and B7-2. The transgene is driven by a skin-specific promoter yielding high levels of CTLA-4Ig in the skin and serum. Chronic UV exposure of CTLA-4Ig Tg mice resulted in significantly reduced numbers of skin tumors, when compared to control mice. In addition, Tg mice were resistant to UV-induced suppression of delayed-type hypersensitivity responses to alloantigens. Most importantly, upon stimulation with mitogens and alloantigens, T cells isolated from CTLA-4Ig Tg mice produced significantly less IL-4 but more IFN-gamma compared to control T cells, suggesting an impaired Th2 response and a relative increase of Th1-type immunity. Together, these data show that overall B7 engagement directs immune responses toward the Th2 pathway. Moreover, they point out the crucial role of Th1 immune reactions in the protection against photocarcinogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号