首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

The role of B cells in allergic asthma remains undefined. One mechanism by which B cells clearly contribute to allergic disease is via the production of specific immunoglobulin, and especially IgE. Cognate interactions with specific T cells result in T cell help for B cells, resulting in differentiation and immunoglobulin secretion. Proximal to (and required for) T cell-dependent immunoglobulin production, however, is antigen presentation by B cells. While interaction with T cells clearly has implications for B cell function and differentiation, this study investigated the role that B cells have in shaping the T cell response during chronic allergic lung disease.

Methodology/Principal Findings

In these studies, we used a clinically relevant mouse model of chronic allergic lung disease to study the role of B cells and B cell antigen presentation in this disease. In these studies we present several novel findings: 1) Lung B cells from chronically allergen challenged mice up-regulated MHC II and costimulatory molecules CD40, CD80 and CD86. 2) Using in vitro studies, B cells from the lungs of allergen challenged mice could present antigen to T cells, as assessed by T cell proliferation and the preferential production of Th2 cytokines. 3) Following chronic allergen challenge, the levels of Th2 cytokines IL-4 and IL-5 in the lungs and airways were significantly attenuated in B cell −/− mice, relative to controls. 4) B cell driven Th2 responses and mucus hyper secretion in the lungs were dependent upon MHC II expression by B cells.

Conclusions/Significance

Collectively, these results provide evidence for antigen presentation as a novel mechanism by which B cells contribute to chronic allergic disease. These findings give new insight into the mechanisms by which B cells promote asthma and other chronic diseases.  相似文献   

2.
In the mucosal immune system, resident dendritic cells are specialized for priming Th2-polarized immunity, whereas the Ag-presenting activity of macrophages has been linked with the development of Th1 phenotype. As an immune switch toward Th1 can protect against Th2-mediated allergic response, this study investigated the capacity of lung macrophages to stimulate Th1 responses during the secondary exposure to inhaled allergen, thereby suppressing Th2-mediated allergic airway inflammation in a murine model of allergic asthma. Following airway macrophage depletion in OVA-sensitized mice, lung T cells defaulted to a phenotype that produced less Th1 (IFN-gamma) and more Th2 (IL-4 and IL-5) cytokines, leading to more severe airway hyperreactivity and inflammation after intranasal Ag challenge. After OVA pulsing and adoptive transfer, lung macrophages selectively promoted a Th1 response in Ag-sensitized recipients and did not induce pulmonary eosinophilia. By contrast, OVA pulsing and adoptive transfer of a lung cell preparation, consisting of dendritic cells, B cells, and macrophages, promoted a Th2 response with an associated inflammatory response that was suppressed when macrophages were present and pretreated with IFN-gamma, but exacerbated when macrophages were depleted before IFN-gamma treatment. In addition, Th1-promoting activity of lung macrophages was not related to the autocrine production of IL-12p40. These results suggest that the Th1-promoting APC activity may be an inherent property of the lung macrophage population, and may play an important role, upon stimulation by IFN-gamma, in antagonizing an ongoing Th2 immunity and Th2-dependent allergic responses.  相似文献   

3.
4.
The cytokines released from Th2 and Th2-like cells are likely to be central to the pathophysiolgy of asthma and allergy, contributing to aberrant IgE production, eosinophilia and, perhaps, mucosal susceptibility to viral infection. IL-4 has emerged as a central target, not only for B cell IgE production, but also in the commitment of both CD4+ and CD8+ T cells to cells with Th2 effector function capable of secreting IL-5 resultlng in eosinophilic inflammation. In view of the central role of this cytokine and the evidence that glucocorticoids are unable to modify many IL-4 dependent effects, Th2 inhibitors may prove to be novel therapies for the treatment of bronchial asthma.  相似文献   

5.
BackgroundAllergic rhinitis (AR) is a well-documented type 2 helper T (Th2) cell-mediated allergic disease that is accompanied by symptoms such as nasal rubbing, sneezing, itching, and rhinorrhea. Angelica gigas (AG) is traditional oriental medicine, and its dried root is widely used for the treatment of anemia, as a sedative, and as a blood tonic.PurposeThe effects of AG on allergic diseases including AR are currently unclear; therefore, we aimed to investigate the effects of AG extract (AG-Ex) in ameliorating AR.Study design/methodsThe cytotoxicity of AG-Ex was analyzed by EZ-Cytox or MTS assay in splenocytes, differentiated Th2 cells, and human nasal epithelial cells (HNEpC). The changes of Th2 cells activation were determined by the secretion levels of cytokines and chemokines using cytometric bead array in splenocytes and differentiated Th2 cells. The expression levels of eotaxin-3 and periostin were analyzed using an ELISA. AR was induced by ovalbumin in BALB/c mice and the ameliorating effects of AG-Ex were assessed by their clinical symptoms.ResultsThe secretion of Th2 cytokines such as IL-4, IL-5, and IL-13 was inhibited by the AG-Ex treatment in the splenocytes and differentiated Th2 cells. The treatment also suppressed allergic responses including the secretion of eotaxin-3 and periostin in human nasal epithelial cells (HNEpC). Moreover, the administration of AG-Ex to the OVA-induced AR mice improved their clinical symptoms, including behavioral tests, immune cell counts, histopathological analysis, and changes in serum parameters.ConclusionThe results of this study suggest that AG-Ex ameliorates AR by inhibiting Th2 cell activation and could thus be utilized as a treatment for Th2-mediated allergic diseases in the future.  相似文献   

6.
Gene expression screening showed decreased ephrin-A1 expression in CD4+ T cells of asthma patients. Ephrin-A1 is the ligand of the Eph receptor family of tyrosine kinases, forming the largest family of receptor tyrosine kinases. Their immune regulatory properties are largely unknown. This study demonstrates significantly reduced ephrin-A1 expression in T cells of asthma patients using real time-PCR. Immunohistological analyses revealed strong ephrin-A1 expression in lung tissue and low expression in cortical areas of lymph nodes. It is absent in T cell/B cell areas of the spleen. Colocalization of ephrin-A1 and its receptors was found only in the lung, but not in lymphoid tissues. In vitro activation of T cells reduced ephrin-A1 at mRNA and protein levels. T cell proliferation, activation-induced, and IL-2-dependent cell death were inhibited by cross-linking ephrin-A1, and not by engagement of Eph receptors. However, anti-EphA1 receptor slightly enhances Ag-specific and polyclonal proliferation of PBMC cultures. Furthermore, activation-induced CD25 up-regulation was diminished by ephrin-A1 engagement. Ephrin-A1 engagement reduced IL-2 expression by 82% and IL-4 reduced it by 69%; the IFN-gamma expression remained unaffected. These results demonstrate that ephrin-A1 suppresses T cell activation and Th2 cytokine expression, while preventing activation-induced cell death. The reduced ephrin-A1 expression in asthma patients may reflect the increased frequency of activated T cells in peripheral blood. That the natural ligands of ephrin-A1 are most abundantly expressed in the lung may be relevant for Th2 cell regulation in asthma and Th2 cell generation by mucosal allergens.  相似文献   

7.
Eosinophils are primarily thought of as terminal effectors of allergic responses and of parasite elimination. However, limited studies suggest a more discrete immunomodulatory role for this leukocyte during these inflammatory responses. In this investigation, we highlight the potential of eosinophils to act as APCs and thus modulators of allergic responses by influencing Th2 cell function. In response to Ag provocation of the allergic lung, eosinophils rapidly trafficked to sites of Ag deposition (airways lumen) and presentation (lung-associated lymph nodes and T cell-rich paracortical zones). Eosinophils from the allergic lung expressed class II MHC peptides, T cell costimulatory molecules (CD80 and CD86), and rapidly internalized and processed Ag that was sampled from within the airway lumen. Ag-loaded eosinophils promoted the production of IL-4, IL-5, and IL-13 in cocultures with in vitro-polarized Th2 cells and induced IL-5 production in a dose-dependent manner from Ag-specific CD4(+) T cells isolated from allergic mice. In addition, Ag-loaded eosinophils primed for Th2 cell-driven allergic disease of the lung when transferred to naive mice. Thus, eosinophils have the potential to not only activate Th2 cells to release disease-modulating cytokines but also to assist in priming the immune system for allergic responses. This investigation highlights the potential of eosinophils to not only act as terminal effector cells but also to actively modulate allergic inflammation by amplifying Th2 cell responses.  相似文献   

8.
Th2 cells are recruited to the lung where they mediate the asthma phenotype. Since the molecular mechanisms regulating Th2 cell trafficking remain unknown, we sought to determine whether trafficking of Th2 cells into the lung is mediated by G alpha i-coupled chemoattractant receptors. We show here that in contrast to untreated Th2 cells, pertussis toxin-treated Th2 cells were unable to traffic into the lung, airways, or lymph nodes following Ag challenge and therefore were unable to induce allergic inflammation in vivo. Pertussis toxin-treated Th2 cells were functional cells, however, and when directly instilled into the airways of mice, bypassing their need to traffic to the lung, were able to induce airway eosinophilic inflammation. These studies conclusively demonstrate that trafficking of Th2 cells into the lung is an active process dependent on chemoattractant receptors.  相似文献   

9.
Mast cells play a potentially important role in fibroproliferative diseases, releasing mediators including tryptase that are capable of stimulating fibroblast proliferation and procollagen synthesis. The mechanism by which tryptase stimulates fibroblast proliferation is unclear, although recent studies suggest it can activate protease-activated receptor (PAR)-2. We therefore investigated the role of PAR-2 in tryptase-induced proliferation of human fetal lung and adult lung parenchymal and airway fibroblasts and, for comparative purposes, adult dermal fibroblasts. Tryptase (0.7-70 mU/ml) induced concentration-dependent increases in proliferation of all fibroblasts studied. Antipain, bis(5-amidino-2-benzimidazolyl)methane, and benzamidine inhibited tryptase-induced fibroblast proliferation, demonstrating that proteolytic activity is required for the proliferative effects of tryptase. RT-PCR demonstrated the presence of PAR-2 mRNA, and immunohistochemical staining localized PAR-2 to the cell surface of lung fibroblasts. In addition, specific PAR-2 activating peptides, SLIGKV and SLIGRL, mimicked the proliferative effects of tryptase. In contrast, human dermal fibroblasts only weakly stained with the PAR-2 antibody, PAR-2 mRNA was almost undetectable, and fibroblasts did not respond to PAR-2 activating peptides. These results suggest that tryptase induces lung, but not dermal, fibroblast proliferation via activation of PAR-2 and are consistent with the hypothesis that the release of tryptase from activated mast cells may play an important role in the fibroproliferative response observed in asthma, chronic obstructive pulmonary disease, and patients with pulmonary fibrosis.  相似文献   

10.
Leflunomide, an inhibitor of de novo pyrimidine biosynthesis, has recently been introduced as a treatment for rheumatoid arthritis in an attempt to ameliorate inflammation by inhibiting lymphocyte activation. Although the immunosuppressive ability of leflunomide has been well described in several experimental animal models, the precise effects of a limited pyrimidine supply on T cell differentiation and effector functions have not been elucidated. We investigated the impact of restricted pyrimidine biosynthesis on the activation and differentiation of CD4 T cells in vivo and in vitro. Decreased activation of memory CD4 T cells in the presence of leflunomide resulted in impaired generation and outgrowth of Th1 effectors without an alteration of Th2 cell activation. Moreover, priming of naive T cells in the presence of leflunomide promoted Th2 differentiation from uncommitted precursors in vitro and enhanced Th2 effector functions in vivo, as indicated by an increase in Ag-specific Th2 cells and in the Th2-dependent Ag-specific Ig responses (IgG1) in immunized mice. The effects of leflunomide on T cell proliferation and differentiation could be antagonized by exogenous UTP, suggesting that they were related to a profound inhibition of de novo pyrimidine biosynthesis. These results indicate that leflunomide might exert its anti-inflammatory activities in the treatment of autoimmune diseases by preventing the generation of proinflammatory Th1 effectors and promoting Th2 cell differentiation. Moreover, the results further suggest that differentiation of CD4 T cells can be regulated at the level of nucleotide biosynthesis.  相似文献   

11.
IL-27 up-regulates Th1 but down-regulates Th2 responses. However, its molecular mechanism and regulatory effects on polarized Th2 cells remain unclear. In this study, we have revealed that IL-27 inhibits Th2 cell development as well as Th2 cytokines production from already polarized Th2 cells by down-regulation of GATA-3 and up-regulation of T-bet expression simultaneously. In vivo daily IL-27 treatment for 1 wk after Leishmania major infection protects BALB/c mice from footpad swelling by diminishing parasite burden via reciprocal regulation of Th1 and Th2 responses. Furthermore, IL-27 stimulation causes marked reduction in the capacity of host mouse to mount a Th2 response against Strongyloides venezuelensis infection. Thus, IL-27-treated mice failed to develop intestinal mastocytosis after S. venezuelensis infection and exhibited a marked delay in parasite expulsion. Finally, intranasal administration of IL-27 inhibits OVA-induced airway hyperresponsiveness and inflammation in OVA-sensitized animals. Thus, IL-27 could provide us with a novel therapeutic way for treating Th2-associated diseases such as bronchial asthma.  相似文献   

12.
Tolerant and nontolerant murine Th1 and Th2 clones, specific for human gamma-globulin (HGG), were compared for their ability to promote cell cycle entry and progression by B cells in vitro. When stimulated with HGG, nontolerant Th1 and Th2 clones induced similar increases in B cell membrane MHC class II levels--a phenomenon associated with early B cell activation. Nontolerant Th1 and Th2 clones also induced B cell DNA synthesis, an event associated with subsequent G1 phase traversal, although Th2 cells were more efficient than Th1 cells in stimulating this activity. Exposure of Th clones to tolerogen in the form of HGG-pulsed chemically fixed APC inhibited the ability of Th1 clones, but not Th2 clones to promote polyclonal B cell DNA synthesis in HGG-stimulated secondary cultures. However, Th1 clones exposed to tolerogen did not lose their ability to increase the expression of MHC class II molecules on B cells in these cultures. These results indicate that tolerance induction does not inhibit the ability of Th1 clones promote B cell cycle progression. In contrast, exposure of Th2 cells to tolerogen does not inhibit significantly the ability of these cells to stimulate B cell cycle entry or progression.  相似文献   

13.
14.
Aqueous extract of Kalanchoe pinnata (Kp) have been found effective in models to reduce acute anaphylactic reactions. In the present study, we investigate the effect of Kp and the flavonoid quercetin (QE) and quercitrin (QI) on mast cell activation in vitro and in a model of allergic airway disease in vivo. Treatment with Kp and QE in vitro inhibited degranulation and cytokine production of bone marrow-derived mast cells following IgE/Fc?RI crosslinking, whereas treatment with QI had no effect. Similarly, in vivo treatment with Kp and QE decreased development of airway hyperresponsiveness, airway inflammation, goblet cell metaplasia and production of IL-5, IL-13 and TNF. In contrast, treatment with QI had no effect on these parameters. These findings demonstrate that treatment with Kp or QE is effective in treatment of allergic airway disease, providing new insights to the immunomodulatory functions of this plant.  相似文献   

15.
The engagement of CD137 (4-1BB), an inducible T cell costimulatory receptor and member of the TNF receptor superfamily, by agonistic Abs can promote strong tumor and viral immunity mediated by CD8(+) T cells and stimulate IFN-gamma production. However, its role in Th2-mediated immune responses has not been well defined. To address this issue, we studied the function of CD137 engagement using an allergic airway disease model in which the mice were sensitized with inactivated Schistosoma mansoni eggs followed by S. mansoni egg Ag challenge directly in the airways and Th1/2 cytokine production was monitored. Interestingly, treatment of C57BL/6 mice with agonistic anti-CD137 (2A) during sensitization completely prevents allergic airway inflammation, as shown by a clear inhibition of T cell and eosinophil infiltration into the lung tissue and airways, accompanied by diminished Th2 cytokine production and reduced serum IgE levels, as well as a reduction of airway hyperresponsiveness. At various time points after immunization, restimulated splenocytes from 2A-treated mice displayed reduced proliferation and Th2 cytokine production. In accordance with this, agonistic Ab to CD137 can directly coinhibit Th2 responses in vitro although it costimulates Th1 responses. CD137-mediated suppression of Th2 response is independent of IFN-gamma and T regulatory cells. Our study has identified a novel pathway to inhibit Th2 responses in a CD137-dependent fashion.  相似文献   

16.
Transient receptor potential channels (TRPCs) are widely expressed and regulate Ca(2+) entry in the cells that participate in the pathophysiology of airway hyperreactivity, inflammation, and remodeling. In vitro studies point to a role for TRPC1-mediated Ca(2+) signaling in several of these cell types; however, physiological evidence is lacking. Here we identify TRPC1 signaling as proinflammatory and a regulator of lung hyperresponsiveness during allergen-induced pulmonary response. TRPC1-deficient (Trpc1(-/-)) mice are hyposensitive to methacholine challenge and have significantly reduced allergen-induced pulmonary leukocyte infiltration coupled with an attenuated T helper type 2 (Th2) cell response. Upon in vitro allergen exposure, Trpc1(-/-) splenocytes show impaired proliferation and T cell receptor-induced IL-2 production. A high number of germinal centers in spleens of Trpc1(-/-) mice and elevated levels of immunoglobulins in their serum are indicative of dysregulated B cell function and homeostasis. Thus we propose that TRPC1 signaling is necessary in lymphocyte biology and in regulation of allergen-induced lung hyperresponsiveness, making TRPC1 a potential target for treatment of immune diseases and asthma.  相似文献   

17.
Protease-activated receptor 2 (PAR2) is a G-protein-coupled receptor that is proteolytically activated by certain endogenous proteases, such as trypsin, tryptase, and factor Xa. PAR2 can also be activated by synthetic peptides if their sequence mimics the tethered ligand exposed after receptor cleavage. Although it is known that PAR2 modulates vascular reactivity, it is unclear whether at the chronic stage of type 2 diabetes there are alterations in PAR2-mediated vascular responses. We investigated this issue by exposing mesenteric artery rings to PAR2-activating peptide (PAR2-AP; SLIGRL-NH2), the arteries used being obtained from later-stage (32–40-week-old) type 2 diabetic Goto–Kakizaki (GK) rats. The PAR2-AP-induced relaxation was enhanced in GK rats (vs. age-matched Wistar rats), whereas the ACh-induced relaxation was weaker in GK than in Wistar rats. In both groups, the PAR2-AP-induced relaxation was largely blocked by endothelial denudation or by NG-nitro-l-arginine [nitric oxide (NO) synthase inhibitor] treatment, but it was unaffected by indomethacin (cyclooxygenase inhibitor) treatment. Both the NO production induced by PAR2-AP and the PAR2 protein expression were significantly increased in mesenteric arteries from GK rats (vs. Wistar rats). These data are the first to indicate that the PAR2-AP-induced endothelium-dependent relaxation is enhanced in mesenteric arteries isolated from type 2 diabetic GK rats at the chronic stage, and they further suggest that the enhancement may be due to an increased expression of PAR2 receptors in this artery.  相似文献   

18.
A novel costimulatory molecule expressed on activated T cells, inducible costimulator (ICOS), and its ligand, B7-related protein-1 (B7RP-1), were recently identified. ICOS costimulation leads to the induction of Th2 cytokines without augmentation of IL-2 production, suggesting a role for ICOS in Th2 cell differentiation and expansion. In the present study, a soluble form of murine ICOS, ICOS-Ig, was used to block ICOS/B7RP-1 interactions in a Th2 model of allergic airway disease. In this model, mice are sensitized with inactivated Schistosoma mansoni eggs and are subsequently challenged with soluble S. mansoni egg Ag directly in the airways. Treatment of C57BL/6 mice with ICOS-Ig during sensitization and challenge attenuated airway inflammation, as demonstrated by a decrease in cellular infiltration into the lung tissue and airways, as well as by a decrease in local IL-5 production. These inhibitory effects were not due to a lack of T cell priming nor to a defect in Th2 differentiation. In addition, blockade of ICOS/B7RP-1 interactions during ex vivo restimulation of lung Th2 effector cells prevented cytokine production. Thus, blockade of ICOS signaling can significantly reduce airway inflammation without affecting Th2 differentiation in this model of allergic airway disease.  相似文献   

19.
Protease-activated receptor-2 (PAR-2) is a widely expressed tethered ligand receptor that can be activated by trypsin and other trypsin-like serine proteases. In the exocrine pancreas, PAR-2 activation modulates acinar cell secretion of digestive enzymes and duct cell ion channel function. During acute pancreatitis, digestive enzyme zymogens, including trypsinogen, are activated within the pancreas. We hypothesized that trypsin, acting via PAR-2, might regulate the severity of that disease, and to test this hypothesis, we examined the effect of either genetically deleting or pharmacologically activating PAR-2 on the severity of secretagogue-induced experimental pancreatitis. We found that experimental acute pancreatitis is more severe in PAR-2(-/-) than in wild-type mice and that in vivo activation of PAR-2, achieved by parenteral administration of the PAR-2-activating peptide SLIGRL-NH2, reduces the severity of pancreatitis. In the pancreas during the early stages of pancreatitis, the MAPK ERK1/2 is activated and translocated to the nucleus, but nuclear translocation is reduced by activation of PAR-2. Our findings indicate that PAR-2 exerts a protective effect on pancreatitis and that activation of PAR-2 ameliorates pancreatitis, possibly by inhibiting ERK1/2 translocation to the nucleus. Our observations suggest that PAR-2 activation may be of therapeutic value in the treatment and/or prevention of severe clinical pancreatitis, and they lead us to speculate that, from a teleological standpoint, PAR-2 may have evolved in the pancreas as a protective mechanism designed to dampen the injurious effects of intrapancreatic trypsinogen activation.  相似文献   

20.
Brain metastases are the most common fatal complication of systemic cancer, especially of lung (40-50%) and breast (20-30%) cancers. In this era of personalized therapy, there is a critical need to uncover the signaling architecture of brain metastases; however, little is known about what signaling pathways are activated in the context of the brain microenvironment. Using a unique study set of 42 brain metastases from patients with breast or nonsmall cell lung cancer (NSCLC), the phosphorylation/activation states of 128 key signaling proteins involved in cancer signaling were measured in laser capture microdissected tumor epithelium using reverse phase protein microarray (RPMA) technology. Distinct pathway activation subgroups from both breast and lung metastases were underpinned by, among others, ERBB2, AKT, mTOR, EGFR, SMAD, and ERK-p38 signaling. Breast cancer metastases showed significantly (p < 0.05) higher activation of the c-ERBB2/IGFR-AKT pathway network compared to NSCLC metastases, whereas NSCLC metastases to the brain exhibited higher relative levels of many members of the EGFR-ERK signaling network. Protein pathway activation mapping using RPMA revealed both the heterogeneity of signaling networks in brain metastases that would require a prior stratification to targeted therapies as well as the requirement of direct analysis of the metastatic lesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号