首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Production of the faba bean in semi-arid and coastal areas maybe limited by the salt sensitivity of faba bean symbiosis. Accordingly,this study was done to analyse the effects of salt on the effectivesymbiosis of faba bean (Vicia faba L. var. minor cultivar Alborea)and salt-tolerant Rhizobium leguminosarum biovar. viciae strainGRA19. After 4 weeks of growth, the nutrient solutions weresupplemented with 50, 75 and 100 mM NaCl for 21 d. Plants wereharvested four times at weekly intervals, beginning at 4 weeks.Vicia faba tolerated low (50 mM NaCl) but not higher levels(75 and 100 mM NaCl) of salt stress. Salinity affected shootgrowth more than root growth. At the end of the culture, thetotal nitrogen content in the shoot was affected more than plantgrowth; conversely, in the root, growth was influenced morethan total nitrogen content. In nodules, nitrogen fixation (acetylenereduction activity) was more sensitive to salinity than ammoniumassimilation (glutamine synthetase and glutamate synthase). Key words: Glutamate synthase, glutamine synthetase, N2 fixation, Rhizobium leguminosarum, salinity  相似文献   

2.
This study analyses the effects of salt on the effective symbiosisof faba bean (Vicia faba L. var. minor cv. Alborea) and salt-tolerantRhizobium leguminosarum biovar. viciae strain GRA19 grown withtwo KNO3 levels (2 and 8 mM). The addition of 8 mM KNO3 to thegrowth medium increases plant tolerance to salinity even witha concentration of 100 mM NaCl. This KNO3 level in control plantsreduced the N2 fixation. For 2 and 8 mM KNO3 the plants treatedwith NaCl reduced N2 fixation to identical values. The activityof the enzymes mediating ammonium assimilation in nodules (GS,NADH-GOGAT and NADH-GDH) was decreased by high KNO3 levels.The results show that NADH-GOGAT activity was more markedlyinhibited than was GS activity by salinity, therefore NADH-GOGATlimits the ammonium assimilation by nodules in V. faba undersalt stress. The total proline content in the nodule was notrelated to salt tolerance and thus does not serve as a salttoleranceindex for V. faba. Key words: Glutamate synthase, glutamine synthetase, N2 fixation, nitrate, salinity  相似文献   

3.
Nitrate assimilation was examined in two cultivars (Banner Winterand Herz Freya) of Vicia faba L. supplied with a range of nitrateconcentrations. The distribution between root and shoot wasassessed. The cultivars showed responses to increased applied nitrateconcentration. Total plant dry weight and carbon content remainedconstant while shoot: root dry weight ratio, total plant nitrogen,total plant leaf area and specific leaf area (SLA) all increased.The proportion of total plant nitrate and nitrate reductase(NR) activity found in the shoot of both cultivars increasedwith applied nitrate concentrations as did NO3: Kjeldahl-Nratios of xylem sap. The cultivars differed in that a greaterproportion of total plant NR activity occurred in the shootof cv. Herz Freya at all applied nitrate concentrations, andits xylem sap NO3: Kjeldahl-N ratio and SLA were consistentlygreater. It is concluded that the distribution of nitrate assimilationbetween root and shoot of V. faba varies both with cultivarand with external nitrate concentration. Vicia faba L., field bean, nitrate assimilation, nitrate reductase, xylem sap analysis  相似文献   

4.
Low temperature (6 C) growth was examined in two cultivarsof Vicia faba L. supplied with 4 and 20 mol m–3 N as nitrateor urea. Both cultivars showed similar growth responses to increasedapplied-N concentration regardless of N-form. Total leaf areaincreased, as did root, stem and leaf dry weight, total carboncontent and total nitrogen content. In contrast to findingsat higher growth temperatures, 20 mol m–3 urea-N gavesubstantially greater growth (all parameters measured) than20 mol m–3 nitrate-N. The increased carbon content per plant associated with increasedapplied nitrate or urea concentration, or with urea in comparisonto nitrate, was due to a greater leaf area per plant for CO2uptake and not an increased CO2, uptake per unit area, carbon,chlorophyll or dry weight, all of which either remained constantor decreased. Nitrate reductase activity was substantial inplants given nitrate but negligible in plants given urea. Neitherfree nitrate nor free urea contributed greatly to nitrogen levelsin plant tissues. It is concluded that there is no evidence for a restrictionin nitrate reduction at 6 C, and it is likely that urea givesgreater growth than nitrate because of greater rates of uptake. Vicia faba, broad bean, low temperature growth, carbon assimilation, nitrogen assimilation  相似文献   

5.
Nodulated white clover plants (Trifolium repens L. cv. Huia)were grown as simulated swards for 71 d in flowing nutrientsolutions with roots at 11 C and shoots at 20/15 C, day/night,under natural illumination. Root temperatures were then changedto 3, 5, 7, 11, 13, 17 or 25 C and the total N2, fixation over21 d was measured in the absence of a supply mineral N. Alltreatments were subsequently supplied with 10 mmol m–2NO2 in the flowing solutions for 14 d, and the relativeuptake of N by N2, fixation and NO3 uptake was compared.Net uptake of K+ was measured on a daily basis. Root temperature had little effect on root d. wt over the 35-dexperimental period, but shoot d. wt increased by a factor of3.5 between 3 and 25 C, with the sharpest increase occurringat 7–11 C. Shoot: root d. wt ratios increased from 25to 68 with increasing temperature at 7–25 C. N2-fixationper plant (in the absence of NO2 ) increased with roottemperature at 3–13C, but showed little change above13 C. The ratios of N2 fixation: NO2 uptake over 14d (mol N: mol N) were 0.47–0.77 at 3–7 C, 092–154at 11–17 C, and 046 at 25 C, reflecting the dominanceof NO3 uptake over N2 fixation at extremes of high andlow root temperature. The total uptake of N varied only slightlyat 11–25 –C (095–110 mmol N plant–1),the decline in N2 fixation as root temperature increased above11 C was compensated for by the increase in NO 3 uptake.The % N in shoot dry matter declined with decreasing root temperature,from 32% at 13 C to 15% at 3 C. In contrast, concentrationsof N expressed on a shoot water content basis showed a modestdecrease with increasing temperature, from 345 mol m–3at 3 C to 290 mol m–3 at 25 C. Trifolium repens L, white clover, root temperature, N2 fixation, potassium uptake, nitrate uptake, flowing solution culture  相似文献   

6.
Plants of faba bean cv. Fiord were grown under controlled conditions,without mineral N, in coarse river sand. Twenty-five days aftersowing when plants had at least eight fully opened leaves andwere nodulated and actively fixing N2, half were topped andkept debudded for 21 d. Changes in dry weight, N2 fixation (acetylenereduction activity), soluble carbohydrate, starch, soluble Nand total N in plants were monitored over the period. Both debudded and control plants grew and accumulated dry matter.Debudding resulted in a significant increase in the concentrationof soluble carbohydrate, starch and soluble N. but had onlya small effect on the total N concentration. A strong positivelinear relation between total plant weight and N content ofboth control and debudded plants showed that even under conditionsof excess supply of carbohydrate, faba beans have little capacityto store N. Soluble N accumulated in debudded plants presumablybecause less N was needed for the formation of new tissues thanin control plants. AR continued to increase throughout the experimentin control plants but declined in debudded plants from 6 to13 d after debudding and remained low until the end of the experiment.The decline was associated with an increase in available carbohydrateand in soluble N. The results of this experiment are consistentwith a feed back control of N2 fixation by the soluble poolof N.Copyright 1994, 1999 Academic Press Vicia faba, faba bean, debudding, soluble N, inhibition of N2 fixation  相似文献   

7.
Peoples, M. B., Sudin, M. N. and Herridge, D. F. 1987. Translocationof nitrogenous compounds insymbiotic and nitrate-fed amide-exportinglegumes.–J. exp. Bot. 38: 567–579. The transport of nitrogen from the roots and nodules of chickpea(Cicer anetinum L.), lentil (Lens culinaris Medic), faba bean(Vicia faba L.) and pea (Pisum sativum L.) was examined in glasshouse-grownplants supplied either with nitrate-free nutrients or with nutrientssupplemented with 1,2,4 or 8 mol m-3153N-nitrate. A sixth treatmentcomprised uninoculated plants supplied with 8–0 mol m-31513N-nitrate. For each species, more than 75% of the nitrogenwas exported from the nodules as the amides, asparagine andglutamine. In fully symbiotic plants, the amides also dominatednitrogen transport to the shoot When N2 fixation activity wasdecreased by the addition of nitrate to the rooting medium,the N-composition of xylem exudate and stem solutes changedconsiderably. The relative concentrations of asparagine tendedto increase in the xylem whilst those of glutamine were reduced;the levels of nitrate increased in both xylem exudate and thesoluble nitrogen pool of the stem with a rise in nitrate supply.The changes in relative nitrate contents reflected generallythe contributions of root and shoot to overall nitrate reductaseactivity at the different levels of nitrate used. The relationshipsbetween the relative contents of xylary or stem nitrate andamino nitrogen and the plants' reliance on N2 fixation (determinedby the 15N isotope dilution procedure) were examined. Data suggestthat compositional relationships based on nitrate may be reasonableindicators of symbiotic dependence for all species under studyexcept faba bean when greater than 25% of plant nitrogen wasderived from N2 fixation. Key words: Nitrogen, translocation, legumes  相似文献   

8.
Cotyledons of faba bean (Vicia faba L. cv. Fiord) were removedto determine whether an apparent delay in nodulation of thiscultivar could be attributed to an inhibitor from these organs.Cotyledons were left intact or excised from seedling plants14 and 18 d after sowing and plants grown with or without 2·5mm NO3. Seedling growth was depressed when cotyledons were removed onday 14 but not when removed on day 18. Removal of the cotyledonsat day 14 reduced nodule number and nodule weight in the absenceof NO3, but in the presence of NO2, nodule numberwas unaffected and only nodule weight was reduced. Cotyledonremoval at day 18 increased both nodule number and nodule weightwith +NO3 but not with –NO2. Acetylene reduction(AR) was markedly depressed by NO3. Cotyledon removalat day 14 decreased AR but removal at day 18 resulted in anincrease in AR. We suggest from these results that faba beancotyledons have an inhibitory effect on nodule activity andon nodulation and this interacts with NO3. This can beexplained through a ‘feed-back’ regulation of N2fixation by soluble N in the seedling. Vicia faba, faba bean, nodule number, nodulation, nodule activity, acetylene reduction, N2 fixation, cotyledon removal, nitrate  相似文献   

9.
Biochemical studies of epidermal tissue may not reflect metabolismof the guard cells which represent less than 5% of the tissuevolume. Pure samples of guard cell protoplasts of Commelinacommunis were therefore used to investigate CO2 fixation ratesand 14C-labelling patterns of metabolites in the light and thedark. Qualitatively, results were similar in most respects tothose obtained in a previous study (Schnabl, 1980) for guardcell protoplasts of Vicia faba. CO2 fixation rates by guardcell protoplasts of C. communis were the same in the light andthe dark but about 50 times lower than the values Schnabl obtainedfor V.faba. The 14C-labelling pattern of metabolites in C. communiswas also similar in the light and the dark: over 60% of thetotal fixed was in malate with only 1% in sugar phosphates.Label was also detected in starch, aspartate, glutamate andcitrate but not in glycollate as previously recorded in V. fabaguard cell protoplasts. The results confirm the view that the reductive pentose phosphatepathway does not occur in guard cells of C. communis. Key words: CO2 fixation, Guard cell protoplasts, Stomata  相似文献   

10.
Growth and N-accumulation rates in leaves, stolons and rootsof individual white clover plants were studied in three experimentsusing two methods. In a growth chamber experiment, the relativedifferences between tissues were found to be almost constantfor a wide range of clover plant sizes. The stolon dry matter(DM) production was 56% and the root DM production 40% of theDM production in leaves. The N yield of stolons was 30% whileN yield in roots was 34% of N yield in leaves. The effect ofN application on these relations was investigated in a glasshouseexperiment. Application of N reduced the root:shoot N ratiofrom 0.50 to 0.28, whereas the stolon+root:leaf N ratio (i.e.for abovevs.below cutting-height tissues) was only reduced from0.97 to 0.80. In a field trial with two contrasting N regimes,growth and N accumulation were measured on individual cloverplants. Dinitrogen fixation was estimated by15N isotope dilutionbased on analysis of leaves-only or by including stolons. Usingleaves-only did not affect the calculation of percentage ofclover N derived from N2fixation (% Ndfa) since the15N enrichmentwas found to be uniform in all parts of the clover. A correctionfactor of 1.7 to account for N in below cutting-height tissueis suggested when N2fixation in white clover is estimated byharvesting the leaves only.Copyright 1997 Annals of Botany Company Leaves; N accumulation; N2fixation; 15N isotope dilution; pastures; roots; root/shoot ratio; stolons; Trifolium repensL.; white clover  相似文献   

11.
Mechanism of Photosynthate Efflux from Vicia faba L. Seed Coats   总被引:2,自引:0,他引:2  
In order to develop a tentative model of the mechanism of photosynthateefflux from the vascular region of Vicia faba L. seed coats,wash-out experiments were performed after removal of the embryo. The sulphydryl group modifiers, pCMBS and NEM, reduced 14C-photosynthateefflux by 40% and 50%, respectively. Their inhibitory effectcould be prevented or reduced (in the latter case) by includingDTT in the bathing solution. Maltose competed with sucrose forefflux; a concentration of 300 mol m–3 inhibited 14C-photosynthaterelease by 35%. The cations K+ , Na+ Mg2+ and TPP+ enhancedefflux significantly, whereas the countenon Cl had noeffect. The presence of the protonophore CCCP (0·1 molm–3) led to a reduction of efflux by 50% net proton extrusiondropped by 34%. To a lesser extent, an efflux inhibition wasalso achieved by decreasing the cytoplasmic pH with the weakacid DM0. In contrast, alterations in the external pH causedonly a feeble response. The ATPase inhibitor, EB, decreasedphotosynthate efflux and H+ extrusion. DES reduced efflux slightly,presumably by affecting ATPase activity as well as energy metabolism. Based on these findings, it is proposed that a sucrose/protonantiport mechanism could be responsible for photosynthate effluxfrom Vicia faba seed coats. Key words: Photosynthate efflux, proton extrusion, proton/sucrose antiport, seed coat, Vicia faba L.  相似文献   

12.
Three methods were used to study N2 fixation and effects ofwater deficit on N2 fixation: C2H2 reduction assay (ARA), 15Ndilution technique and accumulated N content. In addition, 15Ndilution was calculated both in a traditional way and in a modifiedway, which takes into consideration N and 15N content for theplants before the experiment started. The three methods wereapplied on the following Rhizobium-symbioses: Acacia albidaDel (Faidherbia albida (Del) A. Chev.) and Leucaena leucocephala(Lam) de Wit., and the Frankia-symbiosis Casuarina equisetifoliaL. The plants wereabout 4-months-old when they were harvested. Nitrogen derived from N2 fixation in control plants of Acaciaalbida was 54·2 mg as measured with ARA, while it was28·5 mg as measured with the 15N dilution technique,compared to 30·7 mg calculated as accumulated N. In comparison,L. leucocephala fixed 41·6 mg N (ARA), 53·5 mgN(15N dilution technique) and 56·3 mg N (accumulatedN). The Frankia-symbiosis had fixed 27·4 mg N as measuredby ARA, 8·1 mg N as measured by 15N dilution techniqueand 12·3 mg N as accumulated N. There were no differencesbetween the estimates based ontraditional and modified waysof calculating 15N dilution. The immediate effect of water deficit treatment on N2 fixationwas continuously measured inall species with ARA, which startedto decrease approximately 10 d after the initiation of the treatment,and declined to less than 5% of the initial level after 21–28d. The decrease in the amount of N derived from N2 fixation wasstudied in L. leucocephala during the period of treatment. Therewas a 26% decrease in amount of N derived from N2 fixation asresult of water deficit (as measured with ARA), while the decreasewas 23% when measured withboth the 15N dilution method and asaccumulated N. The three different methods for measuring N2 fixation and effectsof water deficit on N2 fixation are discussed. Key words: Acacia albida, ARA, Casuarina equisetifolia, Leucaena leucocephala, 15N dilution, N2N fixation, water deficit  相似文献   

13.
Nodul{macron}ted alfalfa plants were grown hydroponically. Inorder to quantify N2 fixation and remobilization of N reservesduring regrowth the plants were pulse-chase-labelled with 15N.Starch and ethanol-soluble sugar contents were analysed to examinechanges associated with those of N compounds. Shoot removalcaused a severe decline in N2 fixation and starch reserves within6 d after cutting. The tap root was the major storage site formetabolizable carbohydrate compounds used for regrowth; initiallyits starch content decreased and after 14 d started to recoverreaching 50% of the initial value on day 24. Recovery of N2fixation followed the same pattern as shoot regrowth. Afteran initial decline during the first 10 d following shoot removal,the N2 fixation, leaf area and shoot dry weight increased sorapidly that their levels on day 24 exceeded initial values.Distribution of 15N within the plant clearly showed that a significantamount of endogenous nitrogen in the roots was used by regrowingshoots. The greatest use of N reserves (about 80% of N incrementin the regrowing shoot) occurred during the first 10 d and thencompensated for the low N2 fixation. The distribution of N derivedeither from fixation or from reserves of source organs (taproots and lateral roots) clearly showed that shoots are thestronger sink for nitrogen during regrowth. In non-defoliatedplants, the tap roots and stems were weak sinks for N from reserves.By contrast, relative distribution within the plant of N assimilatedin nodules was unaffected by defoliation treatment. Key words: Medicago sativa L., N2 fixation, N remobilization, N2 partitioning, regrowth  相似文献   

14.
We studied the responses of Xanthium occidentale (Bertol.) (cockleburor Noogoora burr), a noxious weed, to atmospheric CO2 enrichmentand nitrate-N concentrations in the root zone ranging from 0.5to 25 mM. CO2 enrichment (1500 cm3 m–3) increased dry-matterproduction to about the same extent (18 per cent) at all levelsof supplied N: most of the increment in dry matter was distributedequally between leaves and roots so that there was little effecton shoot-to-root dry-weight ratios. Growth was stimulated greatlyby N and plateaued at 12 mM supplied N. Shoot-to-root dry-weightand total N ratios increased with increasing N supply. CO2 enrichmenthad no effect on the total amount of N accumulated by plants,but increased the N-use efficiency of leaves. Enriched plantshad lower concentrations and quantities of N in their leavesthan controls, and therefore lower shoot-to-root total N ratios.Little free NO3 accumulated in organs of control or enrichedplants. NO3 was the major form of N in xylem sap fromdetopped plants at low supplied NO3-N, but amino N was equalin importance at high supplied NO3-N in control and enrichedplants. Concentrations of NO3 were lower in the xylemsap of CO2 enriched plants. It was concluded that the betterN-use efficiency of CO2 enriched plants could result in increasedgrowth of X. occidentale in regions of marginal soil fertilityas atmospheric levels of CO2 increase. CO2 enrichment, nitrogen, Xanthium, Noogoora burr, cocklebur  相似文献   

15.
The xylem exudation of detopped 7-d-old seedlings of Zea maysL. doubled when KCI was present in the root medium comparedto seedlings maintained on water. It was further enhanced whenKCI was replaced by nitrogen compounds such as nitrate, ammoniumand glutamine. The role of the nitrate assimilation pathwayon the enhancement of xylem exudation rate was investigatedusing tungstate, an inhibitor of nitrate reductase (NR) activity,and phosphinothricin or methionine sulphoximine, inhibitorsof glutamine synthetase (GS) activity. The sap levels of NO3,NH4+, glutamine, and asparagine was used to ascertain the invivo inhibition of both enzymes. The tungstate effects werealso checked by measuring leaf in vitro NA activity and NR proteincontent. Xylem exudation rate of detopped seedlings fed withKNO3 decreased when the nitrate assimilation pathway was blockedeither at the NR or at GS sites. This decrease was preventedwhen urea (acting as NH4+ supply) was given simultaneously withtungstate. KNO3 does not act directly on exudation, but throughthe involvement of NH4+. The involvement of glutamine was alsoshown since GS inhibition resulted in a cancellation of theenhancing effect of KNO3 on exudation. As change of exudationrate was not linked to change in sap osmolarity, it is assumedthat the assimilation chain could modify root water conductance.The role of glutamine was discussed. Key words: Exudation, maize, nitrate, conductance, NR, GS  相似文献   

16.
Cycling of amino compounds in symbiotic lupin   总被引:2,自引:0,他引:2  
The composition of amino acids was determined in the xylem andphloem sap of symbiotic lupins grown under a variety of treatmentsdesigned to alter the rate of nitrogen fixation. Asparaginewas the major amino acid in both xylem and phloem with glutamine,glutamate and aspartate also major components. GABA had a highconcentration in the xylem while valine was a major componentin the phloem. Exposure to combined nitrogen in the form ofeither ammonium or nitrate caused a reduction in specific nitrogenaseactivity and was associated with subsequent changes in bothof the translocated saps. Inhibiting nitrogen fixation by exposingnodules to oxygen produced a lower amide to amine ratio in thexylem sap (1.3:1) compared with control and nitrate ratios (2.6:1)and ammonium ratios (7.1:1). Similar ratios for amide aminewere also observed in the phloem sap. Labelling studies using15N2 to follow nitrogen fixation, ammonium assimilation andamino acid transport have shown rapid accumulation of labelinto glutamine with subsequent enrichment in glutamate, aspartate,alanine, and GABA. Asparagine was found in high concentrationsin nodules and became slowly enriched. Labelled nitrogen fixedand assimilated in nodules was detected 40 min later in stemxylem extracts, largely as the amides glutamine and asparagine.These experiments provide evidence that large amounts of nitrogenouscompounds are cycled through the root nodules of symbiotic plants(contributing approximately 50% of xylem N) and that differencesin the composition of the phloem sap may influence nodule growthand activity. Key words: Nitrogen fixation, nitrogen translocation, isotope labelling, legumes, GC-MS  相似文献   

17.
Experiments are reported on the spatial distributions of isotopiccarbon within the mesophyll of detached leaves of the C3 plantVicia faba L. fed 14CO2 at different light intensities. Eachleaf was isolated in a cuvette and ten artificial stomata providedspatial continuity between the ambient atmosphere (0.03–0.05%v/v CO2) and the mesophyll from the abaxial leaf side. Paradermalleaf layers exhibited spatial profiles of radioactivity whichvaried with the intensity of incident light in 2 min exposures.At low light, when biochemical kinetics should limit CO2 uptake,sections through palisade cells contained most radioactivity.As the light intensity was increased to approximately 20% offull sunlight, peak radioactivity was observed in the spongycells near the geometric mid-plane of the mesophyll. The resultsindicate that diffusion of carbon dioxide within the mesophyllregulated the relative photosynthetic activity of the palisadeand spongy cells at incident photosynthetically active lightintensities as little as 110 µE m–2 s–1 whenCO2 entered only through the lower leaf surface. Key words: CO2 capture sites, Vicia faba L., Artificial stomata  相似文献   

18.
In "air-grown" Chroomonas sp. cells, low concentrations of DCMU(less than 0.1 µM) could prevent the inhibition of 14CO2fixation by anaerobiosis under light-saturating conditions (morethan 40 W.m–2), with phenazine methosulfate showing asimilar effect. Antimycin A, carbonyl cyanide m-chlorophenylhydrazone(CCCP), and N,N'-dicyclohexylcarbodiimide strongly inhibitedanaerobic photosynthesis at concentrations which did not significantlyinhibit the rate under 2% O2 at high light intensity (200 W.m–2),although 0.2 µM CCCP stimulated the rate under 2% O2 tosome extent. On the other hand, KCN inhibited the rate muchmore strongly under 2% O2 than N2, although it inhibited therate very strongly at concentrations above 5 µM both underN2 and 2% O2. These results suggest that the inhibition of photosynthetic14CO2 fixation by anaerobiosis in this alga result from ATPdeficiency caused by over-reduction of electron carriers ofthe cyclic electron flow and that oxygen can prevent the over-reduction.Cyclic electron flow seems to be necessary to provide additionalATP for CO2 reduction under anaerobic conditions, although itseems to be less necessary under aerobic conditions. (Received July 21, 1983; Accepted January 23, 1984)  相似文献   

19.
A closed-system flow-through enclosure apparatus was used tomeasure symbiotic nitrogen fixation directly. A legume-basedsystem comprising 6-week-old Trifolium repens L. (white clovercv. Blanca) growing with Lolium perenne L. (perennial ryegrasscv. Trani) in an agricultural soil was incubated for 19 d ina 15N-enriched atmosphere (mean value 3.663 atom%). An actinorhizal-basedsystem comprising 1 -year-old Alnus glutinosa L. (alder) saplingsgrowing with Festuca rubra L. (red fescue) in open-cast coalspoil was incubated for 21 d in a 15N-enriched atmosphere (meanvalue 3.265 atom%). Indirect estimates of N2 fixation were carriedout concurrently using N difference and 15N isotope dilutiontechniques. The theory underlying the three techniques and modificationswhich were adopted for comparative purposes are discussed. Thedirect measurements of N2 fixation were then compared with theindirect estimates using Pinc, the proportion of the N incrementduring the measurement period that was derived from fixation.The simple N difference method gave similar values for Pinc(0.94 and 0.97) as those derived from more complicated isotopemethodologies, both indirect (0.91) and direct (0.90). Valuesfor alder were far more variable, ranging from 0.16 to 0.92;this was due largely to variability within the trees and a verysmall N increment during the measurement period. Key words: N2 fixation, 15N2, white clover, alder, enclosure apparatus  相似文献   

20.
The use of the photo-autotrophic nitrogen-fixing water fernAzolla as an effective source of organic nitrogen in tropicalpaddy fields has been limited by a high phosphorus requirement.Azolla species with a minimum of 1.5 to 2.0 mM phosphate (P)requirement, under controlled conditions, are known. A local Azolla species requiring at least 1.5 mM sodium phosphatefor a normal rate of multiplication and N2 fixation was exposedto N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). The resultingmutant population had a significantly lower P requirement, butwas auxotrophic for glutamine with an extremely reduced glutaminesynthetase (GS) activity. An L-methionine-DL-sulphoximine (MSX)-resistant(MSXr) Azolla population, having an approximately 1.5 timeshigher GS activity than that of the wild type (WT) parent organism,was cultured and subjected to MNNG-induced mutation for lowP requirement while putting MSX as a control in the mutant selectionmedium. The resulting population of mutant Azolla was a normalprototroph with a P requirement as low as 0.75 mM for its ‘WTparent-like’ usual growth and N2 fixation. Key words: Azolla, phosphorus requirement, mutation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号