首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Two forms of Ruminococcus flavefaciens FD-1 endoglucanase B, a member of glycoside hydrolase family 44, one with only a catalytic domain and the other with a catalytic domain and a carbohydrate binding domain (CBM), were produced. Both forms hydrolyzed cellotetraose, cellopentaose, cellohexaose, carboxymethylcellulose (CMC), birchwood and larchwood xylan, xyloglucan, lichenan, and Avicel but not cellobiose, cellotriose, mannan, or pullulan. Addition of the CBM increased catalytic efficiencies on both CMC and birchwood xylan but not on xyloglucan, and it decreased rates of cellopentaose and cellohexaose hydrolysis. Catalytic efficiencies were much higher on xyloglucan than on other polysaccharides. Hydrolysis rates increased with increasing cellooligosaccharide chain length. Cellotetraose hydrolysis yielded only cellotriose and glucose. Hydrolysis of cellopentaose gave large amounts of cellotetraose and glucose, somewhat more of the former than of the latter, and much smaller amounts of cellobiose and cellotriose. Cellohexaose hydrolysis yielded much more cellotetraose than cellobiose and small amounts of glucose and cellotriose, along with a low and transient amount of cellopentaose.  相似文献   

2.
The crystal structure of the Clostridium cellulovorans carbohydrate-binding module (CBM) belonging to family 17 has been solved to 1.7 A resolution by multiple anomalous dispersion methods. CBM17 binds to non-crystalline cellulose and soluble beta-1,4-glucans, with a minimal binding requirement of cellotriose and optimal affinity for cellohexaose. The crystal structure of CBM17 complexed with cellotetraose solved at 2.0 A resolution revealed that binding occurs in a cleft on the surface of the molecule involving two tryptophan residues and several charged amino acids. Thermodynamic binding studies and alanine scanning mutagenesis in combination with the cellotetraose complex structure allowed the mapping of the CBM17 binding cleft. In contrast to the binding groove characteristic of family 4 CBMs, family 17 CBMs appear to have a very shallow binding cleft that may be more accessible to cellulose chains in non-crystalline cellulose than the deeper binding clefts of family 4 CBMs. The structural differences in these two modules may reflect non-overlapping binding niches on cellulose surfaces.  相似文献   

3.
Modular glycoside hydrolases that attack recalcitrant polymers generally contain noncatalytic carbohydrate-binding modules (CBMs), which play a critical role in the action of these enzymes by localizing the appended catalytic domains onto the surface of insoluble polysaccharide substrates. Type B CBMs, which recognize single polysaccharide chains, display ligand specificities that are consistent with the substrates hydrolyzed by the associated catalytic domains. In enzymes that contain multiple catalytic domains with distinct substrate specificities, it is unclear how these different activities influence the evolution of the ligand recognition profile of the appended CBM. To address this issue, we have characterized the properties of a family 11 CBM (CtCBM11) in Clostridium thermocellum Lic26A-Cel5E, an enzyme that contains GH5 and GH26 catalytic domains that display beta-1,4- and beta-1,3-1,4-mixed linked endoglucanase activity, respectively. Here we show that CtCBM11 binds to both beta-1,4- and beta-1,3-1,4-mixed linked glucans, displaying K(a) values of 1.9 x 10(5), 4.4 x 10(4), and 2 x 10(3) m(-1) for Glc-beta1,4-Glc-beta1,4-Glc-beta1,3-Glc, Glc-beta1,4-Glc-beta1,4-Glc-beta1,4-Glc, and Glc-beta1,3-Glc-beta1,4-Glc-beta1,3-Glc, respectively, demonstrating that CBMs can display a preference for mixed linked glucans. To determine whether these ligands are accommodated in the same or diverse sites in CtCBM11, the crystal structure of the protein was solved to a resolution of 1.98 A. The protein displays a beta-sandwich with a concave side that forms a potential binding cleft. Site-directed mutagenesis revealed that Tyr(22), Tyr(53), and Tyr(129), located in the putative binding cleft, play a central role in the recognition of all the ligands recognized by the protein. We propose, therefore, that CtCBM11 contains a single ligand-binding site that displays affinity for both beta-1,4- and beta-1,3-1,4-mixed linked glucans.  相似文献   

4.
The enzymic degradation of plant cell walls plays a central role in the carbon cycle and is of increasing environmental and industrial significance. The catalytic modules of enzymes that catalyze this process are generally appended to noncatalytic carbohydrate-binding modules (CBMs). CBMs potentiate the rate of catalysis by bringing their cognate enzymes into intimate contact with the target substrate. A powerful plant cell wall-degrading system is the Clostridium thermocellum multienzyme complex, termed the "cellulosome." Here, we identify a novel CBM (CtCBM62) within the large C. thermocellum cellulosomal protein Cthe_2193 (defined as CtXyl5A), which establishes a new CBM family. Phylogenetic analysis of CBM62 members indicates that a circular permutation occurred within the family. CtCBM62 binds to d-galactose and l-arabinopyranose in either anomeric configuration. The crystal structures of CtCBM62, in complex with oligosaccharides containing α- and β-galactose residues, show that the ligand-binding site in the β-sandwich protein is located in the loops that connect the two β-sheets. Specificity is conferred through numerous interactions with the axial O4 of the target sugars, a feature that distinguishes galactose and arabinose from the other major sugars located in plant cell walls. CtCBM62 displays tighter affinity for multivalent ligands compared with molecules containing single galactose residues, which is associated with precipitation of these complex carbohydrates. These avidity effects, which confer the targeting of polysaccharides, are mediated by calcium-dependent oligomerization of the CBM.  相似文献   

5.
Boraston AB  Chiu P  Warren RA  Kilburn DG 《Biochemistry》2000,39(36):11129-11136
The C-terminal carbohydrate-binding module (CBM17) from Clostridium cellulovorans cellulase 5A is a beta-1,4-glucan binding module with a preference for soluble chains. CBM17 binds to phosphoric acid swollen Avicel (PASA) and Avicel with association constants of 2.9 (+/-0.2) x 10(5) and 1.6 (+/-0.2) x 10(5) M(-1), respectively. The capacity values for PASA and Avicel were 11.9 and 0.4 micromol/g of cellulose, respectively. CBM17 did not bind to crystalline cellulose. CBM17 bound tightly to soluble barley beta-glucan and the derivatized celluloses HEC, EHEC, and CMC. The association constants for binding to barley beta-glucan, HEC, and EHEC were approximately 2.0 x 10(5) M(-1). Significant binding affinities were found for cello-oligosaccharides greater than three glucose units in length. The affinities for cellotriose, cellotetraose, cellopentaose, and cellohexaose were 1.2 (+/-0.3) x 10(3), 4.3 (+/-0.4) x 10(3), 3.8 (+/-0.1) x 10(4), and 1.5 (+/-0.0) x 10(5) M(-1), respectively. Fluorescence quenching studies and N-bromosuccinimide modification indicate the participation of tryptophan residues in ligand binding. The possible architecture of the ligand-binding site is discussed in terms of its binding specificity, affinity, and the participation of tryptophan residues.  相似文献   

6.
A previously isolated cellodextrin glucohydrolase (beta-glucosidase) from Trichoderma reesei QM 9414 is characterized using beta-1,4-glucose oligomers with defined degrees of polymerization as soluble substrates. The enzyme splits off glucose units from the nonreducing chain ends of cellooligomers. Besides this hydrolytic activity there is also evidence for transfer activity depending on the concentration and degree of polymerization of substrates. Concentration-time-course data have been gathered for the degradation of cellobiose, cellotriose, cellotetraose, cellopentaose, and cellohexaose covering a wide range of enzyme and substrate concentrations. A Michaelis-Menten type kinetic model has been developed, which is able to satisfactorily describe the complex system of parallel and series reactions during the conversion of oligomers to glucose. The only kind of inhibition considered is competitive inhibition by the final product glucose. The model takes into account the formation of multiple enzyme-substrate complexes and is limited to those conditions, in which no transglucosylation products are observed. Cellodextrins with higher degrees of polymerization are found to be better substrates for this enzyme than is the dimer cellobiose.  相似文献   

7.
An endoglucanase encoded by a gene of Clostridium josui was expressed in Escherichia coli and purified. The homogeneous enzyme, with a molecular weight of 39,000, revealed maximum endoglucanase activity at pH 7.2 to 7.5 and a temperature of 65 to 70 degrees C. The enzyme was stable at a temperature lower than 45 degrees C (the growth temperature of the bacterium) in the range of pH 4.5 to 9.0. The amino acid sequence of the enzyme at the N terminus was Val-Glu-Glu-Asp-Ser-Ser-His-Leu-Ile-Thr-Asn-Gln-Ala-Lys-Lys----. The enzyme hydrolyzed cellotetraose to cellobiose and then transferred cellobiose to the residual cellotetraose. The resulting cellohexaose was cleaved to cellotriose.  相似文献   

8.
An endoglucanase encoded by a gene of Clostridium josui was expressed in Escherichia coli and purified. The homogeneous enzyme, with a molecular weight of 39,000, revealed maximum endoglucanase activity at pH 7.2 to 7.5 and a temperature of 65 to 70 degrees C. The enzyme was stable at a temperature lower than 45 degrees C (the growth temperature of the bacterium) in the range of pH 4.5 to 9.0. The amino acid sequence of the enzyme at the N terminus was Val-Glu-Glu-Asp-Ser-Ser-His-Leu-Ile-Thr-Asn-Gln-Ala-Lys-Lys----. The enzyme hydrolyzed cellotetraose to cellobiose and then transferred cellobiose to the residual cellotetraose. The resulting cellohexaose was cleaved to cellotriose.  相似文献   

9.
The cloning, expression and nucleotide sequence of a 3.74 kb DNA segment on pLS215 containing a beta-glucosidase gene (bglA) from Butyrivibrio fibrisolvens H17c was investigated. The B. fibrisolvens bglA open reading frame (ORF) of 2490 bp encoded a beta-glucosidase of 830 amino acid residues with a calculated Mr of 91,800. In Escherichia coli C600(pLS215) cells the beta-glucosidase was localized in the cytoplasm and these cells produced an additional protein with an apparent Mr of approximately 94,000. The bglA gene was expressed from its own regulatory region in E. coli and a single mRNA initiation point was identified upstream of the bglA ORF and adjacent to a promoter consensus sequence. The primary structure of the beta-glucosidase showed greater than 40% similarity with a domain of 237 amino acids present in the beta-glucosidases of Kluyveromyces fragilis and Clostridium thermocellum. The B. fibrisolvens beta-glucosidase hydrolysed cellobiose to a limited extent, cellotriose to cellobiose and glucose, and cellotetraose and cellopentaose to predominantly glucose.  相似文献   

10.
The crystal structures of a carbohydrate-binding module (CBM) family 28 domain of endoglucanase Cel5A from Clostridium josui have been determined in ligand-free and complex forms with cellobiose, cellotetraose, and cellopentaose as the first complex structures of this family. In the cleft of a β-sandwich fold, the ligands are recognized by stacking interactions and hydrogen bonds. Conformations of the bound cellooligosaccharides are similar to those in crystals and solution but clearly different from the cellulose structure. Interestingly, the glucan chain bound on CBM28 is in the opposite direction of that bound to CBM17, although these families share significant structural similarity.  相似文献   

11.
In general, cellulases and hemicellulases are modular enzymes in which the catalytic domain is appended to one or more noncatalytic carbohydrate binding modules (CBMs). CBMs, by concentrating the parental enzyme at their target polysaccharide, increase the capacity of the catalytic module to bind the substrate, leading to a potentiation in catalysis. Clostridium thermocellum hypothetical protein Cthe_0821, defined here as C. thermocellum Man5A, is a modular protein comprising an N-terminal signal peptide, a family 5 glycoside hydrolase (GH5) catalytic module, a family 32 CBM (CBM32), and a C-terminal type I dockerin module. Recent proteomic studies revealed that Cthe_0821 is one of the major cellulosomal enzymes when C. thermocellum is cultured on cellulose. Here we show that the GH5 catalytic module of Cthe_0821 displays endomannanase activity. C. thermocellum Man5A hydrolyzes soluble konjac glucomannan, soluble carob galactomannan, and insoluble ivory nut mannan but does not attack the highly galactosylated mannan from guar gum, suggesting that the enzyme prefers unsubstituted β-1,4-mannoside linkages. The CBM32 of C. thermocellum Man5A displays a preference for the nonreducing ends of mannooligosaccharides, although the protein module exhibits measurable affinity for the termini of β-1,4-linked glucooligosaccharides such as cellobiose. CBM32 potentiates the activity of C. thermocellum Man5A against insoluble mannans but has no significant effect on the capacity of the enzyme to hydrolyze soluble galactomannans and glucomannans. The product profile of C. thermocellum Man5A is affected by the presence of CBM32.  相似文献   

12.
Two genes encoding cellulases E1 and E4 from Thermomonospora fusca have been cloned in Escherichia coli, and their DNA sequences have been determined. Both genes were introduced into Streptomyces lividans, and the enzymes were purified from the culture supernatants of transformants. E1 and E4 were expressed 18- and 4-fold higher, respectively, in S. lividans than in E. coli. Thin-layer chromatography of digestion products showed that E1 digests cellotriose, cellotetraose, and cellopentaose to cellobiose and a trace of glucose. E4 is poor at degrading cellotriose and cleaves cellopentaose to cellotetraose and glucose or cellotriose and cellobiose. It readily cleaves cellotetraose to cellobiose. E1 shows 59% identity to Cellulomonas fumi CenC in a 689-amino-acid overlap, and E4 shows 80% identity to the N terminus of C. fimi CenB in a 441-amino-acid overlap; all of these proteins are members of cellulase family E. Alignment of the amino acid sequences of Clostridium thermocellum celD, E1, E4, and four other members of family E demonstrates a clear relationship between their catalytic domains, although there is as little as 25% identity between some of them. Residues in celD that have been identified by site-directed mutagenesis and chemical modification to be important for catalytic activity are conserved in all seven proteins. The catalytic domains of E1 and E4 are not similar to those of T. fusca E2 or E5, but all four enzymes share similar cellulose-binding domains and have the same 14-bp inverted repeat upstream of their initiation codons. This sequence has been identified previously as the binding site for a protein that regulates induction.  相似文献   

13.
The solution structure is presented for the second family 4 carbohydrate binding module (CBM4-2) of xylanase 10A from the thermophilic bacterium Rhodothermus marinus. CBM4-2, which binds xylan tightly, has a beta-sandwich structure formed by 11 strands, and contains a prominent cleft. From NMR titrations, it is shown that the cleft is the binding site for xylan, and that the main amino acids interacting with xylan are Asn31, Tyr69, Glu72, Phe110, Arg115, and His146. Key liganding residues are Tyr69 and Phe110, which form stacking interactions with the sugar. It is suggested that the loops on which the rings are displayed can alter their conformation on substrate binding, which may have functional importance. Comparison both with other family 4 cellulose binding modules and with the structurally similar family 22 xylan binding module shows that the key aromatic residues are in similar positions, and that the bottom of the cleft is much more hydrophobic in the cellulose binding modules than the xylan binding proteins. It is concluded that substrate specificity is determined by a combination of ring orientation and the nature of the residues lining the bottom of the binding cleft.  相似文献   

14.
The crystal structure of the carbohydrate-binding module (CBM) 4 Ig fused domain from the cellulosomal cellulase cellobiohydrolase A (CbhA) of Clostridium thermocellum was solved in complex with cellobiose at 2.11 Å resolution. This is the first cellulosomal CBM4 crystal structure reported to date. It is similar to the previously solved noncellulosomal soluble oligosaccharide-binding CBM4 structures. However, this new structure possesses a significant feature—a binding site peptide loop with a tryptophan (Trp118) residing midway in the loop. Based on sequence alignment, this structural feature might be common to all cellulosomal clostridial CBM4 modules. Our results indicate that C. thermocellum CbhA CBM4 also has an extended binding pocket that can optimally bind to cellodextrins containing five or more sugar units. Molecular dynamics simulations and experimental binding studies with the Trp118Ala mutant suggest that Trp118 contributes to the binding and, possibly, the orientation of the module to soluble cellodextrins. Furthermore, the binding cleft aromatic residues Trp68 and Tyr110 play a crucial role in binding to bacterial microcrystalline cellulose (BMCC), amorphous cellulose, and soluble oligodextrins. Binding to BMCC is in disagreement with the structural features of the binding pocket, which does not support binding to the flat surface of crystalline cellulose, suggesting that CBM4 binds the amorphous part or the cellulose “whiskers” of BMCC. We propose that clostridial CBM4s have possibly evolved to bind the free-chain ends of crystalline cellulose in addition to their ability to bind soluble cellodextrins.  相似文献   

15.
The majority of plant cell wall hydrolases are modular enzymes which, in addition to a catalytic module, possess one or more carbohydrate-binding modules (CBMs). These carbohydrate-active enzymes and their constituent modules have been classified into a number of families based upon amino acid sequence similarity. The Clostridium thermocellum xylanase, Xyn10B, contains two CBMs that belong to family 22 (CBM22). The crystal structure of the C-terminal CBM22 (CBM22-2) was determined in a previous study [Charnock, S. J., et al. (2000) Biochemistry 39, 5013--5021] and revealed a surface cleft which presents several conserved residues that are implicated in ligand binding. These amino acids have been substituted and the structure and biochemical properties of the mutants analyzed. The data show that R25A, W53A, Y103A, Y136A, and E138A exhibit greatly reduced affinity for xylotetraose relative to that of the wild-type protein. Conversely, mutations Y103F and Y136F have little effect on ligand binding. Using thermodynamic, X-ray, and NMR measurements on the mutants, we show that the cleft of CBM22-2 does indeed form the ligand-binding site. Trp 53 and Tyr 103 most likely participate in hydrophobic stacking interactions with the ligand, while Glu 138 makes one or more important hydrogen bonds with the tetrasaccharide. Although Arg 25 and Tyr 136 are likely to form hydrogen bonds with the ligand, they are also shown to play a critical role in maintaining the structural integrity of the binding cleft.  相似文献   

16.
A single form of exo-type cellulase (Exo I; MW, 65,000), purified from a Trichoderma viride protease-depressed mutant, HK-75, digested Avicel to cellobiose exowise, and hydrolyzed cellotriose, cellotetraose, and cellopentaose in the strict manner of splitting off by cellobiose units. Exo I, however, hydrolyzed cellohexaose by both cellobiose and cellotriose units. Exo I was proteolyzed by papain into two fragments; GPExo (MW, 9,000) and Exo I' (MW, 56,000). The GPExo intensively adsorbed onto Avicel but did not hydrolyze it. Exo I' had nearly identical activity to that of intact Exo I toward cellooligosaccharides but was almost inert to Avicel in digestion and adsorption. Sequence analysis of N-terminal and C-terminal amino acids showed that GPExo was between Gly435 and Leu496 and Exo I' between Glu1 and Gly434 in Exo I. Exo I therefore consists of two domains, one for adsorption to Avicel, as demonstrated by the Avicel-affinity site, GPExo and the other for the cleavage of glycosidic linkages as demonstrated in Exo I'.  相似文献   

17.
Constraint-based models of biochemical reaction networks require experimental validation to test model-derived hypotheses and iteratively improve the model. Physiological and proteomic analysis of Thermotoga neapolitana growth on cellotetraose was conducted to identify gene products related to growth on cellotetraose to improve a constraint-based model of T. neapolitana central carbon metabolism with incomplete cellotetraose pathways. In physiological experiments comparing cellotetraose to cellobiose and glucose as growth substrates, product formation yields on cellotetraose, cellobiose, and glucose were similar; however cell yields per mol carbon consumed were higher on cellotetraose than on cellobiose or glucose. Proteomic analysis showed increased expression of several proteins from cells grown on cellotetraose compared with glucose cell cultures, including cellobiose phosphorylase (CTN_0783), endo-1,4-β-glucosidase (CTN_1106), and an ATP-binding protein (CTN_1296). The CTN_1296 gene product should be evaluated further for participation in cellotetraose metabolism and is included as one of two hypothetical gene-protein-reaction associations in the T. neapolitana constraint-based model to reinstate cellotetraose metabolism in model simulations.  相似文献   

18.
Growth of the ruminal bacteria Fibrobacter succinogenes S85, Ruminococcus flavefaciens FD-1, and R. albus 7 followed Monod kinetics with respect to concentrations of individual pure cellodextrins (cellobiose, cellotriose, cellotetraose, cellopentaose, and cellohexaose). Under the conditions tested, R. flavefaciens FD-1 possesses the greatest capacity to compete for low concentrations of these cellodextrins.  相似文献   

19.
Rates of phosphorolytic cleavage of beta-glucan substrates were determined for cell extracts from Clostridium thermocellum ATCC 27405 and were compared to rates of hydrolytic cleavage. Reactions with cellopentaose and cellobiose were evaluated for both cellulose (Avicel)- and cellobiose-grown cultures, with more limited data also obtained for cellotetraose. To measure the reaction rate in the chain-shortening direction at elevated temperatures, an assay protocol was developed featuring discrete sampling at 60 degrees C followed by subsequent analysis of reaction products (glucose and glucose-1-phosphate) at 35 degrees C. Calculated rates of phosphorolytic cleavage for cell extract from Avicel-grown cells exceeded rates of hydrolytic cleavage by > or = 20-fold for both cellobiose and cellopentaose over a 10-fold range of beta-glucan concentrations (0.5 to 5 mM) and for cellotetraose at a single concentration (2 mM). Rates of phosphorolytic cleavage of beta-glucosidic bonds measured in cell extracts were similar to rates observed in growing cultures. Comparisons of V(max) values indicated that cellobiose- and cellodextrin-phosphorylating activities are synthesized during growth on both cellobiose and Avicel but are subject to some degree of metabolic control. The apparent K(m) for phosphorolytic cleavage was lower for cellopentaose (mean value for Avicel- and cellobiose-grown cells, 0.61 mM) than for cellobiose (mean value, 3.3 mM).  相似文献   

20.
Glycoside hydrolases that release fixed carbon from the plant cell wall are of considerable biological and industrial importance. These hydrolases contain non-catalytic carbohydrate binding modules (CBMs) that, by bringing the appended catalytic domain into intimate association with its insoluble substrate, greatly potentiate catalysis. Family 6 CBMs (CBM6) are highly unusual because they contain two distinct clefts (cleft A and cleft B) that potentially can function as binding sites. Henshaw et al. (Henshaw, J., Bolam, D. N., Pires, V. M. R., Czjzek, M., Henrissat, B., Ferreira, L. M. A., Fontes, C. M. G. A., and Gilbert, H. J. (2003) J. Biol. Chem. 279, 21552-21559) show that CmCBM6 contains two binding sites that display both similarities and differences in their ligand specificity. Here we report the crystal structure of CmCBM6 in complex with a variety of ligands that reveals the structural basis for the ligand specificity displayed by this protein. In cleft A the two faces of the terminal sugars of beta-linked oligosaccharides stack against Trp-92 and Tyr-33, whereas the rest of the binding cleft is blocked by Glu-20 and Thr-23, residues that are not present in CBM6 proteins that bind to the internal regions of polysaccharides in cleft A. Cleft B is solvent-exposed and, therefore, able to bind ligands because the loop, which occludes this region in other CBM6 proteins, is much shorter and flexible (lacks a conserved proline) in CmCBM6. Subsites 2 and 3 of cleft B accommodate cellobiose (Glc-beta-1,4-Glc), subsite 4 will bind only to a beta-1,3-linked glucose, whereas subsite 1 can interact with either a beta-1,3- or beta-1,4-linked glucose. These different specificities of the subsites explain how cleft B can accommodate beta-1,4-beta-1,3- or beta-1,3-beta-1,4-linked gluco-configured ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号