首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hemimethylation prevents DNA replication in E. coli   总被引:46,自引:0,他引:46  
D W Russell  N D Zinder 《Cell》1987,50(7):1071-1079
The DNA adenine methylase of E. coli methylates adenines at GATC sequences. Strains deficient in this methylase are transformed poorly by methylated plasmids that depend on either the pBR322 or the chromosomal origins for replication. We show here that hemimethylated plasmids also transform dam- bacteria poorly but that unmethylated plasmids transform them at high frequencies. Hemimethylated daughter molecules accumulate after the transformation of dam- strains by fully methylated plasmids, suggesting that hemimethylation prevents DNA replication. We also show that plasmids purified from dam+ bacteria are hemimethylated at certain sites. These results can explain why newly formed daughter molecules are not substrates for an immediate reinitiation of DNA replication in wild-type E. coli.  相似文献   

2.
In vivo and in vitro evidence is presented implicating a function of GATC methylation in the Escherichia coli replication origin, oriC, during initiation of DNA synthesis. Transformation frequencies of oriC plasmids into E. coli dam mutants, deficient in the GATC-specific DNA methylase, are greatly reduced compared with parental dam+ cells, particularly for plasmids that must use oriC for initiation. Mutations that suppress the mismatch repair deficiency of dam mutants do not increase these low transformation frequencies, implicating a new function for the Dam methylase. oriC DNA isolated from dam- cells functions 2- to 4-fold less well in the oriC-specific in vitro initiation system when compared with oriC DNA from dam+ cells. This decreased template activity is restored 2- to 3-fold if the DNA from dam- cells is first methylated with purified Dam methylase. Bacterial origin plasmids or M13-oriC chimeric phage DNA, isolated from either base substitution or insertion dam mutants of E. coli, exhibit some sensitivity to digestion by DpnI, a restriction endonuclease specific for methylated GATC sites, showing that these dam mutants retain some Dam methylation activity. Sites of preferred cleavage are found within the oriC region, as well as in the ColE1-type origin.  相似文献   

3.
4.
DNA adenine methylation controls DNA replication of plasmids containing the prototypic REPI replicon by affecting protein recognition and by altering the helical stability of the origin. Denaturing gradient gel electrophoresis shows that adenine methylated origin DNA is more easily melted than unmethylated. However, because an added DNA adenine methylation (dam) site at the origin, whether in or out of phase with other helically aligned dam sites, actually prevents replication, we conclude that destabilization of the helix is not the exclusive function of adenine methylation in REPI replication. We find that the conformation and degree of methylation at the origin, features which are important for protein recognition, are essential for replication. In fact, RepI, a protein required for replication initiation at REPI replicons, contains a region homologous with a domain in proteins which specifically recognize and bind 5'-GATC-3'. We propose that the dam sites in the origin play a dual role: one is destabilization of the helix, and the other is protein recognition.  相似文献   

5.
6.
DNA of Escherichia coli virus T1 is resistant to MboI cleavage and appears to be heavily methylated. Analysis of methylation by the isoschizomeric restriction enzymes Sau3AI and DpnI revealed that recognition sites for E. coli DNA adenine methylase (dam methylase) are methylated. The same methylation pattern was found for virus T1 DNA grown on an E. coli dam host, indicating a T1-specific DNA methyltransferase.  相似文献   

7.
The recognition sequence for the dam methylase of Escherichia coli K12 has been determined directly by use of in vivo methylated ColE1 DNA or DNA methylated in vitro with purified enzyme. The methylase recognizes the symmetric tetranucleotide d(pG-A-T-C) and introduces two methyl groups per site in duplex DNA with the product of methylation being 6-methylaminopurine. This work has also demonstrated that Dpn I restriction endonuclease cleaves on the 3' side of the modified adenine within the methylated sequence to yield DNA fragments possessing fully base-paired termini. All sequences in ColE1 DNA methylated by the dam enzyme are subject to double strand cleavage by Dpn I endonuclease. Therefore, this restriction enzyme can be employed for mapping the location of sequences possessing the dam modification.  相似文献   

8.
9.
A mutant of Salmonella typhimurium with a reduced response to mutation induction by 9-aminoacridine (9AA) has been isolated. The mutation (dam-2) is located in the DNA adenine methylase gene. The dam-2 mutant strain exhibits a level of sensitivity to 2-aminopurine (2AP) intermediate between that of the dam+ and the DNA adenine methylation-deficit dam-1 strain, and 2AP sensitivity was reversed by introduction of a mutH mutation or of the plasmid pMQ148 (which carries a functional Escherichia coli dam+ gene). However, the dam-2 strain is not grossly defective in DNA adenine methylase activity. Whole cell DNA appears full methylated at -GATC- sites. The levels of 9AA required to induce equivalent levels of frameshift mutagenesis in the dam-2 strain were approximately 2-fold higher than for the dam+ strain. Introduction of pMQ148 dam+ reduced the level of 9AA required for induction of frameshift mutations 4-fold in the dam-2 strain and 2-fold in the dam+ strain. The dam-2 mutation had no effect on the levels of ICR191 required for induction of frameshift mutations, but introduction of pMQ148 reduced the ICR191-induced mutagenesis 2-fold. The dam+/pMQ148, dam-2/pMQ148 and dam-1/pMQ148 strains showed identical dose-response curves for both 9AA and ICR191. These results are consistent with a slightly reduced (dam-2) or increased (pMQ148) rate of methylation at the replication fork. The 2AP sensitivity of the dam-2 strain cannot be simply explained. Furthermore, addition of methionine to the assay medium reverses the 2AP sensitivity of the dam-2 strain, but has no effect on 9AA mutagenesis.  相似文献   

10.
Bacteriophage Mu DNA was labeled after induction in the presence of [2-(3)H]adenine or [8-(3)H]adenine. Both Mu mom(+).dam(+) DNA and Mu mom(-).dam(+) DNA have similar N(6)-methyladenine (MeAde) contents, as well as similar frequencies of MeAde nearest neighbors. Both DNAs are sensitive to in vitro cleavage by R.DpnI but resistant to cleavage by R.DpnII. These results indicate that the mom(+) protein does not alter the sequence specificity of the host dam(+) methylase to produce MeAde at new sites. However, we have discovered a new modified base, denoted A(x), in Mu mom(+).dam(+) DNA; approximately 15% of the adenine residues are modified to A(x). Although the precise nature of the modification is not yet defined, analysis by electrophoresis and chromatography indicates that the N(6)-amino group is not the site of modification, and that the added moiety contains a free carboxyl group. A(x) is not present in Mu mom(+).dam(+) or Mu mom(-).dam(+) phage DNA or in cellular DNA from uninduced Mu mom(+).dam(+) lysogens. These results suggest that expression of the dam(+) and mom(+) genes are required for the A(x) modification and that this modification is responsible for protecting Mu DNA against certain restriction nucleases. Mu mom(+).dam(-) DNA and Mu mom(-).dam(-) DNA contain a very low level of MeAde (ca. 1 MeAde per 5,000 adenine residues). Since the only nearest neighbor to MeAde appears to be cytosine, we suggest that the methylated sequence is 5'... C-A(*)-C... 3' and that this methylation is mediated by the EcoK modification enzyme.  相似文献   

11.
The nucleotide sequence recognized and cleaved by the restriction endonuclease MboI is 5' GATC and is identical to the central tetranucleotide of the restriction sites of BamHI and BglII. Experiments on the restriction of DNA from Escherichia coli dam and dam+ confirm the notion that GATC sequences are adenosyl-methylated by the dam function of E. coli and thereby are made refractory to cleavage by MboI. On the basis of this observation the degree of dam methylation of various DNAs was examined by cleavage with MboI and other restriction endonucleases. In plasmid DNA essentially all of the GATC sequences are methylated by the dam function. The DNA of phage lambda is only partially methylated, extended methylation is observed in the DNA of a substitution mutant of lambda, lambda gal8bio256, and in the lambda derived plasmid, lambdadv93, which is completely methylated. In contrast, phage T7 DNA is not methylated by dam. A suppression of dam methylation of T7 DNA appears to act only in cis dam. A suppression of dam methylation of T7 DNA appears to act only in cis since plasmid DNA replicated in a T7-infected cell is completely methylated. The results are discussed with respect to the participation of the dam methylase in different replication systems.  相似文献   

12.
Near-ultraviolet (NUV) radiation and hydrogen peroxide (H2O2) inactivation studies were performed on Escherichia coli K-12 DNA adenine methylation (dam) mutants and on cells that carry plasmids which overexpress Dam methylase. Lack of methylation resulted in increased sensitivity to NUV and H2O2 (a photoproduct of NUV). In a dam mutant carrying a dam plasmid, the levels of Dam enzyme and resistance to NUV and H2O2 were restored. However, using a multicopy dam+ plasmid strain, increasing the methylase above wildtype levels resulted in an increase in sensitivity of the cells rather than resistance.  相似文献   

13.
W Messer  U Bellekes    H Lother 《The EMBO journal》1985,4(5):1327-1332
Methylation of GATC sites by the dam methylase is required for efficient initiation of DNA replication at the replication origin, oriC, of Escherichia coli. This is demonstrated by the inability of minichromosomes to be maintained in dam mutant strains. The requirement for methylated GATC sites is less stringent in vitro than in vivo. The time required for complete methylation of the origin region apparently determines the minimal spacing of replication forks on the chromosome.  相似文献   

14.
Two methods were used in an attempt to increase the efficiency and strand selectivity of methyl-directed mismatch repair of bacteriophage lambda heteroduplexes in E. coli. Previous studies of such repair used lambda DNA that was only partially methylated as the source of methylated chains. Also, transfection was carried out in methylating strains. Either of these factors might have been responsible for the incompleteness of the strand selectivity observed previously. In the first approach to increasing strand selectivity, heteroduplexes were transfected into a host deficient in methylation, but no changes in repair frequencies were observed. In the second approach, heteroduplexes were prepared using DNA that had been highly methylated in vitro with purified DNA adenine methylase as the source of methylated chains. In heteroduplexes having a repairable cI/+ mismatch, strand selectivity was indeed enhanced. In heteroduplexes with one chain highly methylated and the complementary chain unmethylated, the frequency of repair on the unmethylated chain increased to nearly 100%. Heteroduplexes with both chains highly methylated were not repaired at a detectable frequency. Thus, chains highly methylated by DNA adenine methylase were refractory to mismatch repair by this system, regardless of the methylation of the complementary chain. These results support the hypothesis that methyl-directed mismatch repair acts to correct errors of replication, thus lowering the mutation rate.  相似文献   

15.
We have cloned two DNA fragments containing 5'-GATC-3' sites at which the adenine is methylated in the macronucleus of the ciliate Tetrahymena thermophila. Using these cloned fragments as molecular probes, we analyzed the maintenance of methylation patterns at two partially and two uniformly methylated sites. Our results suggest that a semiconservative copying model for maintenance of methylation is not sufficient to account for the methylation patterns we found during somatic growth of Tetrahymena. Although we detected hemimethylated molecules in macronuclear DNA, they were present in both replicating and nonreplicating DNA. In addition, we observed that a complex methylation pattern including partially methylated sites was maintained during vegetative growth. This required the activity of a methylase capable of recognizing and modifying sites specified by something other than hemimethylation. We suggest that a eucaryotic maintenance methylase may be capable of discriminating between potential methylation sites to ensure the inheritance of methylation patterns.  相似文献   

16.
Two DNA methylase activities of Escherichia coli C, the mec (designates DNA-cytosine-methylase gene, which is also designated dcm) and dam gene products, were physically separated by DEAE-cellulose column chromatography. The sequence and substrate specificity of the two enzymes were studied in vitro. The experiments revealed that both enzymes show their expected sequence specificity under in vitro conditions, methylating symmetrically on both DNA strands. The mec enzyme methylates exclusively the internal cytosine residue of CCATGG sequences, and the dam enzyme methylates adenine residues at GATC sites. Substrate specificity experiments revealed that both enzymes methylate in vitro unmethylated duplex DNA as efficiently as hemimethylated DNA. The results of these experiments suggest that the methylation at a specific site takes place by two independent events. A methyl group in a site on one strand of the DNA does not facilitate the methylation of the same site on the opposite strand. With the dam methylase it was found that the enzyme is incapable of methylating GATC sites located at the ends of DNA molecules.  相似文献   

17.
In Klebsiella pneumoniae, a chromosomal insertion mutation was constructed in the dam gene, which encodes DNA adenine methylase (Dam), resulting in a mutant unable to methylate specific nucleotides. In some bacteria, the Dam methylase has been shown to play an important role in virulence gene regulation as well as in methyl-directed mismatch repair and the regulation of replication initiation. Disruption of the normal Dam function by either eliminating or greatly increasing expression in several organisms has been shown to cause attenuation of virulence in murine models of infection. In K. pneumoniae, a mutation-eliminating Dam function is shown here to result in only partial attenuation following intranasal and intraperitoneal infection of Balb/C mice.  相似文献   

18.
A partially purified HeLa cell DNA methylase will methylate a totally unmethylated DNA (de novo methylation) at about 3-4% the rate it will methylate a hemimethylated DNA template (maintenance methylation). Our evidence suggests that many, if not most, dCpdG sequences in a natural or synthetic DNA can be methylated by the enzyme. There is a powerful inhibitor of DNA methylase activity in crude extracts which has been identified as RNA. The inhibition of DNA methylase by RNA may indicate that this enzyme is regulated in vivo by the presence of RNA at specific chromosomal sites. The pattern of binding of RNA to DNA in the nucleosome structure and the DNA replication complex may determine specific sites of DNA methylation. An even more potent inhibition of DNA methylase activity is observed with poly(G), but not poly(C), poly(A), or poly(U). The only other synthetic polynucleotides studied which inhibit DNA methylation as well as poly(G) are the homopolymers poly(dC).poly(dG) and poly (dA).poly(dT). These results point out the unique importance of the guanine residue itself in the binding of the DNA methylase to dCpdG, the site of cytosine methylation. The surprising inhibition of the methylation reaction by poly(dA).poly(dT), which is itself not methylated by the enzyme, suggests the possible involvement of adjacent A and T residues in influencing the choice of sites of methylation by the enzyme.  相似文献   

19.
20.
A small percentage of the adenine bases in Hemophilus influenzae strain Rd DNA are methylated in the 6-amino position. The methyl groups are introduced specifically by at least four different DNA methylases (I, II, III and IV). A method is described for determining the 3′ and 5′ nearest-neighbor bases to methylated adenine so as to reveal the specificity of each methylase. Tritium-labeled methyl groups are introduced into the DNA. The DNA is then digested to dinucleotides using the Bacillus subtilis phage SP3 DNase, followed by removal of the terminal 5′-phosphoryl group with phosphatase to produce dinucleoside monophosphates. These are analyzed by Aminex A25 (Bio-Rad) chromatography. Dinucleoside monophosphate species containing the 3′ neighbor or the 5′ neighbor are resolved so that a trinucleotide is determined that contains the centrally placed methylated adenine. H. influenzae Rd DNA contains seven dinucleoside monophosphate species, about 80% representing GpmA and mApT in approximately equal amount. DNA methylases I, II, III and IV introduce methyl groups into sequences containing the trinucleotides CpmApC, PupmApC, NpmApA and GpmApT, respectively. The sequence methylated by NDA methylase II is consistent with the recognition site determined by Kelly and Smith (1970) for the H. influenzae restriction enzyme, endonuclease R.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号