首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Colony-stimulating factors (CSFs) have entered the clinical arena. Several investigators have explored, in first clinical phase I studies, different routes of administration to define the optimum biological dose, maximum tolerated dose, toxicity, and pharmacokinetics of these reagents. It has been demonstrated that recombinant human (rh) granulocyte-macrophage CSF (GM-CSF) and granulocyte CSF (G-CSF) can be safely administered over a broad dose range to increase number of circulating granulocytes in man. More recently, GM-CSF and G-CSF have been involved in phase Ib/II studies to assess the granulopoietic responses of patients with granulocytopenia due to various underlying disease states including myelodysplastic syndrome, aplastic anemia, cyclic neutropenia, Kostmann's syndrome, and the acquired immuno-deficiency syndrome. Both factors were also investigated with respect to their potential to prevent chemotherapy induced granulocytopenia or to accelerate recovery from that condition. The short-term effects of rh GM-CSF after autologous bone marrow transplantation for various solid tumors and lymphoid malignancies were assessed as well. In this article we will focus on recent results that have emerged from in vivo studies utilizing CSFs.  相似文献   

2.
In February 1986 we transplanted a 10-year-old girl with AML in second remission with the bone marrow of an unrelated donor. HLA-types were different for one A- and one B-antigen between patient and donor. Conditioning regimen consisted of 14 Gy total body irradiation with lung shielding, 8 X 3 g/m2 cytosin arabinoside and 90 mg/kg cyclophosphamide. GVHD-prophylaxis was performed with cyclosporin A, methotrexate and prednisolone. Only mild GVHD I of the skin could be observed after rapid engraftment. 100 days after transplantation the patient was in good clinical condition and GVHD-prophylaxis was discontinued without any reactivation of acute or chronic GVHD. Engraftment was documented by sex chromosome and blood group typing. 120 days after transplantation leukemic blasts were detected in the peripheral blood and the child died 130 days after BMT from relapse of the leukemia. Despite the negative outcome, this was the first successful bone marrow transplantation from a unrelated donor in Germany.  相似文献   

3.
通过整体实验观察国产重组白介素3(IL-3)对射线和环磷酰胺所致小鼠造血功能低下的疗效;以体外实验分析其疗效机理。实验结果表明:(1)rhIL-3腹腔或皮下连续5天注射能全面提高7Gy照射小鼠9天时股骨骨髓CFU-E、BFU-E、CFU-Mix和CFU-GM的产率和数量,其效果强弱与注射途径和用药剂量有关。rhIL-3对小鼠股骨骨髓有核细胞总数和内源性脾结节数的改善影响小。(2)rhIL-3对环磷酰胺所致小鼠造血功能低下亦有改善效果,并与起用时间和剂量有关。(3)rhIL-3对人骨髓细胞和CFU-GM集落形成有明显的增强作用。小鼠骨髓细胞对rhIL-3缺乏反应;对rmIL-3有增殖分化加强的反应。rmIL-3体外共育能提高正常及照射2Gy小鼠骨髓细胞体外培养后CFU-GM的产率和数量。文中讨论了IL-3的应用前景及合理方案问题。  相似文献   

4.
We have conducted several phase I/II clinical studies in a total of 65 MDS patients utilizing recombinant human hematopoietic growth factors including GM-CSF, IL-3, and EPO. Twenty-seven patients with MDS were treated with either continuous i.v. infusion or single daily s.c. injection of rhGM-CSF at dosages from 15 micrograms/m2 to 1000 micrograms/m2. All of them exhibited white cell responses during the treatment cycles, but no sustained rise in reticulocytes or platelets was recorded. In four of the patients, all with > or = 15% blast cells in the bone marrow, the percentage of circulating blast cells increased during treatment with rhGM-CSF (at dosages of 500 micrograms/m2 and 1000 micrograms/m2, respectively), although no leukemic conversion occurred. Of 9 patients treated so far with rhIL-3 at single daily s.c. dosages of 60 micrograms/m2, all exhibited white cell responses; 8 exhibited significant improved platelet and reticulocyte counts. Nineteen further patients received rhEPO for a period of 14 weeks by s.c. (10,000 U five times weekly) or i.v. bolus administration (150-450 U/kg). None of these patients experienced an increase in white cell and platelet counts. A significant increase of the reticulocyte count was recorded in 3 patients only. Another strategy involves the recruitment of leukemic cells into the cell cycle by hematopoietic growth factors followed by treatment with cycle-specific cytostatic agents. Therefore in 10 patients administration of rhGM-CSF (250 g/m2/day x 14, s.c.) was combined with Ara-C treatment (20 mg/m2/day x 14; s.c.). Initial results of this pilot study available in 5 patients indicated that this approach may control leukemic cell proliferation and may increase number of mature myeloid cells in both bone marrow and peripheral blood. A similar approach utilizing rhIL-3 in conjunction with Ara-C is on-going.  相似文献   

5.
The effect of granulocyte-macrophage colony stimulating factor (GM-CSF) on the synthesis of RNA in liquid cultures of mouse bone marrow, spleen, thymus, peritoneal, peripheral blood leukocytes and lymph node cells was investigated. GM-CSF appeared to stimulate RNA-synthesis in syngeneic bone marrow cells within ten minutes of adding it to the culture. In the presence of GM-CSF bone marrow cultures maintained their initial rate of RNA synthesis for approximately ten hours. GM-CSF had no apparent effect on the uptake of 3H-uridine into bone marrow cells. This stimulation was still observed in the presence of puromycin and cycloheximide, but was abrogated by actinomycin D. The magnitude of the stimulation was not affected by the density of cells between 1 and 20 x 10(6) cells/ml but was slightly smaller at 0.1 and 40 x 10(6) cells/ml. Increasing concentration of GM-CSF (up to 2 X 105 units per ml) led to increased stimulation of RNA synthesis in bone marrow cells, but a significant stimulation could be detected at concentrations as low as 800 units/ml. GM-CSF did not significantly stimulate RNA synthesis in spleen, thymus, mesenteric or subcutaneous lymph node cells. However a small stimulation was observed in peripheral blood leukocytes and peritoneal cells. Autoradiographic studies showed that GM-CSF stimulated RNA synthesis in blast cells, myelocytes, metamyelocytes and polymorphs. Nucleated erythroid cells showed no increased labeling with GM-CFS. Labeling in lymphoid-like cells was highly variable but the level of labeling did not appear to be influenced by GM-CSF.  相似文献   

6.
A synthetic pentapeptide analogous to an inhibitory factor associated with human granulocytes was tested in vivo on female C3H mice. The relative and absolute numbers of myelopoietic and erythropoietic cells in the bone marrow were measured following injections as well as the continuous infusion of the pentapeptide in dose ranges between 10(-8)M and 10(-4)M (0.12 micrograms to 1.2 mg/mouse). In low doses, the pentapeptide reduced the number of myelopoietic cells in the bone marrow, and this was accompanied by reduced numbers of granulocytes and monocytes and peripheral blood. Elevated doses also decreased erythropoiesis. In contrast, continuous infusion of 14 micrograms/h for 19 days seemed to make the myelopoietic cells refractory to further action. A regulatory function of the pentapeptide is proposed.  相似文献   

7.
The effects of an autologous transplanted mammary tumor (RIII-T3) on hemopoiesis in RIII mice are described. Tumor-bearing animals died 30 to 40 days after inoculation and displayed splenomegaly, extreme neutrophilia, and moderately increased monocyte levels in the spleen, peripheral blood, and bone marrow. The precursors of neutrophils and monocytes, granulocyte/macrophage colony-forming cells (GM-CFC) were elevated in the spleen, bone marrow, and peripheral blood. RIII-T3-conditioned medium stimulated bone marrow GM-CFC and caused the myelomonocytic cell line, WEHI-3B, to differentiate in vitro. The conditioned medium did not stimulate erythroid, megakaryocyte, or eosinophil colony formation. When conditioned medium was fractionated, two peaks of activity corresponding to GM-CSF and G-CSF were observed, suggesting that the extreme neutrophilia observed in tumor-bearing animals may result from chronic exposure of the hemopoietic system to these hemopoietic hormones.  相似文献   

8.
Thirteen patients in complete remission from acute nonlymphoblastic leukaemia or in chronic phase of chronic myelocytic leukaemia were treated with total body irradiation, cyclophosphamide and allogeneic bone marrow transplantation (BMT). Ciclosporin (CS) was administered for the prevention and the treatment of Graft versus Host Disease. Blood concentrations of CS were determined by Radioimmunoassay (RIA) and by High Performance Liquid Chromatography (HPLC). Trough levels of CS in peripheral blood as measured by RIA exceeded HPLC derived levels in nearly all (56/58) samples with a ratio of RIA:HPLC ranging from 2.43 +/- 1.42 at day 12 to 3.65 +/- 1.86 at day 26 after BMT (means +/- SD). A comparable ratio was found as regards the peak concentrations of CS in peripheral blood. Neither the dose of CS (0.5-3.0 mg/kg/day intravenously; 3.0-5.0 mg/kg/day per os) nor the duration of treatment (12, 19, 26 or 33 days after start of CS) were a significant factor as regards the ratio between HPLC and RIA. Concentrations of CS were also determined in bone marrow nucleated cells at 1 hour after the drug infusion had started. Here the ratio of RIA versus HPLC varied upon the duration of CS treatment with a highest ratio of 8.75 +/- 8.74 at day 12 after BMT. Bone marrow levels corresponded well with blood trough concentrations (p less than 0.01). It is concluded that the concentrations of CS in blood and bone marrow as determined by RIA and HPLC differ significantly, though consistently. At present, no advantage can be attributed to either method of analysis for routine clinical monitoring, as long as detailed information on the immunosuppressive and the toxic characteristics of CS metabolites in humans is lacking.  相似文献   

9.
目的建立较稳定的异基因骨髓移植急性移植物抗宿主病动物模型,为异基因骨髓移植后的急性移植物抗宿主病(aGVHD)的相关研究提供实验参照。方法以雄性SD大鼠为供鼠,雌性Wistar大鼠为受鼠,受体大鼠随机分成A、B、C、D、E 5组,移植当天所有受鼠均接受8.5 GY的全身照射(TBI),于照射后4~6 h内,A组回输等量培养液,B组经尾静脉输注供鼠骨髓细胞(2×10^8个/kg),C、D、E组分别回输供鼠骨髓细胞(2×10^8个/kg)+不同比例的脾细胞。观察各组大鼠生存期、外周白细胞计数、及有无aGVHD的临床及病理表现。结果A组大鼠于15d内全部死亡,外周血白细胞计数明显减低,骨髓病理示造血组织减少,提示死于造血衰竭。B、C、D、E组大鼠外周血白细胞计数均有明显恢复,B组大鼠8只存活超过50 d,C、D、E组大鼠均于50 d观察期内死亡,并有aGVHD的临床表现及病理表现,但C组大鼠aGVHD的程度较轻且时间不集中,其中D、E组大鼠可于相对集中的时间内观察到典型aGVHD临床及病理。结论TBI预处理的方式是可行的,单纯输入异基因骨髓细胞不能引起明显的aGVHD,骨髓细胞与脾细胞1∶1及1∶1.5混合组均可作为异基因骨髓移植后理想的aGVHD动物模型。  相似文献   

10.
Whole Body Hyperthermia (WBH) enhancement of chemotherapy and/or radiation without a concomitant increase in myelosuppression has been documented in clinical trials. We propose that the biological basis for this phenomena relates in part to the previously reported induction of peripheral cytokines by WBH, that is, granulocyte colony stimulating factor (G-CSF), interleukin (IL)-1 beta, IL-6, IL-8, tumor necrosis factor-alpha (TNF-alpha), and the regulatory cytokine IL-10. To further explain this myeloprotection and the additional clinical observation that WBH promotes early engraftment of bone marrow (when used as part of an allogenic bone marrow transplant preconditioning regimen) we developed a hypothesis: WBH increases peripheral IL-1 beta, IL-6, and TNF-alpha resulting in a secondary induction of IL-3 and granulocyte macrophage colony stimulating factor (GM-CSF) in the bone marrow, for which supportive data also exists. Taken collectively, these data provide an increased understanding of the biological sequelae of fever, as well as a testable unifying hypothesis, for future antineoplastic treatment strategies.  相似文献   

11.
The influence of human interleukin-1 beta in different concentration on processes of postirradiation recovery of haemopoietic precursors (GM-CFC) and morphology of recognized elements of bone marrow were studied in long-term bone marrow cultures during 28 days after gamma-irradiation with a dose of 2 Gy. It was studied also the action of interleukin-1 beta on proliferation, the contents of GM-CFC and the induction of GM-CSF in non-irradiated cultures. It was shown that the injection of interleukin-1 beta increased proliferation and the content of GM-CFC and also raised an induction of GM-CSF in the non-irradiation cultures. The maximum increase of a level of GM-CSF, amount of GM-CFC and proliferation of GM-CFC was marked in 20 hours after the injection of cytokine. Under irradiation of long-term bone marrow cultures the maximum stimulation effect to recovery of GM-CFC, total number of myelocaryocytes and the content of immature and mature granulocytes were observed after the injection of interleukin-1 beta in concentration of 0.005 microgram/ml 20 hours prior to radiation exposure. The data of this report suggest that one of the mechanisms of radioprotective action of interleukin-1 beta apparently is connected with stimulation action on hematopoietic microenvironment cellular elements that causes the release of GM-CSF or/and other cytokines, and stimulation recovery of haemopoietic precursors.  相似文献   

12.
Genotoxic and clastogenic effects of styrene were studied in mice. Male NMRI mice were exposed by inhalation to styrene in concentrations of 750 and 1500 mg/m3 for 21, 7, 3 and 1 days (6 h/day, 7 days/week). Followed parameters included styrene in blood, specific styrene oxide (SO) induced DNA adducts, DNA strand breaks and micronuclei. The formation of SO induced 7-SO-guanines and 1-SO-adenines in DNA was analysed from lung tissues by two versions of the 32P-postlabeling technique. In lungs after 21 days of exposure to 1500 mg/m3 the level of 7-SO-guanine was 23.0+/-11.9 adducts/10(8) normal nucleotides, while 1-SO-adenine was detected at the levels of 0.6+/-0.2 adducts/10(8) normal nucleotides. Both 7-SO-guanines and 1-SO-adenines strongly correlated with exposure parameters, particularly with styrene concentration in blood (r=0.875, P=0.0002 and r=0.793, P=0.002, respectively). DNA breaks were measured in peripheral lymphocytes, bone marrow cells and liver cells using comet assay. To discern oxidative damage and abasic sites, endonuclease III was used. In bone marrow of exposed mice slight increase of strand breaks can be detected after 7 days of inhalation. A significant increase was revealed in the endonuclease III-sensitive sites after 21 days of inhalation in bone marrow. In the liver cells inhalation exposure to both concentrations of styrene did not virtually affect either levels of DNA single-strand breaks or endonuclease III-sensitive sites. The inhalation of 1500 mg/m3 of styrene induced significant increase of micronuclei after 7 days of exposure (10.4+/-2.5/1000 cells, i.e. twice higher micronuclei frequency than in controls). After 21 days of inhalation no significant difference between the control group and the two exposed groups was observed. Whether the decrease of micronuclei after 21 days of inhalation was due to the inhibition of cell proliferation caused by styrene or due to the natural elimination of chromatide fragments, remains to be clarified. An interesting link has been found between DNA single-strand breaks in bone marrow and frequencies of micronuclei (r=0.721, P=0.028).  相似文献   

13.
Summary In vitro growth and differentiation of granulocyte-macrophage progenitor cells (GM-CFU-C) requires colony-stimulating factors (CSF), and an in vivo role for CSF has also been proposed. Prostaglandins of the E series (PGE) have been reported to serve as negative feedback regulators of myelopoiesis. Here, we report evidence of augmented CSF secretion by mouse peritoneal Mo (macrophages) and bone marrow cells in vitro upon stimulation with various biological response modifiers (BRMs). Optimal induction of CSF secretion occurred after in vitro treatment of peritoneal Mo and mononuclear bone marrow cells with 50 g/ml poly ICLC (polyriboinosinic-polycytidylic acid poly-L-lysine), 5 g/ml lipopolysaccharide (LPS), or 500 U/ml interferon (IFN,) for 2 days. The in vitro stimulation of CSF secretion was paralleled by an increase in PGE secretion by Mo and bone marrow cells. The PGE secretion could, however, be selectively blocked by preincubating the cells for 3 h with indomethacin (10–7 Mol) leaving CFS production intact. In vivo treatment of mice with either maleic anhydride divinyl ether copolymer (MVE-2; 25 mg/kg) or poly ICLC (2 mg/kg) significantly increased levels of CSF in serum, as well as in culture supernatants of in vivo-treated peritoneal Mo and bone marrow cells. The increase in serum CSF levels and in secretion of CSF by peritoneal Mo and bone marrow cells was followed by a dose-dependent increase in GM-CFU-C, in nucleated bone marrow cells, and in peripheral blood leukocytes. The same BRMs also stimulated the secretion of PGE by in vivo-activated peritoneal Mo, but not by bone marrow cells. Pretreatment of the mice with indomethacin (4 mg/kg) almost completely suppressed PGE secretion by peritoneal Mo, but did not change the CSF secretion by peritoneal Mo or bone marrow cells and had no significant effect on bone marrow cellularity. Therefore, MVE-2 and poly ICLC, in addition to their immunomodulatory activity, can also have stimulatory effects on myelopoiesis, presumably mediated through secretion of CSFs. Protection and/or restoration of bone marrow function could thus either provide the opportunity for more extensive chemotherapy or could increase the number of Mo effector cells available for activation against tumor targets.  相似文献   

14.
Oral administration of brahma rasayana (BR; 10 and 50 mg/dose/animal) for 15 days increased significantly total leukocyte count and percentage of polymorphonuclear cells in irradiated mice. Bone marrow cellularity and alpha-esterase positive cells also increased significantly in radiation-treated animals after BR administration. Number of nodular colonies on the surface of spleen on day seven increased significantly in lethally irradiated recipients receiving bone marrow cells from animals treated with BR. Oral administration of BR also enhanced in serum level of interferon-gamma (IFN-gamma), interleukin-2 (IL-2), and granulocyte macrophage-colony stimulating factor(GM-CSF) in normal and irradiated mice. These results indicated that proliferation of stem cells induced by BR in irradiated mice may be related to its stimulation of cytokine production.  相似文献   

15.
Erythrocyte-based micronucleus tests have traditionally been performed with bone marrow specimens, since, in most preclinical animal models, the spleen can efficiently remove aberrant erythrocytes from the circulation. Even so, evidence is mounting that by examining tens of thousands of young (CD71-positive) circulating reticulocytes for the presence of micronuclei via flow cytometry, a sensitive assay of cytogenetic damage is realized. The work described herein was designed to test this hypothesis further, using an important preclinical toxicology model, the beagle dog. In these experiments, purebred male beagles were treated for five consecutive days with cyclophosphamide (0, 6.25, 12.5 or 25mg/m(2)/day) or for two consecutive days with etoposide (0, 1.56, 6.25 or 12.5mg/m(2)/day). Before treatment, and on each day of administration, blood specimens were collected and processed for flow cytometric scoring of micronucleated reticulocyte (MN-RET) frequency. Twenty-four hours after the final administration, blood MN-RET frequencies were determined via flow cytometry, and frequencies of micronucleated bone marrow polychromatic erythrocytes (MN-PCE) were determined using acridine orange and May-Grunwald Giemsa staining. In the case of cyclophosphamide, elevated blood MN-RET frequencies were observed 2 days after treatment began, and the maximal frequency was achieved 1 day later. Similarly, etoposide-induced blood MN-RET were not evident 1 day after administration began, but a robust effect was apparent 2 days after treatments were initiated. Twenty-four hours after the final administrations, dose-related micronucleus responses were evident for both agents and in both blood and bone marrow compartments. Good overall agreement between MN-RET and MN-PCE frequencies was evidenced by high Spearman's correlation coefficients-0.89 for blood flow cytometry versus bone marrow acridine orange staining and 0.83 for blood flow cytometry versus bone marrow May-Grunwald Giemsa staining. Taken together, these results provide further support for the cross-species utility of flow cytometry-based blood MN-RET measurements.  相似文献   

16.
Granulocyte-Macrophage colony stimulating factor (GM-CSF) and Granulocyte colony stimulating factor (G-CSF) are cytokines involved in the differentiation of bone marrow progenitor cells into myeloid cells. They also activate mature myeloid cells to mediate a variety of antimicrobial activities and inflammatory responses. Recombinant GM-CSF and G-CSF proteins have been used to treat various diseases including cancer and hematopoietic diseases and to isolate peripheral blood progenitor cells for bone marrow transplantation. A plasmid construct expressing recombinant human G-CSF/GM-CSF fusion protein has now been prepared by linking the human G-CSF and GM-CSF coding regions and the recombinant fusion protein has been successfully expressed in E. coli. The recombinant human G-CSF/GM-CSF fusion protein was extracted and purified from the cellular inclusion and refolded into the biologically active form to show colony stimulating activity. The recombinant fusion protein exhibited colony stimulating activity on human bone marrow cell cultures, indicating that the linkage of GM-CSF and G-CSF by a linker peptide may not interrupt activities of the cytokines in the fusion protein. The colony forming unit of the fusion protein was also higher than those of the cultures treated with the same molar numbers of the recombinant human GM-CSF and G-CSF separately, which suggests that the fusion protein presumably retains both G-CSF and GM-CSF activities.  相似文献   

17.
The purpose of this study was to determine the efficacy, engraftment kinetics, effect of bone marrow tumor contamination, and safety of high-dose therapy and granulocyte-colony stimulating factor (G-CSF) mobilized peripheral blood progenitor cell (PBPC) support for patients with responding metastatic breast cancer. Forty two patients underwent G-CSF (10 μg/kg) stimulated PBPC harvest. PBPC and bone marrow aspirates were analyzed by histologic and immunocytochemical methods for tumor contamination. Thirty-seven patients received high-dose therapy consisting of cyclophosphamide 6 g/m2, thiotepa 500 mg/m2, and carboplatin 800 mg/m2 (CTCb) given as an infusion over 4 d followed by PBPC reinfusion and G-CSF (5 μg/kg) support. No transplant related deaths or grade 4 toxicity was recorded. CD34+ cells/kg infused was predictive of neutrophil and platelet recovery. With a median follow-up of 38 months, three year survival was 44% with relapse-free survival of 19%. Histological bone marrow involvement, found in 10 patients, was a negative prognostic factor and was associated with a median relapse-free survival of 3.5 months. Tumor contamination of PBPC by immunohistochemical staining was present in 22.5% of patients and found not to be correlated with decreased survival. G-CSF stimulated PBPC collection followed by a single course of high dose chemotherapy and stem cell infusion with G-CSF stimulated marrow recovery leads to rapid, reliable engraftment with low toxicity and promising outcome in women with responding metastatic breast cancer.  相似文献   

18.
Micronucleated erythrocytes are selectively removed from the peripheral circulation of normal rats. Splenectomy prevents this selective removal. In normal rats treated daily for 20 days with 0.2 mg/kg triethylenemelamine (TEM), micronucleated normochromatic (mature) erythrocytes did not accumulate in peripheral blood. In these same animals, the frequencies of micronucleated cells among polychromatic (newly formed) erythrocytes increased from 0.21 to 5.25 per thousand in peripheral blood and from 1.75 to 31.5 per thousand in bone marrow. Since both control and induced frequencies in peripheral blood were approximately 15% of those in bone marrow, the removal appears to be equally efficient for cells containing either spontaneously occurring or clastogen-induced micronuclei. In splenectomized rats treated daily for 11 days with 0.2 mg/kg TEM, the frequency of micronucleated normochromatic erythrocytes (NCEs) in the peripheral blood rose rapidly to 9 times the control value and remained elevated for 50-55 days, indicating a life span approximately equivalent to that of normal erythrocytes. Among splenectomized rats exposed to either 0.15 mg/kg triethylenemelamine, 6.5 mg/kg cyclophosphamide, or 300 mg/kg urethane for periods exceeding the erythrocyte life span, the incidences of micronucleated NCEs in the peripheral blood rose steadily from a control value of 1.0 per thousand to maximum values of 15.0, 12.7 and 8.9 per thousand, respectively. During these extended exposures, the mean frequencies of micronucleated polychromatic erythrocytes (PCEs) in peripheral blood increased from a spontaneous value of 0.9 per thousand to 23.0, 13.0 and 6.6 per thousand, respectively, reflecting the frequencies among PCEs in the bone marrow and approximating the maximum values among NCEs in the peripheral blood. Thus, the frequency of micronucleated erythrocytes in the peripheral blood of splenectomized rats can be used as an index of both acute and cumulative chromosomal damage, while in normal rats the use of peripheral blood for cytogenetic monitoring is restricted by the selective removal of these micronucleated cells.  相似文献   

19.
20.
The ability of melatonin to influence paraquat-induced genotoxicity was tested using micronucleated polychromatic erythrocytes as an index of damage in both bone marrow and peripheral blood cells of mice. Melatonin (10 mg/kg) or an equal volume of saline were administered intraperitoneally (ip) to mice 30 min prior to an ip injection of paraquat (20 mg/kgx2), and thereafter at 6-h intervals until the conclusion of the study (72 h). The number of the micronucleated polychromatic erythrocytes increased after paraquat administration both in peripheral blood and bone marrow cells. Melatonin administration to paraquat-treated mice significantly reduced micronuclei formation in both peripheral blood and bone marrow cells; these differences were apparent at 24, 48 and 72 h after paraquat administration. The induction of micronuclei was time-dependent with peak values occurring at 24 and 48 h. The reduction in paraquat-related genotoxicity by melatonin is likely due in part to the antioxidant activity of the indole. We did not observe effects of melatonin over paraquat in paraquat+melatonin groups incubated at 0, 60 and 120 min. Mitomycin C, which was used as a positive control, also caused the expected large rises in micronuclei in both bone marrow and peripheral blood cells at 24, 48 and 72 h after its administration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号