首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Endogenous carbon monoxide (CO)contributes to vasodilator responses of cerebral microvessels innewborn pigs. We investigated the expression, intracellularlocalization, and activity of heme oxygenase (HO), the key enzyme in COproduction, in quiescent cerebral microvascular endothelial cells(CMVEC) from newborn pigs. HO-1 and HO-2 isoforms were detected byRT-PCR, immunoblotting, and immunofluorescence. HO-1 and HO-2 aremembrane-bound proteins that have a strong preference for the nuclearenvelope and perinuclear area of the cytoplasm. Betamethasone(106 to 104 M for 48 h) was associatedwith upregulation of HO-2 protein by ~50% and inhibition of Cox-2but did not alter HO-1 or endothelial nitric oxide synthase expressionin CMVEC. In vivo betamethasone treatment of newborn pigs (0.2 and 5.0 mg/kg im for 48 h) upregulated HO-2 in cerebral microvessels by30-60%. HO activity as 14CO production from[14C]glycine-labeled endogenous heme was inhibited bychromium mesoporphyrin (106 to 104 M).L-Glutamate (0.3-1.0 mM) stimulated HO activity1.5-fold. High-affinity specific binding sites forL-[3H]glutamate suggestive of the glutamatereceptors were detected in CMVEC. Altogether, these data suggest that,in cerebral circulation of newborn pigs, endothelium-derived CO maycontribute to basal vascular tone and to responses that involveglutamate receptor activation.

  相似文献   

2.
The activation of a macrophage(M)-dependent proinflammatory cascade following thermal injuryplays an important role in the development of immunosuppression andincreased susceptibility to subsequent sepsis in burn patients. Incontrast, although interleukin (IL)-10, an anti-inflammatory cytokinethat can downregulate M activity, has also been implicated inpostburn immune dysfunction, its role in the regulation of Mfunction postburn remains unclear. To study this, C57BL/6 female micewere subjected to a 25% total body surface area third-degree scaldburn, and splenic Ms were isolated 7 days later. Lipopolysaccharide(LPS)-stimulated IL-10, IL-6, tumor necrosis factor (TNF)-, andnitric oxide (NO) production were significantly increased in the burngroup compared with shams. Blockade of endogenous IL-10 activityenhanced IL-6 and TNF- release, but not NO release, in both groups.The addition of exogenous IL-10 to the M cultures dose dependentlysuppressed production of these inflammatory mediators in both groups.The timing of IL-10 addition to the cultures in relation to LPSstimulation, however, was critical. The suppressive effect of exogenousIL-10 was attenuated in both groups when the cells were exposed toIL-10 at 4-6 h after LPS stimulation; however, Ms from injuredmice were significantly better able to maintain inflammatorymediator-productive capacity. The resistance of Ms from injured miceto IL-10-mediated suppression correlated with decreased IL-10 receptor(IL-10R) expression and increased CD11b expression. These findingssuggest that Ms, following thermal injury, display resistance tosuppression by IL-10 due in part to downregulation of IL-10R expression.

  相似文献   

3.
We have investigated the role ofinhibitor B (IB) in the activation of nuclear factor B(NF-B) observed in human aortic endothelial cells (HAEC) undergoinga low shear stress of 2 dynes/cm2. Low shear for 6 hresulted in a reduction of IB levels, an activation of NF-B,and an increase in B-dependent vascular cell adhesion molecule 1 (VCAM-1) mRNA expression and endothelial-monocyte adhesion.Overexpression of IB in HAEC attenuated all of these shear-induced responses. These results suggest that downregulation ofIB is the major factor in the low shear-induced activation ofNF-B in HAEC. We then investigated the role of nitric oxide (NO) inthe regulation of IB/NF-B. Overexpression of endothelial nitric oxide synthase (eNOS) inhibited NF-B activation in HAEC exposed to 6 h of low shear stress. Addition of the structurally unrelated NO donors S-nitrosoglutathione (300 µM) orsodium nitroprusside (1 mM) before low shear stress significantlyincreased cytoplasmic IB and concomitantly reduced NF-Bbinding activity and B-dependent VCAM-1 promoter activity. Together,these data suggest that NO may play a major role in the regulation ofIB levels in HAEC and that the application of low shear flowincreases NF-B activity by attenuating NO generation and thusIB levels.

  相似文献   

4.
Endotoxin (LPS) is a potent inducer oftumor necrosis factor- (TNF-) and manganese superoxide dismutase(MnSOD). Recent evidence suggests that LPS induction of TNF- andMnSOD mRNAs is mediated through distinct intracellular signaltransduction pathways. Membrane CD14 (mCD14) and Toll-like receptor-4(TLR4) mediate LPS induction of TNF- in macrophages. In the current study, we evaluated the role of mCD14 and TLR4 in LPS induction ofMnSOD using peritoneal macrophages from CD14 knockout (CD14-KO) miceand mice with the Tlr4 gene point mutation (C3H/HeJ) ordeletion (C57BL/10ScCr). We studied mCD14-dependent (1 and 10 ng/ml)and mCD14-independent (1,000 ng/ml) concentrations of LPS. Compared with control (BALB/c) macrophages, LPS at 1 and 10 ng/ml failed toinduce TNF- or MnSOD mRNA in CD14-KO macrophages. However, LPS at1,000 ng/ml induced TNF- and MnSOD mRNAs equally in macrophages fromCD14-KO and control mice. LPS (1, 10, or 1,000 ng/ml) failed to induceTNF- or MnSOD mRNA and failed to activate nuclear factor-B inC3H/HeJ or C57BL/10ScCr macrophages. Measurements of TNF- and MnSODenzyme activity paralleled TNF- and MnSOD mRNA levels. These datademonstrate that, like TNF-, induction of MnSOD by LPS is mediatedby mCD14 and TLR4 in murine macrophages.

  相似文献   

5.
The functionalrole of p53 in nitric oxide (NO)-mediated vascular smooth muscle cell(VSMC) apoptosis remains unknown. In this study, VSMC fromp53/ and p53+/+ murine aortas were exposedto exogenous or endogenous sources of NO. Unexpectedly,p53/ VSMC were much more sensitive to theproapoptotic effects of NO than were p53+/+ VSMC.Furthermore, this paradox appeared to be specific to NO, because otherproapoptotic agents did not demonstrate this differential effect onp53/ cells. NO-induced apoptosis inp53/ VSMC occurred independently of cGMP generation.However, mitogen-activated protein kinase (MAPK) pathways appeared toplay a significant role. Treatment of the p53/ VSMCwith S-nitroso-N-acetylpenicillamine resulted ina marked activation of p38 MAPK and, to a lesser extent, of c-JunNH2-terminal kinase, mitogen-activated protein kinasekinase (MEK) 1/2, and p42/44 (extracellular signal-regulated kinase,ERK). Furthermore, basal activity of the MEK-p42/44 (ERK)pathway was increased in the p53+/+ VSMC. Inhibition of p38MAPK with SB-203580 or of MEK1/2 with PD-98059 blocked NO-inducedapoptosis. Therefore, p53 may protect VSMC against NO-mediatedapoptosis, in part, through differential regulation of MAPK pathways.

  相似文献   

6.
Expression of heat shock proteins (HSP) is anadaptive response to cellular stress. Stress induces tumor necrosisfactor (TNF)- production. In turn, TNF- induces HSP70 expression.However, osmotic stress or ultraviolet radiation activates TNF-receptor I (TNFR-I) in the absence of TNF-. We postulated thatTNF- receptors are involved in the induction of HSP70 by cellularstress. Peritoneal M were isolated from wild-type (WT), TNF-knockout (KO), and TNFR (I or II) KO mice. Cells were culturedovernight and then heat stressed at 43 ± 0.5°C for 30 minfollowed by a 4-h recovery at 37°C. Cellular HSP70 expression wasinduced by heat stress or exposure to endotoxin [lipopolysaccharide(LPS)] as determined by immunoblotting. HSP70 expression induced byeither heat or LPS was markedly decreased in TNFR-I KO M, whereasTNFR-II KO M exhibited HSP70 expression comparable to that in WTmice. Expression of HSP70 after heat stress in TNF- KO M was alsosimilar to that in WT mice, suggesting that induction of HSP70 byTNFR-I occurs independently of TNF-. In addition, levels ofsteady-state HSP70 mRNA were similar by RT-PCR in WT and TNFR-I KO Mdespite differences in protein expression. Furthermore, the effect of TNFR-I appears to be cell specific, since HSP70 expression in splenocytes isolated from TNFR-I KO was similar to that in WT splenocytes. These studies demonstrate that TNFR-I is required for thesynthesis of HSP70 in stressed M by a TNF-independent mechanism andsupport an intracellular role for TNFR-I.

  相似文献   

7.
Endothelial cells release nitric oxide(NO) acutely in response to increased "flow" or fluid shear stress(FSS), and the increase in NO production is correlated with enhancedphosphorylation and activation of endothelial nitric oxide synthase(eNOS). Both vascular endothelial growth factor and FSS activateendothelial protein kinase B (PKB) by way of incompletely understoodpathway(s), and, in turn, PKB phosphorylates eNOS at Ser-1179, causingits activation. In this study, we found that either FSS or insulinstimulated insulin receptor substrate-1 (IRS-1) tyrosine and serinephosphorylation and increased IRS-1-associated phosphatidylinositol3-kinase activity, phosphorylation of PKB Ser-473, phosphorylation ofeNOS Ser-1179, and NO production. Brief pretreatment of bovine aorticendothelial cells with tumor necrosis factor- (TNF-) inhibitedthe above described FSS- or insulin-stimulated protein phosphorylationevents and almost totally inhibited FSS- or insulin-stimulated NOproduction. These data indicate that FSS and insulin regulate eNOSphosphorylation and NO production by overlapping mechanisms. This studysuggests one potential mechanism for the development of endothelialdysfunction in disease states with alterations in insulin regulationand increased TNF- levels.

  相似文献   

8.
The activation of nuclear factor-B(NF-B) is required for the induction of many of the adhesionmolecules and chemokines involved in the inflammatory leukocyterecruitment to the kidney. Here we studied the effects of NF-Binhibition on the machinery crucial for monocyte infiltration of theglomerulus during inflammation. In mesangial cells (MC), the proteaseinhibitors MG-132 and N--tosyl-L-lysine chloromethyl ketone or adenoviral overexpression of IB- prevented the complete IB- degradation following tumor necrosis factor- (TNF-) stimulation. This resulted in a marked inhibition ofTNF--induced expression of mRNA and protein for the immunoglobulinmolecules intracellular adhesion molecule-1 and vascular cell adhesionmolecule-1 and the chemokines growth-related oncogene-, monocytechemoattractant protein-1, interleukin-8, or fractalkine in MC.Finally, the inhibition of IB- degradation or IB-overexpression suppressed the chemokine-induced transendothelialmonocyte chemotaxis toward MC and the chemokine-triggered firm adhesionof monocytic cells to MC. The inhibition of NF-B by pharmacologicalintervention or gene transfer may present a multimodal approach tocontrol the machinery propagating inflammatory recruitment of monocytesduring glomerular disease.

  相似文献   

9.
This work demonstrated the constitutive expressionof peroxisome proliferator-activated receptor (PPAR)- and PPAR-in rat synovial fibroblasts at both mRNA and protein levels. A decrease in PPAR- expression induced by 10 µg/ml lipopolysaccharide (LPS) was observed, whereas PPAR- mRNA expression was not modified. 15-Deoxy-12,14-prostaglandin J2(15d-PGJ2) dose-dependently decreased LPS-induced cyclooxygenase (COX)-2 (80%) and inducible nitric oxide synthase (iNOS) mRNA expression (80%), whereas troglitazone (10 µM) only inhibited iNOS mRNA expression (50%). 15d-PGJ2 decreasedLPS-induced interleukin (IL)-1 (25%) and tumor necrosis factor(TNF)- (40%) expression. Interestingly, troglitazone stronglydecreased TNF- expression (50%) but had no significant effect onIL-1 expression. 15d-PGJ2 was able to inhibitDNA-binding activity of both nuclear factor (NF)-B and AP-1.Troglitazone had no effect on NF-B activation and was shown toincrease LPS-induced AP-1 activation. 15d-PGJ2 andtroglitazone modulated the expression of LPS-induced iNOS, COX-2, andproinflammatory cytokines differently. Indeed, troglitazone seems tospecifically target TNF- and iNOS pathways. These results offer newinsights in regard to the anti-inflammatory potential of the PPAR-ligands and underline different mechanisms of action of15d-PGJ2 and troglitazone in synovial fibroblasts.

  相似文献   

10.
The amiloride-sensitiveepithelial sodium channel (ENaC) plays a critical role in fluid andelectrolyte homeostasis and is composed of three homologous subunits:, , and . Only heteromultimeric channels made of ENaCare efficiently expressed at the cell surface, resulting in maximallyamiloride-sensitive currents. To study the relative importance ofvarious regions of the - and -subunits for the expression offunctional ENaC channels at the cell surface, we constructedhemagglutinin (HA)-tagged --chimeric subunits composed of -and -subunit regions and coexpressed them with HA-tagged - and-subunits in Xenopus laevis oocytes. The whole cellamiloride-sensitive sodium current (Iami) andsurface expression of channels were assessed in parallel using thetwo-electrode voltage-clamp technique and a chemiluminescence assay.Because coexpression of ENaC resulted in largerIami and surface expression compared withcoexpression of ENaC, we hypothesized that the -subunit ismore important for ENaC trafficking than the -subunit. Usingchimeras, we demonstrated that channel activity is largely preservedwhen the highly conserved second cysteine rich domains (CRD2) of the- and -subunits are exchanged. In contrast, exchanging the wholeextracellular loops of the - and the -subunits largely reducedENaC currents and ENaC expression in the membrane. This indicates thatthere is limited interchangeability between molecular regions of thetwo subunits. Interestingly, our chimera studies demonstrated that theintracellular termini and the two transmembrane domains of ENaC aremore important for the expression of functional channels at the cellsurface than the corresponding regions of ENaC.

  相似文献   

11.
In this study, we examined the roleof insulin in the control of vascular smooth muscle cell (VSMC)migration in the normal vasculature. Platelet-derived growth factor(PDGF) increased VSMC migration, which was inhibited by pretreatmentwith insulin in a dose-dependent manner. Insulin also caused a 60%decrease in PDGF-stimulated mitogen-activated protein kinase (MAPK)phosphorylation and activation. Insulin inhibition of MAPK wasaccompanied by a rapid induction of MAPK phosphatase (MKP-1), whichinactivates MAPKs by dephosphorylation. Pretreatment with inhibitors ofthe nitric oxide (NO)/cGMP pathway, blocked insulin-induced MKP-1 expression and restored PDGF-stimulated MAPK activation and migration. In contrast, adenoviral infection of VSMCs with MKP-1 or cGMP-dependent protein kinase I (cGK I), the downstream effector of cGMPsignaling, blocked the activation of MAPK and prevented PDGF-directedVSMC migration. Expression of antisense MKP-1 RNA prevented insulin's inhibitory effect and restored PDGF-directed VSMC migration and MAPKphosphorylation. We conclude that insulin inhibition of VSMC migrationmay be mediated in part by NO/cGMP/cGK I induction of MKP-1 andconsequent inactivation of MAPKs.

  相似文献   

12.
The APO-1/Fasligand (FasL) and tumor necrosis factor- (TNF-) are twofunctionally related molecules that induce apoptosis ofsusceptible cells. Although the two molecules have been reported toinduce apoptosis via distinct signaling pathways, we have shown that FasL can also upregulate the expression of TNF-, raising thepossibility that TNF- may be involved in FasL-inducedapoptosis. Because TNF- gene expression is under the controlof nuclear factor-B (NF-B), we investigated whether FasL caninduce NF-B activation and whether such activation plays a role inFasL-mediated cell death in macrophages. Gene transfection studiesusing NF-B-dependent reporter plasmid showed that FasL did activateNF-B promoter activity. Gel shift studies also revealed that FasLmobilized the p50/p65 heterodimeric form of NF-B. Inhibition ofNF-B by a specific NF-B inhibitor, caffeic acid phenylethylester, or by dominant expression of the NF-B inhibitory subunitIB caused an increase in FasL-induced apoptosis and areduction in TNF- expression. However, neutralization of TNF- byspecific anti-TNF- antibody had no effect on FasL-inducedapoptosis. These results indicate that FasL-mediated cell deathin macrophages is regulated through NF-B and is independent ofTNF- activation, suggesting the antiapoptotic role of NF-Band a separate death signaling pathway mediated by FasL.

  相似文献   

13.
In this study, weexamined the role of the nuclear factor-B (NF-B)-inducing kinase(NIK) in distinct signaling pathways leading to NF-B activation. Weshow that a dominant-negative form of NIK (dnNIK) delivered byadenoviral (Ad5dnNIK) vector inhibits Fas-induced IBphosphorylation and NF-B-dependent gene expression in HT-29 and HeLacells. Interleukin (IL)-1- and tumor necrosis factor-(TNF-)-induced NF-B activation and B-dependent gene expressionare inhibited in HeLa cells but not in Ad5dnNIK-infected HT-29 cells.Moreover, Ad5dnNIK failed to sensitize HT-29 cells to TNF--inducedapoptosis at an early time point. However, cytokine- andFas-induced signals to NF-B are finally integrated by the IBkinase (IKK) complex, since IB phosphorylation, NF-B DNAbinding activity, and IL-8 gene expression were strongly inhibited inHT-29 and HeLa cells overexpressing dominant-negative IKK(Ad5dnIKK). Our findings support the concept that cytokine signalingto NF-B is redundant at the level of NIK. In addition, this studydemonstrates for the first time the critical role of NIK and IKK inFas-induced NF-B signaling cascade.

  相似文献   

14.
Transforming growth factor-(TGF-) is known to induce -smooth muscle actin (-SMA) infibroblasts and is supposed to play a role in myofibroblastdifferentiation and tumor desmoplasia. Our objective was to elucidatethe impact of TGF-1 on -SMA expression in fibroblasts in athree-dimensional (3-D) vs. two-dimensional (2-D) environment. Inmonolayer culture, all fibroblast cultures responded in a similarfashion to TGF-1 with regard to -SMA expression. In fibroblastspheroids, -SMA expression was reduced and induction by TGF-1 washighly variable. This difference correlated with a differentialregulation in the TGF- receptor (TGFR) expression, in particularwith a reduction in TGF-RII in part of the fibroblast types. Ourdata indicate that 1) sensitivity to TGF-1-induced -SMA expression in a 3-D environment is fibroblast-type specific, 2) fibroblast type-independent regulatory mechanisms, suchas a general reduction/loss in TGF-RIII, contribute to an altered TGFR expression profile in spheroid compared with monolayer culture, and 3) fibroblast type-specific alterations in TGFR typesI and II determine the sensitivity to TGF-1-induced -SMAexpression in the 3-D setting. We suggest that fibroblasts that can beinduced by TGF-1 to produce -SMA in spheroid culture reflect a"premyofibroblastic" phenotype.

  相似文献   

15.
Treatment of cultured adult rat cardiacfibroblasts with interleukin-1 (IL-1) induces the induciblenitric oxide synthase (iNOS) expression, increases nitric oxide (NO)and cGMP production, and attenuates cAMP accumulation in response toisoproterenol by ~50%. Reduced cAMP accumulation is due to NOproduction: the effect is mimicked by NO donors and prevented byNG-monomethyl-L-arginine, an NOSinhibitor. Effects of NO are not restricted to the -adrenergicresponse; the response to forskolin is similarly diminished. NO donorsonly slightly (12%) decrease forskolin-stimulated adenylyl cyclase(AC) activity in cardiac fibroblast plasma membranes, suggesting thatthe main effect of NO is not a direct one on AC. An inhibitor ofsoluble guanylyl cyclase inhibits the effects of IL-1 and NO donors;inhibition of cGMP-dependent protein kinase is without effect.3-Isobutyl-1-methylxanthine, a nonspecific phosphodiesterase (PDE)inhibitor, and erythro-9-(2-hydroxy-3-nonyl)adenine, a specificinhibitor of the cGMP-stimulated PDE (PDE2), completely restore cAMPaccumulation in sodium nitroprusside-treated fibroblasts and largelyreverse the attenuated response in IL-1-treated fibroblasts. Although NO reportedly acts by reducing AC activity in some cells, incardiac fibroblasts NO production decreases cAMP accumulation largelyby the cGMP-mediated activation of PDE2.

  相似文献   

16.
In mammalian skeletal muscle,neuronal-type nitric oxide synthase (nNOS) is found to be enriched atneuromuscular endplates. Here we demonstrate the colocalization of thenicotinic acetylcholine receptor (nAChR, stained with -bungarotoxin)and nNOS (stained with a specific antibody) in murineC2C12 myotubes. However, coimmunoprecipitation experiments demonstrated no evidence for a direct protein-protein association between the nAChR and nNOS in C2C12myotubes. An antibody to the 1-subunit of the nAChR didnot coprecipitate nNOS, and an nNOS-specific antibody did notprecipitate the 1-subunit of the nAChR. Treatment ofmice with bacterial LPS downregulated the expression of nNOS inskeletal muscle, and treatment of C2C12 cellswith bacterial LPS and interferon- markedly decreased nNOS mRNA andprotein expression. In contrast, mRNA and protein of the nAChR (-,-, and -subunits) remained unchanged at the mRNA and proteinlevels. These data demonstrate that nNOS and the nAChR are colocalizedin murine skeletal muscle and C2C12 cells but differ in their expressional regulation.

  相似文献   

17.
Tumor necrosis factor- (TNF-), oneof the major inflammatory cytokines, is known to influence endothelialcell migration. In this study, we demonstrate that exposure of calfpulmonary artery endothelial cells to TNF- caused an increase in theformation of membrane protrusions and cell migration. Fluorescencemicroscopy revealed an increase in v3focal contacts but a decrease in 51 focalcontacts in TNF--treated cells. In addition, both cell-surface andtotal cellular expression of v3-integrinsincreased significantly, whereas the expression of51-integrins was unaltered. Only focalcontacts containing v3- but not51-integrins were present in membraneprotrusions of cells at the migration front. In contrast, robust focalcontacts containing 51-integrins were present in cells behind the migration front. A blocking antibody tov3, but not a blocking antibody to5-integrins, significantly inhibited TNF--inducedcell migration. These results indicate that in response to TNF-,endothelial cells may increase the activation and ligation ofv3 while decreasing the activation andligation of 51-integrins to facilitatecell migration, a process essential for vascular wound healing and angiogenesis.

  相似文献   

18.
Functional overload (OL)of the rat plantaris muscle by the removal of synergistic musclesinduces a shift in the myosin heavy chain (MHC) isoform expressionprofile from the fast isoforms toward the slow type I, or, -MHCisoform. Different length rat -MHC promoters were linked to afirefly luciferase reporter gene and injected in control and OLplantaris muscles. Reporter activities of 3,500, 914, 408, and215 bp promoters increased in response to 1 wk of OL. The smallest171 bp promoter was not responsive to OL. Mutation analyses ofputative regulatory elements within the 171 and 408 bp region wereperformed. The 408 bp promoters containing mutations of the e1,distal muscle CAT (MCAT; e2), CACC, or A/T-rich (GATA), were stillresponsive to OL. Only the proximal MCAT (e3) mutation abolished theOL response. Gel mobility shift assays revealed a significantly higherlevel of complex formation of the e3 probe with nuclear protein fromOL plantaris compared with control plantaris. These results suggestthat the e3 site functions as a putative OL-responsive element inthe rat -MHC gene promoter.

  相似文献   

19.
First published September 5, 2001;10.1152/ ajpcell.00256.2001.The expression and function of theendogenous inhibitor of cAMP-dependent protein kinase (PKI) inendothelial cells are unknown. In this study, overexpression of rabbitmuscle PKI gene into endothelial cells inhibited the cAMP-mediatedincrease and exacerbated thrombin-induced decrease in endothelialbarrier function. We investigated PKI expression in human pulmonaryartery (HPAECs), foreskin microvessel (HMECs), and brain microvesselendothelial cells (HBMECs). RT-PCR using specific primers for humanPKI, human PKI, and mouse PKI sequences detectedPKI and PKI mRNA in all three cell types. Sequencing and BLASTanalysis indicated that forward and reverse DNA strands for PKI andPKI were of >96% identity with database sequences. RNaseprotection assays showed protection of the 542 nucleotides in HBMEC andHPAEC PKI mRNA and 240 nucleotides in HBMEC, HPAEC, and HMEC PKImRNA. Western blot analysis indicated that PKI protein was detectedin all three cell types, whereas PKI was found in HBMECs. Insummary, endothelial cells from three different vascular beds expressPKI and PKI, which may be physiologically important inendothelial barrier function.

  相似文献   

20.
Protein kinase C (PKC) plays animportant role in activating store-operated Ca2+ channels(SOC) in human mesangial cells (MC). The present study was performed todetermine the specific isoform(s) of conventional PKC involved inactivating SOC in MC. Fura 2 fluorescence ratiometry showed that thethapsigargin-induced Ca2+ entry (equivalent to SOC) wassignificantly inhibited by 1 µM Gö-6976 (a specific PKC andI inhibitor) and PKC antisense treatment (2.5 nM for 24-48h). However, LY-379196 (PKC inhibitor) and2,2',3,3',4,4'-hexahydroxy-1,1'-biphenyl-6,6'-dimethanoldimethyl ether(HBDDE; PKC and  inhibitor) failed to affect thapsigargin-evoked activation of SOC. Single-channel analysis in the cell-attached configuration revealed that Gö-6976 and PKC antisensesignificantly depressed thapsigargin-induced activation of SOC.However, LY-379196 and HBDDE did not affect the SOC responses. Ininside-out patches, application of purified PKC or I, but notII or , significantly rescued SOC from postexcision rundown.Western blot analysis revealed that thapsigargin evoked a decrease incytosolic expression with a corresponding increase in membraneexpression of PKC and . However, the translocation from cytosolto membranes was not detected for PKCI or II. These resultssuggest that PKC participates in the intracellular signaling pathwayfor activating SOC upon release of intracellular stores ofCa2+.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号