首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mucosal mast cells (MMC) were isolated from the intestine of Nippostrongylus brasiliensis-infected rats and then activated with Ag or with anti-IgE in order to assess their metabolism of arachidonic acid to leukotriene (LT) C4, LTB4, and prostaglandin D2 (PGD2). After challenge of MMC preparations of 19 +/- 1% purity with five worm equivalents of N. brasiliensis Ag, the net formation of immunoreactive equivalents of LTC4, LTB4, and PGD2 was 58 +/- 8.3, 22 +/- 4.5, and 22 +/- 3.4 ng/10(6) mast cells, respectively (mean +/- SE, n = 7). When MMC preparations of 56 +/- 9% purity were activated by Ag, the net generation of immunoreactive equivalents of LTC4, LTB4, and PGD2/10(6) MMC was 107 +/- 15, 17 +/- 5.4, and 35 +/- 18 ng, respectively. These data indicate that the three eicosanoids originated from the MMC rather than from a contaminating cell. Analysis by reverse phase HPLC of the C-6 sulfidopeptide leukotrienes present in the supernatants of the activated MMC preparations of lower purity revealed LTC4, LTD4, and LTE4. In a higher purity MMC preparation only LTC4 was present, suggesting that other cell types in the mucosa are able to metabolize LTC4 to LTD4 and LTE4. The release of histamine and the generation of eicosanoids from intestinal MMC and from peritoneal cavity-derived connective tissue-type mast cells (CTMC) isolated from the same N. brasiliensis-infected rats were compared. When challenged with anti-IgE, these MMC released 165 +/- 41 ng of histamine/10(6) mast cells, and generated 29 +/- 3.6, 12 +/- 4.2, and 4.7 +/- 1.0 ng (mean +/- SE, n = 3) of immunoreactive equivalents of LTC4, LTB4, and PGD2/10(6) mast cells, respectively. In contrast, CTMC isolated from the same animals and activated with the same dose of anti-IgE released approximately 35 times more histamine (5700 +/- 650 ng/10(6) CTMC), generated 7.5 +/- 2.3 ng of PGD2/10(6) mast cells, and failed to release LTC4 or LTB4. These studies establish, that upon immunologic activation, rat MMC and CTMC differ in their quantitative release of histamine and in their metabolism of arachidonic acid to LTC4 and LTB4.  相似文献   

2.
We have examined the effects of cyclosporin A (CsA) and a series of CsA analogs that bind with decreasing affinity to cyclophilin, to evaluate the involvement of this protein in the release of preformed (histamine) and de novo synthesized (peptide leukotriene C4; LTC4) mediators of inflammatory reactions from human basophils. CsA (8 to 800 nM) concentration-dependently inhibited (5 to 60%) histamine release from peripheral blood basophils challenged with anti-IgE. CsA was more potent (92.6 +/- 1.8 vs 59.1 +/- 4.5%; p less than 0.001) and, at low concentrations, more effective when the channel-operated influx of Ca2+ was bypassed by the ionophore A23187 (IC40 = 24.1 +/- 3.9 vs 105.5 +/- 22.2 nM; p less than 0.05). CsA had no effect on the release of histamine caused by phorbol myristate and bryostatin 1 that activate different isoforms of protein kinase C. Inhibition of histamine release from basophils challenged with anti-IgE was not abolished by washing (three times) the cells before anti-IgE challenge. CsA also inhibited the de novo synthesis of LTC4 from basophils challenged with anti-IgE. The inhibitory effect of CsA was very rapid, and the drug, added from 1 to 10 min during the reaction, inhibited the ongoing release of histamine caused by anti-IgE and by A23187. The experiments with CsA analogs (CsG, CsC, CsD, and CsH) showed that CsH, which has an extremely low affinity for cyclophilin, has no effect on basophil mediator release. In addition, there is a significant correlation between the concentrations of CsA, G, C, and D that inhibited by 30% the histamine release induced by anti-IgE (r = 0.99; p less than 0.001) and by A23187 (r = 0.87; p less than 0.001) and their affinity for cyclophilin.  相似文献   

3.
Retinoid-induced inhibition of eosinophil LTC4 production   总被引:2,自引:0,他引:2  
Naturally occurring and synthetic retinoids demonstrate a marked antiinflammatory effect when employed in such disorders as acne and psoriasis. This effect may result in part from their inhibition of release of potent mediators (e.g. eicosanoids) by inflammatory cells. In this study, we examined the effect of eight retinoids (tretinoin, isotretinoin, retinol, retinal, acitretin, retinyl palmitate, etretinate, Ro 15-0778) on the release of leukotriene (LT)C4, an important lipid mediator generated by eosinophils. Tretinoin, isotretinoin, retinol, retinal, and acitretin at 10(-5) M or 10(-4) M concentrations inhibited LTC4 release by A23187-stimulated horse eosinophils in vitro; 10(-4) M retinyl palmitate was also inhibitory. However, 10(-5) M etretinate augmented A23187-induced LTC4 release, and the arotinoid Ro 15-0778 had no effect on LTC4 production. These data suggest that selected retinoids may have potential use in the reduction of LTC4 generation by eosinophils. This inhibition could be beneficial in the therapy of such diseases as bronchial asthma in which release of LTC4 may be involved in the inflammatory process.  相似文献   

4.
The effects of antiinflammatory steroids on arachidonic acid metabolite release from human lung fragments were analyzed. Incubation of lung fragments for 24 hr with 10(-6) M dexamethasone inhibited the net release of the prostacyclin metabolite 6-keto-PGF1 alpha, PGE2, and PGF2 alpha from lung fragments stimulated with anti-IgE but failed to inhibit the anti-IgE-induced release of PGD2, TXB2, and iLTC4. The IC50 of dexamethasone for inhibition of both spontaneous and anti-IgE-induced 6-keto-PGF1 alpha release was approximately 2 X 10(-8) M, and a 6-hr preincubation with the drug was required for 50% inhibition of prostaglandin release. Other agents were tested for activity in stimulating arachidonic acid metabolite release from human lung fragments. FMLP (fmet-leu-phe) stimulated the release of all metabolites tested (6-keto-PGF1 alpha, PGD2, PGE2, PGF2 alpha, TXB2, iLTC4); platelet-activating factor (PAF), but not lysoPAF, stimulated the release of PGD2, TXB2, and iLTC4. In contrast to the case with anti-IgE, where dexamethasone failed to inhibit net PGD2 and TXB2 release, the steroid inhibited the release of these metabolites stimulated by both FMLP and PAF. The steroid inhibited iLTC4 release induced by the highest concentration of PAF (10(-6)M) but did not inhibit iLTC4 release stimulated by either 10(-7) M PAF, FMLP, or anti-IgE. Because neither FMLP nor PAF caused the release of PGD2 or TXB2 from purified human lung mast cells, and because they also failed to induce histamine release from lung fragments, it is suggested that these stimuli produce PGD2 and TXB2 release in lung fragments through an action on a cell distinct from the mast cell. This suggestion is supported by the selective inhibition of the release of these arachidonic acid metabolites by dexamethasone. We suggest that the inhibitory action of steroids on arachidonic acid metabolite in human lung fragments contributes to their therapeutic efficacy in pulmonary diseases.  相似文献   

5.
The pharmacological actions of three leukotriene D4 (LTD4) receptor antagonists, FPL-55712, L-648,051, and L-649,923, and a novel inhibitor of leukotriene biosynthesis, L-651,896, have been investigated on isolated human tracheal smooth muscle. In the order of potency L-648,051 greater than FPL-55712 greater than L-649,923, these agents antagonized contractions to LTD4 and produced parallel rightward shifts in the dose-response curves. Mean -log KB values against LTD4 were 6.9 +/- 0.1, 6.5 +/- 0.3, and 6.0 +/- 0.1 for L-648,051, FPL-55712, and L-649,923, respectively. FPL-55712 also antagonized contractions to LTC4 (-log KB value, 6.4 +/- 0.3) and this activity was not decreased by the gamma-glutamyl transpeptidase inhibitor, L-serine borate. In the presence of 1 x 10(-7) M atropine, 7 x 10(-6) M mepyramine, and 1.4 x 10(-6) M indomethacin, L-648,051 at 2 x 10(-5) and 2 x 10(-6) M produced complete and partial blockade, respectively, of the contraction to goat anti-IgE. L-649,923 and FPL-55712 produced partial but significant inhibition at 2 x 10(-5) M, whereas the 5-lipoxygenase inhibitor, L-651,896, produced almost complete inhibition at 3.5 and 35 x 10(-6) M. L-Serine borate (15 mM) did not alter the the activity of FPL-55712 versus anti-IgE. These findings indicate that LTD4 receptors mediate contraction of human trachea to exogenously applied and endogenously (anti-IgE) released leukotrienes. LTD4 antagonists, such as L-648,051, may be useful in assessing the role of leukotrienes in respiratory disease.  相似文献   

6.
A mouse spleen-derived mast cell line (PT-18) was employed to examine the mechanisms of adenosine 3':5'-monophosphate (cAMP)-mediated inhibition of antigen-induced lipid mediator biosynthesis. Specifically, we tested the hypothesis that increasing cAMP in mast cells inhibits lipid mediator biosynthesis by a mechanism independent of effects on histamine release (degranulation) or changes in cytosolic calcium concentration. Forskolin inhibited antigen-induced prostaglandin D2 (PGD2), leukotriene C4 (LTC4), and leukotriene B4 (LTB4) production by 30-50%. In contrast, forskolin had no inhibitory effect on antigen-induced increases in cytosolic calcium concentration, as monitored by the calcium indicator fura-2, or histamine release from the cells. The combination of the phosphodiesterase inhibitor isobutylmethylxanthine with forskolin inhibited the antigen-induced production of PGD2 and LTC4 by 90-100% and histamine release by about 60%. These responses were accompanied by a virtual abolition of the antigen-induced increase in cytosolic calcium. To test further the hypothesis that increasing cAMP can lead to inhibition of lipid mediator biosynthesis in the absence of effects on cytosolic calcium, we employed the calcium ionophores A23187 and ionomycin. Forskolin alone or in combination with isobutylmethylxanthine had no effect on ionophore-induced increases in cytosolic calcium but effectively inhibited leukotriene biosynthesis. In addition, increasing cyclic AMP led to an inhibition of ionophore-induced production of platelet-activating factor and liberation of arachidonic acid. These data suggest that a relatively modest increase in cAMP-dependent protein kinase activity in mast cells leads to inhibition of the lipase-catalyzed cleavage of arachidonic acid from membrane phospholipids in the absence of measurable effects on either histamine release or changes in cytosolic calcium concentration. This effect results in a selective inhibition of the biosynthesis of lipid mediators including LTC4, LTB4, PGD2, and platelet-activating factor.  相似文献   

7.
Resident peritoneal macrophages incubated with 3.5 x 10(-7) M Calcium ionophore A23187 in tumor cell growth medium (TGM) release large amounts of leukotriene (LT)E4 and an unidentified 5-lipoxygenase product, whereas A23187-stimulated macrophages produce in serum free medium LTD4, predominately. LTC4 and 3H-LTC4 incubated for 20 min at 37 degree C in serum containing TGM, convert into LTE4 and 3H-LTE4, respectively. Thus, LTC4 released from A23187-stimulated macrophages is an intermediate in TGM which rapidly converts into LTE4, probably because of the presence of gamma-glutamyl transpeptidase and cystenylglycinase in TGM. Macrophages express antitumor cytostatic activity towards P815 cells (49-53%) in a cocultured ratio (macrophage: tumor cell) 2:1 when stimulated with 3.5 x 10(-7) M A23187 in TGM. The 5-lipoxygenase inhibitor AA861 reverses the cytostatic activity by 42-58% and it inhibits also the formation of A23187-induced 5-lipoxygenase products from macrophages. Restoration of 38% macrophage- antitumor cytostatic activity by exogenous LTC4 (10(-8) M) indicates that LTC4 is an essential 5-lipoxygenase intermediate in the pathway of required signals underlying A23187-induced macrophage antitumor cytostatic activity. Macrophages not stimulated by A23187 do not express cytostatic activity in the presence of LTC4. This implies that besides LTC4, increased cytosolic [Ca2+] is required for A23187 induction of macrophage cytostatic activity.  相似文献   

8.
5'-N-ethylcarboxamideadenosine (NECA) greater than 2-chloroadenosine greater than adenosine greater than N6-(R-phenyl-isopropyl)-adenosine (R-PIA) inhibited in vitro anti-IgE-induced histamine and peptide leukotriene C4 (LTC4) release from human basophils in a concentration-dependent fashion. Micromolar concentrations of adenosine, NECA and R-PIA potentiated the anti-IgE-stimulated release of histamine and LTC4 from human lung parenchymal mast cells. Submillimolar concentrations of adenosine, NECA and R-PIA inhibited in a concentration dependent manner the release of histamine and prostaglandin D2 (PGD2) from skin mast cells challenged with anti-IgE. These results demonstrate marked heterogeneity of the modulatory effect exerted by adenosine on mediator release from human basophils and mast cells.  相似文献   

9.
The synthesis and metabolism of leukotrienes (LTs) by endothelial cells was investigated using reverse-phase high-performance liquid chromatography. Cells were incubated with [14C]arachidonic acid. LTA4 or [3H]LTA4 and stimulated with ionophore A23187. The cells did not synthesize leukotrienes from [14C]arachidonic acid. LTA4 and [3H]LTA4 were converted to LTC4, LTD4, LTE4 and 5,12-diHETE. Endothelial cells metabolized [3H]LTC4 to [3H]LTD4 and [3H]LTE4. The metabolism of [3H]LTC4 was inhibited by L-serine-borate complex, phenobarbital and acivicin in a concentration-related manner, with maximal inhibition occurring at a concentration of 0.1 M, 0.01 M and 0.01 M, respectively. LTC4, LTB4 and LTD4 stimulated the synthesis of prostacyclin, measured by radioimmunoassays as 6-keto-PGF1 alpha. The stimulation by LTC4 was greater than that by LTD4 or LTB4. LTE4, 14,15-LTC4 and 14,15-LTD4 failed to stimulate the synthesis of prostacyclin. LTD4 and LTB4 also stimulated the release of PGE2, whereas LTC4 did not. Serine-borate and phenobarbital inhibited LTC4-stimulated synthesis of prostacyclin in a concentration-related manner. They also inhibited the release of prostacyclin by histamine, A23187 and arachidonic acid. Acivicin had no effect on the release of prostacyclin by LTC4, histamine or A23187. Furthermore, FPL-55712, an LT receptor antagonist, inhibited LTC4-stimulated prostacyclin synthesis but had no effect on histamine-stimulated release of prostacyclin or PGE2. Indomethacin inhibited both LTC4- and histamine-stimulated release. The results show that (a) endothelial cells metabolize LTA4, LTC4 and LTD4 but do not synthesize LTs from arachidonic acid; (b) LTC4 act directly at the leukotriene receptor to stimulation prostacyclin synthesis; (c) the presence of the glutathione moiety at the C-6 position of the eicosatetraenoic acid skeleton is necessary for leukotriene stimulation of prostacyclin release; and (d) the metabolism of LTC4 to LTD4 and LTE4 does not appear to alter the ability of LTC4 to stimulate the synthesis of PGI2.  相似文献   

10.
Airway damage secondary to eosinophil activation is thought to contribute to the development of asthma. Using the fluorescent dye FURA-2 to measure the concentration of cytosolic calcium, we found that supernatants from anti-IgE-stimulated human lung mast cells increased cytosolic calcium in human eosinophils. We then examined the major mast cell mediators (histamine, PGD2, platelet-activating factor (PAF), eosinophil chemotactic factor of anaphylaxis (ECF-A), leukotriene (LT)C4 and LTB4) for their ability to increase cytosolic calcium in eosinophils. We found that both PAF (5 x 10(-9) to 5 x 10(-6) M) and PGD2 (two of five donors responsive at 1 x 10(-9) M) were potent stimuli for calcium mobilization. LTB4 (10(-8), 10(-7) M) and histamine were also active, although higher concentrations of histamine were required to see a response (3 x 10(-7) to 10(-5) M). LTC4, val-ECF-A, and ala-ECF-A were inactive. The effects of PGD2 and histamine were specific for eosinophils, although LTB4 and PAF increased calcium in both neutrophils and eosinophils. The histamine-induced increase in intracellular calcium was not blocked by the H1 or H2 antagonists pyrilamine or cimetidine (10(-4) M), respectively; however, the response to 10(-6) M histamine was completely blocked by the specific H3 antagonist thioperamide (10(-6) M). To evaluate the relative contribution of these stimulatory mast cell mediators on the calcium mobilizing activity in supernatants from anti-IgE-stimulated human lung mast cell (HLMC), we examined the effect of supernatants from HLMC pretreated with indomethacin and/or the 5-lipoxygenase pathway inhibitor MK886. These supernatants were added to FURA-2-loaded eosinophils that had been preincubated with thioperamide and/or the PAF antagonist WEB-2086. We found that the increase in eosinophil calcium in response to supernatants from anti-IgE-stimulated-HLMC was totally inhibited only when the mast cells were challenged in the presence of indomethacin and MK886, and the eosinophils were preincubated with thioperamide. WEB-2086 had little effect. When we examined the effect of these mediators on eosinophil secretory function, we found that PGD2 (not histamine) primed eosinophils for enhanced release of LTC4 in response to the calcium ionophore A23187. We conclude that the activation of eosinophils by PGD2 and other mast cell products may contribute to airways inflammation that is characteristic of asthma.  相似文献   

11.
FK-506, a macrolide that binds with high affinity to a specific binding protein, and the structurally related macrolide rapamycin (RAP) were compared to cyclosporin A (CsA) for their effects on the release of preformed (histamine) and de novo synthesized (peptide leukotriene C4) inflammatory mediators from human basophils. FK-506 (1 to 300 nM) concentration dependently inhibited histamine release from basophils activated by Der p I Ag, anti-IgE, or compound A23187. FK-506 was more potent than CsA when basophils were challenged with Ag (IC50 = 25.5 +/- 9.5 vs 834.3 +/- 79.8 nM; p less than 0.001), anti-IgE (IC50 = 9.4 +/- 1.7 vs 441.3 +/- 106.7 nM; p less than 0.001), and A23187 (IC50 = 4.1 +/- 0.9 vs 36.7 +/- 3.8 nM; p less than 0.001). The maximal inhibitory effect of FK-506 was higher than that caused by CsA when basophils were activated by Der p I (80.0 +/- 3.6 vs 49.5 +/- 4.7%; p less than 0.001) and anti-IgE (90.4 +/- 1.8 vs 62.3 +/- 2.9%; p less than 0.001). FK-506 had little or no effect on the release of histamine caused by f-met peptide, phorbol myristate (12-tetradecanoyloxy-13-acetoxy-phorbol), and bryostatin 1. RAP (30 to 1000 nM) selectively inhibited only IgE-mediated histamine release from basophils, although it had no effect on mediator release caused by f-met peptide, A23187, 12-tetradecanoyloxy-13-acetoxy-phorbol, and bryostatin 1. FK-506 also inhibited the de novo synthesis of sulfidopeptide leukotriene C4 from basophils challenged with anti-IgE. Low concentrations of FK-506 and CsA synergistically inhibited the release of mediators from basophils induced by anti-IgE or compound A23187. IL-3 (3 and 10 ng/ml), but not IL-1 beta (10 and 100 ng/ml), reversed the inhibitory effect of both FK-506 and CsA on basophils challenged with anti-IgE or A23187. RAP was a competitive antagonist of the inhibitory effect of FK-506 on A23187-induced histamine release from basophils with a dissociation constant of about 30 nM. In contrast, RAP did not modify the inhibitory effect of CsA on A23187-induced histamine release. These data indicate that FK-506 is a potent antiinflammatory agent that acts on human basophils presumably by binding to a receptor site (i.e., FK-506 binding protein).  相似文献   

12.
Canine tracheal epithelial cells freshly isolated from mongrel dog trachea were used to study relationships between arachidonic acid metabolism and chloride ion movement. High performance liquid chromatography (HPLC) analysis of the cell incubation media after the addition of A23187 showed the presence of prostaglandin H synthase and lipoxygenase-derived metabolites. The major prostaglandin H synthase metabolite identified by HPLC, gas chromatography, and mass spectrometry was prostaglandin (PG) D2. The major lipoxygenase metabolites were leukotriene (LT) C4 and LTB4. LTB4 was identified by HPLC, UV spectroscopy, and gas chromatography. Straight phase HPLC of the methyl esters indicated only a minor formation of LTB4 isomers. LTC4 was identified by HPLC, UV spectroscopy, and conversion to LTD4 by gamma-glutamyl transpeptidase. Analysis by radioimmunoassays indicated approximately 1-2 ng of LTB4 and peptide LT formed by 10(6) cells after A23187 stimulation. The addition of ionophore A23187 caused a rapid release of arachidonic acid metabolites which was completed within 5 min of stimulation. Cl- secretion was measured in parallel studies of excised tracheas in Ussing chambers. Cl- secretion occurred at 2-3 min after the addition of ionophore, and the most rapid change occurred with the highest PGD2 concentrations. Indomethacin produced a concentration-dependent inhibition of PGD2 formation and Cl- movement. The addition of PGE2, PGD2, and PGH2 effectively stimulated Cl- secretion. LTC4 also stimulated Cl- secretion, but the stimulation was inhibited by indomethacin. These results indicate that canine tracheal epithelial cells metabolize arachidonic acid via both prostaglandin H synthase and lipoxygenase enzymes. It appears that endogenous PGD2 formation is the important variable controlling the Cl- ion movement in canine trachea.  相似文献   

13.
The gene product of the steel locus of the mouse represents a growth factor for murine mast cells and a ligand for the c-kit proto-oncogene receptor, a member of the tyrosine kinase receptor class of oncogenes (for review, see O. N. Witte. 1990. Cell 63:5). We have studied the effect of the human recombinant c-kit receptor ligand stem cell factor (rhSCF) on the release of inflammatory mediators from human skin mast cells and peripheral blood basophils and compared its activity to that of rhIL-3, rhSCF (1 ng/ml to 1 microgram/ml) activated the release of histamine and PGD2 from mast cells isolated from human skin. Analysis by digital video microscopy indicated that purified human skin mast cells (84 +/- 5% pure) responded to rhSCF (0.1 to 1 microgram/ml) challenge with a rapid, sustained rise in intracellular Ca2+ levels that was accompanied by secretion of histamine. A brief preincubation (10 min) of mast cells with rhSCF (0.1 pg/ml to 1 ng/ml) significantly enhanced (100 +/- 35%) the release of histamine induced by anti-IgE (3 micrograms/ml), but was much less effective on IgE-mediated release of PGD2. In contrast, a short term incubation with rhSCF did not potentiate the secretion of histamine activated by substance P (5 microM). A 24-h incubation of mast cells with rhSCF did not affect the release of mediators induced by anti-IgE (3 micrograms/ml), probably due to receptor desensitization, rhSCF (1 ng/ml to 3 micrograms/ml) neither caused release of histamine or leukotriene C4 (LTC4) release from leukocytes of 14 donors, nor induced a rise in intracellular Ca2+ levels in purified (greater than 70%) basophils. Brief preincubation (10 min) of leukocytes with rhSCF (1 ng/ml to 3 micrograms/ml) caused an enhancement (69 +/- 11%) of anti-IgE-induced release of histamine that was significant at concentrations as low as 3 ng/ml (p less than 0.05), whereas it appeared less effective in potentiating IgE-mediated LTC4 release. In contrast, a prolonged incubation (24 h) with rhSCF (0.1 pg/ml to 100 ng/ml) did not enhance the release of histamine or LTC4 induced by anti-IgE (0.1 microgram/ml), whereas rhIL-3 (3 ng/ml) significantly potentiated the release of both mediators.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Human neutrophil-derived histamine-releasing activity (HRA-N) was partially purified and found to contain a heat-stable 1400 to 2300-Da fraction which caused human basophils and rat basophil leukemia cells (RBL) to degranulate. The capacity of HRA-N to activate basophils was not related to the gender or atopic status of the basophil donor, but was related to anti-IgE responsiveness. Several lines of evidence suggest that HRA-N and anti-IgE induce histamine release through distinctly different mechanisms: 1) the time course of HRA-N- and anti-IgE-induced RBL histamine release are different; 2) HRA-N causes histamine release from RBL with and without surface-bound IgE; 3) lactic acid stripping of IgE from human basophils reduces anti-IgE-induced histamine release, but has no consistent effect on HRA-N-induced histamine release; and 4) passive sensitization of lactic acid-stripped basophils with IgE restores anti-IgE-induced histamine release but not HRA-N-induced histamine release. Several histamine-releasing factors (HRF) were compared with HRA-N. Human nasal HRF (HRF-NW, crude and partially purified fractions of 15 to 30, 3.5 to 9, and less than 3.5 kDa), like HRA-N, caused equal histamine release from both native and IgE-sensitized RBL. However, only the 15- to 30-kDa fraction caused histamine release from human basophils in the doses tested. Mononuclear cell HRF (HRF-M, crude and a partially purified 25 kDa Mr fraction) and platelet HRF (HRF-P, crude preparation) failed to cause histamine release from either native or IgE-sensitized RBL but caused 30 +/- 5.5% and 20 +/- 10% net histamine release from human basophils, respectively. HRA-N and HRF-NW were both stable to boiling. These data, taken together, suggest that the capacity of HRA-N to induce RBL and human basophil histamine release and of HRF-NW to stimulate RBL histamine release is independent of IgE. The data further suggest that HRA-N and HRF-NW can be distinguished by size, and that they both differ from mononuclear cell HRF and platelet HRF. Thus, it appears that inflammatory cells generate a family of distinct HRF.  相似文献   

15.
We studied the role of naturally occurring eosinophil chemotactic factors on leukotriene (LT)C4 production from highly purified (87.1 +/- 2.4%) normodense eosinophils. Platelet activating factor (PAF) directly induced LTC4 production from eosinophils in a dose (10(-9) to 10(-5) M) and a time-dependent manner. PAF (10(-5) M) induced 0.74 +/- 0.08 ng of LTC4 production/10(6) eosinophils. However, lyso-PAF, eosinophil chemotactic factor of anaphylaxis, and LTB4 failed to induce LTC4 production within the tested range. Furthermore, the pre-incubation of eosinophils with 5 micrograms/ml of cytochalasin B did not alter the chemotactic factor-induced LTC4 production. When eosinophils were stimulated by the submaximal concentration (1 microgram/ml) of calcium ionophore A23187, the pre-incubation of eosinophils with 10(-6) M or 10(-5) M of PAF, or 10(-5) M of eosinophil chemotactic factor of anaphylaxis significantly enhanced LTC4 production up to 163.9 +/- 17.5% (p less than 0.05), 279.2 +/- 32.9% (p less than 0.01) and 165.2 +/- 21.2% (p less than 0.05) of the control, respectively. However, the pre-incubation with lyso-PAF or LTB4 failed to enhance A23187-induced LTC4 production. The pre-incubation of eosinophils with phosphatidyl serine also failed to enhance A23187-induced LTC4 production. However, the direct stimulation of protein kinase C by PMA enhanced the submaximal concentration of A23187-induced LTC4 production from eosinophils up to 179.5 +/- 20.9% (p less than 0.05) of the control. Our findings indicate that PAF and ECF-A work not only as chemotactic factors but also induce a functionally active state of eosinophils probably through their post-receptor mechanisms, and contribute to the inflammatory processes.  相似文献   

16.
Basic characteristics of human lung mast cell desensitization   总被引:1,自引:0,他引:1  
Human lung parenchymal mast cells displayed both specific and nonspecific desensitization. The kinetics of both release and desensitization were approximately equal to 3 times faster than human basophils, but a similar relationship between release and desensitization suggests similar biochemistries in basophils and mast cells. Arachidonic acid metabolite (PGD2 and LTC4) release was slower to desensitize (t1/2 of 8 min) than histamine release (t1/2 of 3 min), the ratio of which is similar to the ratio observed in basophils. Ionophore A23187-induced release was unaffected by desensitization to anti-IgE antibody, and calcium-45 uptake was inhibited by desensitization, suggesting that desensitization inhibits the early post-cross-linking "influx" of calcium that is necessary for mediator release in mast cells. In contrast to the above similarities in basophil and mast cell desensitization, mast cell desensitization, unlike that of basophils was not inhibited by diisopropylfluorophosphate.  相似文献   

17.
We examined the role of Ca2+ mobilization in prostaglandin (PG) D2 generation and histamine release induced by A23187 from rat peritoneal mast cells. Both PGD2 generation and histamine release accompanied with 45Ca uptake were observed above 0.1 microM A23187. Although an increase of PGD2 generation was not exactly correlated with that of Ca2+ uptake, histamine release occurred in proportion to Ca2+ uptake. In contrast to PGD2 generation, below 0.1 microM A23187, about 20% of the total histamine was released without Ca2+ uptake and this response was inhibited by 10 microM 8-(N,N-diethylamino)-octyl-3,4,5-trimethoxybenzoate hydrochloride (TMB-8), which is an intracellular Ca2+ antagonist. However, TMB-8 had no effect on PGD2 generation. These results suggest that Ca2+ dependency of histamine release is clearly different from that of PGD2 generation, and that histamine release is induced by not only Ca2+ uptake but also intracellular Ca2+ mobilization.  相似文献   

18.
Mouse E-mast cells were differentiated and grown by culturing bone marrow cells in medium containing WEHI-3-conditioned medium. These cells possess surface receptors to the following agglutinins: peanut (PNA), concanavalin A (Con A), and soybean (Sb). One to 200 micrograms of PNA/10(6) E-mast cells selectively stimulated the generation of leukotriene C4 (LTC4) in the absence of beta-hexosaminidase release. Exposure of 10(6) E-mast cells to 1 to 200 micrograms Con A or Sb had no effect either on preformed mediator release or on the generation of leukotrienes. LTC4 was quantitated by integrated UV absorbance after resolution by reverse phase high pressure liquid chromatography. The optimum release of LTC4 (13.2 ng/10(6) cells) was achieved by 50 micrograms of PNA/10(6) cells. The response is characterized by the inhibition by excess amounts of PNA. The amount of LTC4 generated during optimal PNA stimulation is lower than the amount produced after stimulation by IgE-antigen or by calcium ionophore A23187 (19.8 ng and 148 ng, respectively). The release of LTC4 began within 5 min after PNA stimulation, and reached a plateau within 45 to 60 min at 37 degrees C. This kinetic pattern is similar to that observed after calcium ionophore A23187 stimulation of these cells. The results suggest that PNA is capable of selectively activating the 5-lipoxygenation of arachidonic acid without affecting beta-hexosaminidase secretion. Apparently, separate biochemical events may serve to mobilize each class of mediators.  相似文献   

19.
Addition of 1 microM dexamethasone (DM) to bone marrow-derived mast cells (BMMC) induced a time-dependent increase in cell histamine content. The latter reached a plateau of 2.5 micrograms/1 x 10(6) cells after 11 days in culture, compared with 100 ng/1 x 10(6) for untreated BMMC. Steroids, such as beta-estradiol, androsterone, and testosterone (1 microM), did not alter the histamine content of BMMC, whereas progesterone (1 microM) induced a moderate increase. Other glucocorticosteroids also enhanced histamine content, suggesting that the observed increase was specific for glucocorticosteroid. Treatment of BMMC with 1 microM DM for 14 days inhibited the Ag-induced, IgE-mediated release of histamine, beta-hexosaminidase, platelet-activating factor-acether, LTB4, and LTC4 by 65 +/- 3%, 66 +/- 1%, 93 +/- 3%, 66 +/- 2%, and 74 +/- 10%, respectively (mean +/- 1 SD, n = 3). In contrast with untreated cells which produce less than 2 ng/1 x 10(6) cells PGD2 after Ag challenge, DM-treated BMMC generated 16.8 +/- 0.3 ng/1 x 10(6) cells PGD2. Moreover, most of DM-treated BMMC became Alcian blue+/safranin+ and by ultrastructure, exhibited numerous cytoplasmic granules filled with abundant and uniform electron-dense matrix. The present results indicate that DM-treated BMMC exhibit biochemical and functional properties different from immature untreated cells, suggesting that a maturation-like process occurred in vitro during DM treatment.  相似文献   

20.
Synthesis and release of leukotriene C4 by human eosinophils   总被引:13,自引:0,他引:13  
When human peripheral blood eosinophils isolated to 92.5% +/- 6.9 purity were stimulated with either the calcium ionophore A23187 or N-formyl-L-methionyl-L-leucyl-L-phenylalanine (FMLP), immunoreactive leukotriene C4 (LTC4) was initially localized intracellularly and was subsequently released to the external medium in kinetically distinguishable steps. Eosinophils were stimulated with 2.5 microM A23187 in the presence of 20 mM L-serine, a hypochlorous acid scavenger that prevents the oxidative metabolism of sulfidopeptide leukotrienes. Total production of immunoreactive LTC4, the sum of intra- and extracellular LTC4, was complete within 5 to 10 min. At 5, 10, and 30 min, 65.9% +/- 15.2, 42.3% +/- 24.3, and 5.5% +/- 3.9, respectively, of the total amount of LTC4 measured remained intracellular as detected after the media and cells were separated and the latter was extracted with methanol. The time course for the intracellular synthesis and extracellular release of immunoreactive LTC4 from eosinophils pretreated with 5 micrograms/ml cytochalasin B and stimulated with 0.5 microM FMLP was like that obtained with ionophore, although the total LTC4 production was only approximately 10%. The identity of the intracellular LTC4 was confirmed by elution with reverse-phase high pressure liquid chromatography followed by scanning UV spectroscopy, radioimmunoassay, and bioassay. Eosinophils that were stimulated with A23187 in the absence of L-serine metabolized newly synthesized LTC4 to 6-trans-LTB4 diastereoisomers and subclass-specific diastereoisomeric sulfoxides that were identified only in the extracellular medium. Thus the response of purified eosinophils to two different stimuli demonstrates a transient intracellular accumulation of biologically active LTC4, the distinct extracellular release, and the apparent limitation of oxidative metabolism to the extracellular location.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号