首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J Sun  Y Liu  A Aballay 《EMBO reports》2012,13(9):855-860
The increased demand on protein folding in the endoplasmic reticulum (ER) during bacterial infection activates the unfolded protein response (UPR). OCTR-1-a G protein-coupled catecholamine receptor expressed in neurons-suppresses innate immunity by downregulating a non-canonical UPR pathway and the p38 MAPK pathway. Here, we show that OCTR-1 also regulates the canonical UPR pathway, which is controlled by XBP-1, at the organismal level. Importantly, XBP-1 is not under OCTR-1 control during development, only at the adult stage. Our results indicate that the nervous system temporally controls the UPR pathway to maintain ER homeostasis during development and immune activation.  相似文献   

2.
3.
ER stress signaling by regulated splicing: IRE1/HAC1/XBP1   总被引:12,自引:0,他引:12  
  相似文献   

4.
过量表达内质网小分子热激蛋白增强番茄的衣霉素抗性   总被引:4,自引:0,他引:4  
真核细胞内质网腔内未折叠蛋白的过度积累会引起内质网胁迫(ER胁迫),继而激活未折叠蛋白应答(UPR)信号途径,诱导内质网定位的分子伴侣的大量表达(如BiP和calnexin等)。本工作将CaMV35S启动子驱动的内质网小分子热激蛋白基因(ER-sHSP)导入番茄,发现ER-sHSP的过量表达提高了转基因番茄整株对衣霉素的抗性。衣霉素处理使未转基因番茄中BiP和calnexin基因的表达迅速升高,转基因番茄中这两个基因的表达也有增加,但表达强度明显低于未转基因番茄。说明ER-sHSP能够减轻ER胁迫,并可能参与UPR信号转导途径。  相似文献   

5.
6.
The accumulation of unfolded proteins in the endoplasmic reticulum (ER) triggers the unfolded protein response (UPR), a stress signaling pathway. The UPR coordinates the induction of ER chaperones with decreased protein synthesis and growth arrest in G1 phase of the cell cycle. However, the molecular mechanism underlying UPR-induced G1 cell cycle arrest remains largely unknown. Here we report that activation of the UPR response by tunicamycin (TM), an ER stress inducer, leads to accumulation of p27 and G1 cell cycle arrest in melanoma cells. This accumulation of p27 is due to the inhibition on its polyubiquitination and subsequent degradation upon TM treatment. Correlated with p27 stabilization, the levels of Skp2, an E3 ligase for p27, are decreased in response to TM treatment. More importantly, knockdown of p27 greatly reduces TM-induced G1 cell cycle arrest. Taken together, these data implicate p27 as a critical mediator of ER stress-induced growth arrest.  相似文献   

7.
8.
In this report, we show that zinc is required for endoplasmic reticulum function in Saccharomyces cerevisiae. Zinc deficiency in this yeast induces the unfolded protein response (UPR), a system normally activated by unfolded ER proteins. Msc2, a member of the cation diffusion facilitator (CDF) family of metal ion transporters, was previously implicated in zinc homeostasis. Our results indicate that Msc2 is one route of zinc entry into the ER. Msc2 localizes to the ER when expressed at normal levels. UPR induction in low zinc is exacerbated in an msc2 mutant. Genetic and biochemical evidence indicates that this UPR induction is due to genuine ER dysfunction. Notably, we found that ER-associated protein degradation is defective in zinc-limited msc2 mutants. We also show that the vacuolar CDF proteins Zrc1 and Cot1 are other pathways of ER zinc acquisition. Finally, zinc deficiency up-regulates the mammalian ER stress response indicating a conserved requirement for zinc in ER function among eukaryotes.  相似文献   

9.
《Fungal Biology Reviews》2014,28(2-3):29-35
The gateway to the secretory pathway is the endoplasmic reticulum (ER), an organelle that is responsible for the accurate folding, post-translational modification and final assembly of up to a third of the cellular proteome. When secretion levels are high, errors in protein biogenesis can lead to the accumulation of abnormally folded proteins, which threaten ER homeostasis. The unfolded protein response (UPR) is an adaptive signaling pathway that counters a buildup in misfolded and unfolded proteins by increasing the expression of genes that support ER protein folding capacity. Fungi, like other eukaryotic cells that are specialized for secretion, rely upon the UPR to buffer ER stress caused by fluctuations in secretory demand. However, emerging evidence is also implicating the UPR as a central regulator of fungal pathogenesis. In this review, we discuss how diverse fungal pathogens have adapted ER stress response pathways to support the expression of virulence-related traits that are necessary in the host environment.  相似文献   

10.
Calreticulin is a lectin chaperone essential for intracellular calcium homeostasis. Deletion of calreticulin gene compromises the overall quality control within the endoplasmic reticulum (ER) leading to activation of the unfolded protein response. However, the ER structure of calreticulin deficient cells (crt-/-) is not altered due to accumulation of misfolded proteins. Therefore, the aim of this study was to determine whether the ubiquitin-proteasome pathway is activated in crt-/- cells as a compensatory mechanism for cell survival. Here we show a significant increase in the expression of genes involved in ER associated degradation and activation of the ubiquitin-proteasome system in crt-/- cells. We also demonstrated that the ubiquitination of two proteins processed in ER, connexin 43 and A1AT NHK (alpha1-antitrypsin mutant) are increased in crt-/- cells. Furthermore, we showed that the increased proteasome activity in the crt-/- cells could be rescued upon re-introduction of calreticulin or calsequestrin (a muscle calcium binding protein). We also illustrated that increased cytosolic Ca2+ enhances the proteasome activity. Interestingly, suppression of calnexin function using siRNA further elevated the proteasome activity in crt-/- cells. This is the first report to show that loss of calreticulin function enhances the ubiquitin-proteasome activity which could function as a compensatory mechanism for cell survival.  相似文献   

11.
12.
13.
Signal integration in the endoplasmic reticulum unfolded protein response   总被引:16,自引:0,他引:16  
The endoplasmic reticulum (ER) responds to the accumulation of unfolded proteins in its lumen (ER stress) by activating intracellular signal transduction pathways - cumulatively called the unfolded protein response (UPR). Together, at least three mechanistically distinct arms of the UPR regulate the expression of numerous genes that function within the secretory pathway but also affect broad aspects of cell fate and the metabolism of proteins, amino acids and lipids. The arms of the UPR are integrated to provide a response that remodels the secretory apparatus and aligns cellular physiology to the demands imposed by ER stress.  相似文献   

14.
15.
16.
17.
Cells respond to accumulation of misfolded proteins in the endoplasmic reticulum (ER) by activating the unfolded protein response (UPR) signaling pathway. The UPR restores ER homeostasis by degrading misfolded proteins, inhibiting translation, and increasing expression of chaperones that enhance ER protein folding capacity. Although ER stress and protein aggregation have been implicated in aging, the role of UPR signaling in regulating lifespan remains unknown. Here we show that deletion of several UPR target genes significantly increases replicative lifespan in yeast. This extended lifespan depends on a functional ER stress sensor protein, Ire1p, and is associated with constitutive activation of upstream UPR signaling. We applied ribosome profiling coupled with next generation sequencing to quantitatively examine translational changes associated with increased UPR activity and identified a set of stress response factors up-regulated in the long-lived mutants. Besides known UPR targets, we uncovered up-regulation of components of the cell wall and genes involved in cell wall biogenesis that confer resistance to multiple stresses. These findings demonstrate that the UPR is an important determinant of lifespan that governs ER stress and identify a signaling network that couples stress resistance to longevity.  相似文献   

18.
Hypoxia activates all components of the unfolded protein response (UPR), a stress response initiated by the accumulation of unfolded proteins within the endoplasmic reticulum (ER). Our group and others have shown previously that the UPR, a hypoxia-inducible factor-independent signaling pathway, mediates cell survival during hypoxia and is required for tumor growth. Identifying new genes and pathways that are important for survival during ER stress may lead to the discovery of new targets in cancer therapy. Using the set of 4,728 homozygous diploid deletion mutants in budding yeast, Saccharomyces cerevisiae, we did a functional screen for genes that conferred resistance to ER stress-inducing agents. Deletion mutants in 56 genes showed increased sensitivity under ER stress conditions. Besides the classic UPR pathway and genes related to calcium homeostasis, we report that two additional pathways, including the SLT2 mitogen-activated protein kinase (MAPK) pathway and the osmosensing MAPK pathway, were also required for survival during ER stress. We further show that the SLT2 MAPK pathway was activated during ER stress, was responsible for increased resistance to ER stress, and functioned independently of the classic IRE1/HAC1 pathway. We propose that the SLT2 MAPK pathway is an important cell survival signaling pathway during ER stress. This study shows the feasibility of using the yeast deletion pool to identify relevant mammalian orthologues of the UPR.  相似文献   

19.
Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-type glutamate receptors mediate the majority of excitatory signaling in the CNS, and the functional properties and subcellular fate of these receptors depend on receptor subunit composition. Subunit assembly is thought to occur in the endoplasmic reticulum (ER), although we are just beginning to understand the underlying mechanism. Here we examine the trafficking of Caenorhabditis elegans glutamate receptors through the ER. Our data indicate that neurons require signaling by the unfolded protein response (UPR) to move GLR-1, GLR-2, and GLR-5 subunits out of the ER and through the secretory pathway. In contrast, other neuronal transmembrane proteins do not require UPR signaling for ER exit. The requirement for the UPR pathway is cell type and age dependent: impairment for receptor trafficking increases as animals age and does not occur in all neurons. Expression of XBP-1, a component of the UPR pathway, is elevated in neurons during development. Our results suggest that UPR signaling is a critical step in neural function that is needed for glutamate receptor assembly and secretion.  相似文献   

20.
The unfolded protein response (UPR) is an endoplasmic reticulum (ER)-to-nucleus signaling cascade induced in response to ER stress. The UPR aims at restoring homeostasis, but can also induce apoptosis if stress persists. Infection by human and murine cytomegaloviruses (CMVs) provokes ER stress and induces the UPR. However, both CMVs manipulate the UPR to promote its prosurvival activity and delay apoptosis. The underlying mechanisms remain largely unknown. Recently, we demonstrated that MCMV and HCMV encode a late protein to target IRE1 for degradation. However, the importance of its downstream effector, X Box binding protein 1 (XBP-1), has not been directly studied. Here we show that deletion of XBP-1 prior to or early after infection confers a transient delay in viral propagation in fibroblasts that can be overcome by increasing the viral dose. A similar phenotype was demonstrated in peritoneal macrophages. In vivo, acute infection by MCMV is reduced in the absence of XBP-1. Our data indicate that removal of XBP-1 confers a kinetic delay in early stages of MCMV infection and suggest that the late targeting of IRE1 is aimed at inhibiting activities other than the splicing of XBP-1 mRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号