首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
1. A precursor to small stable RNA, 10Sa RNA, accumulates in large amounts in a temperature sensitive RNase E mutant at non-permissive temperatures, and somewhat in an rnc (RNase III-) mutant, but not in an RNase P- mutant (rnp) or wild type E. coli cells. 2. Since p10Sa RNA was not processed by purified RNase E and III in customary assay conditions, we purified p10Sa RNA processing activity about 700-fold from wild type E. coli cells. 3. Processing of p10Sa RNA by this enzyme shows an absolute requirement for a divalent cation with a strong preference for Mn2+ over Mg2+. Other divalent cations could not replace Mn2+. 4. Monovalent cations (NH+4, Na+, K+) at a concentration of 20 mM stimulated the processing of p10Sa RNA and a temperature of 37 degrees C and pH range of 6.8-8.2 were found to be optimal. 5. The enzyme retained half of its p10Sa RNA processing activity after 30 min incubation at 50 degrees C. 6. Further characterization of this activity indicated that it is RNase III. 7. To further confirm that the p10Sa RNA processing activity is RNase III, we overexpressed the RNase III gene in an E. coli cells that lacks RNase III activity (rnc mutant) and RNase III was purified using one affinity column, agarose.poly(I).poly(C). 8. This RNase III preparation processed p10Sa RNA in a similar way as observed using the p10Sa RNA processing activity purified from wild type E. coli cells, confirming that the first step of p10Sa RNA processing is carried out by RNase III.  相似文献   

3.
Gerstner RB  Pak Y  Draper DE 《Biochemistry》2001,40(24):7165-7173
Protein S4 is essential for bacterial small ribosomal subunit assembly and recognizes the 5' domain (approximately 500 nt) of small subunit rRNA. This study characterizes the thermodynamics of forming the S4-5' domain rRNA complex from a thermophile, Bacillus stearothermophilus, and points out unexpected differences from the homologous Escherichia coli complex. Upon incubation of the protein and RNA at temperatures between 35 and 50 degrees C under ribosome reconstitution conditions [350 mM KCl, 8 mM MgCl2, and 30 mM Tris (pH 7.5)], a complex with an association constant of > or = 10(9) M(-1) was observed, more than an order of magnitude tighter than previously found for the homologous E. coli complex under similar conditions. This high-affinity complex was shown to be stoichiometric, in equilibrium, and formed at rates on the order of magnitude expected for diffusion-controlled reactions ( approximately 10(7) M(-1) x s(-1)), though at low temperatures the complex became kinetically trapped. Heterologous binding experiments with E. coli S4 and 5' domain RNA suggest that it is the B. stearothermophilus S4, not the rRNA, that is activated by higher temperatures; the E. coli S4 is able to bind 5' domain rRNA equally well at 0 and 37 degrees C. Tight complex formation requires a low Mg ion concentration (1-2 mM) and is very sensitive to KCl concentration [- partial differential[log(K)]/partial differential(log[KCl]) = 9.3]. The protein has an unusually strong nonspecific binding affinity of 3-5 x 10(6) M(-1), detected as a binding of one or two additional proteins to the target 5' domain RNA or two to three proteins binding a noncognate 23S rRNA fragment of the approximately same size. This binding is not as sensitive to monovalent ion concentration [- partial differential[log(K)]/partial differential(log[KCl]) = 6.3] as specific binding and does not require Mg ion. These findings are consistent with S4 stabilizing a compact form of the rRNA 5' domain.  相似文献   

4.
5.
1. Autodegradation of yeast ribosomes is due to a 'latent' ribonuclease which is associated with the 40 S ribosomal subunit. 2. The ribonuclease was extracted in the presence of EDTA from ribosomes and purified 118-rold by protamine sulphate precipitation, (NH4)2SO4 fractionation and chromatography on DEAE-cellulose. 3. The optimum pH for this enzyme is 5 to 6.5 while the optimum temperature is 45 to 50 degrees C. Incubation for 10 min at 60 degrees C caused a reduction in enzyme activity of 70%. 4. The ribonuclease has an endonucleolytic activity against rRNA, tRNA, poly(A), poly(U) and poly(C) but does not degrade poly(G) or DNA. It hydrolyzes the homopolymers to nucleoside 3'-phosphates. 5. Zn2+, Mn2+, heparin, glutathione and p-chloromercuribenzoate inhibit the ribonuclease, while Na+, K+, EDTA and sermidine have only little or no effect. 6. It binds tightly to yeast ribosomes but only loosely to ribonuclease-free wheat germ ribosomes. 7. Polyribosomes possess less autodegradation activity than monoribosomes, isolated from the same homogenate.  相似文献   

6.
A marine psychrotolerant bacterium from the Antarctic Ocean showing high chitinolytic activity on chitin agar at 5 degrees C was isolated. The sequencing of the 16S rRNA indicates taxonomic affiliation of the isolate Fi:7 to the genus Vibrio. By chitinase activity screening of a genomic DNA library of Vibrio sp. strain Fi:7 in Escherichia coli, three chitinolytic clones could be isolated. Sequencing revealed, for two of these clones, the same open reading frame of 2,189 nt corresponding to a protein of 79.4 kDa. The deduced amino acid sequence of the open reading frame showed homology of 82% to the chitinase ChiA from Vibrio harveyi. The chitinase of isolate Fi:7 contains a signal peptide of 26 amino acids. Sequence alignment with known chitinases showed that the enzyme has a chitin-binding domain and a catalytic domain typical of other bacterial chitinases. The chitinase ChiA of isolate Fi:7 was overexpressed in E. coli BL21(DE3) and purified by anion-exchange and hydrophobic interaction chromatography. Maximal enzymatic activity was observed at a temperature of 35 degrees C and pH 8. Activity of the chitinase at 5 degrees C was 40% of that observed at 35 degrees C. Among the main cations contained in seawater, i.e., Na+, K+, Ca2+, and Mg2+, the enzymatic activity of ChiA could be enhanced twofold by the addition of Ca2+.  相似文献   

7.
A temperature-sensitive Escherichia coli mutant, which contains a heat-labile RNase E, fails to produce 5-S rRNA at a non-permissive temperature. It accumulates a number of RNA molecules in the 4-12-S range. One of these molecules, a 9-S RNA, is a precursor to 5-S rRNA [Ghora, B. K. and Apirion, D. (1978) Cell, 15, 1055-1056]. These molecules were purified and processed in a cell-free system. Some of these RNA molecules, after processing, give rise to products the size of transfer RNA, but not to 5-S-rRNA. Further characterization of the processed products of one such precursor molecule shows that it contains tRNA1Leu and tRNA1His. RNase E is necessary but not sufficient for the processing of this molecule to mature tRNAs in vitro. The accumulation of such tRNA precursors in an RNase E mutant cell and the obligatory participation of RNase E in its processing indicate that RNase E functions in the maturation of transfer RNAs as well as of 5-S rRNA.  相似文献   

8.
9.
An RNA processing activity capable of cleaving Bacillus subtilis phage SP82 early mRNA has been purified to apparent homogeneity from crude extracts of uninfected B. subtilis. The enzyme, a functional monomer of Mr approximately 27,000, cleaves only at the 5' side of adenosine residues at processing sites and is competitively inhibited by double-stranded synthetic RNA polymers. Processed SP82 mRNAs were translated in an Escherichia coli cell-free system and no qualitative or quantitative effects of processing on the synthesis of polypeptides was observed. The processing enzyme does not cleave T7 mRNA, E. coli precursor rRNA, or double-stranded poly(AU). A recombinant plasmid containing portions of two B. subtilis rRNA gene sets was transcribed in vitro and the resulting RNA was cleaved in the spacer region between the 16 S and 23 S rRNA genes. The ability of the B. subtilis processing enzyme to cleave SP82 mRNA and B. subtilis precursor rRNA and the fact that the enzyme has high affinity for double-stranded RNA suggest that it is the functional analog of E. coli RNase III.  相似文献   

10.
The CafA protein, which was initially described as having a role in either Escherichia coli cell division or chromosomal segregation, has recently been shown to be required for the maturation of the 5'-end of 16 S rRNA. The sequence of CafA is similar to that of the N-terminal ribonucleolytic half of RNase E, an essential E. coli enzyme that has a central role in the processing of rRNA and the decay of mRNA and RNAI, the antisense regulator of ColE1-type plasmids. We show here that a highly purified preparation of CafA is sufficient in vitro for RNA cutting. We detected CafA cleavage of RNAI and a structured region from the 5'-untranslated region of ompA mRNA within segments cleavable by RNaseE, but not CafA cleavage of 9 S RNA at its "a" RNase E site. The latter is consistent with the finding that the generation of 5 S rRNA from its 9 S precursor can be blocked by inactivation of RNase E in cells that are wild type for CafA. Interestingly, however, a decanucleotide corresponding in sequence to the a site of 9 S RNA was cut efficiently indicating that cleavage by CafA is regulated by the context of sites within structured RNAs. Consistent with this notion is our finding that although 23 S rRNA is stable in vivo, a segment from this RNA is cut efficient by CafA at multiple sites in vitro. We also show that, like RNase E cleavage, the efficiency of cleavage by CafA is dependent on the presence of a monophosphate group on the 5'-end of the RNA. This finding raises the possibility that the context dependence of cleavage by CafA may be due at least in part to the separation of a cleavable sequence from the 5'-end of an RNA. Comparison of the sites surrounding points of CafA cleavage suggests that this enzyme has broad sequence specificity. Together with the knowledge that CafA can cut RNAI and ompA mRNA in vitro within segments whose cleavage in vivo initiates the decay of these RNAs, this finding suggests that CafA may contribute at some point during the decay of many RNAs in E. coli.  相似文献   

11.
12.
7 S RNA accumulates at non-permissive temperatures in an RNAase E strain containing the recombinant plasmid pJR3Δ which carries a single 5 S rRNA gene and expression sequences. 7 S RNA is a processing intermediate that contains the complete sequence of 5 S rRNA as well as a stem-and-loop structure encoded by the terminator of rrnD. 7 S RNA can be processed in vitro by RNAase E. Structural analysis of the products (5 S rRNA and the stem) of in vitro processing of 7 S RNA revealed that the cleavage site of RNAase E in 7 S RNA is 3 nucleotides downstream from the 3′ end of the mature 5 S rRNA. The cleavage generates 3′-hydroxyl and 5′-phosphate termini.  相似文献   

13.
14.
15.
We have constructed a full-length cDNA that encodes soybean seed lipoxygenase L-1 and have expressed it in Escherichia coli. This gene was inserted into a pT7-7 expression vector, containing the T7 RNA polymerase promoter. E. coli, strain BL21 (DE3), which carries the T7 promoter in its genome, was transfected with the plasmid. Expression of this gene when the cells were cultured at 37 degrees C yielded polypeptide that was recognized by anti-L-1 antibody, but had very little lipoxygenase activity. Yields of active enzyme were markedly increased when cells were cultured at 15-20 degrees C. When ethanol, which has been reported to be an excellent elicitor of heat-shock proteins in E. coli, was also present at a level of 3% the yield was further increased by 40%. Under optimum conditions 22-30 mg of soluble active enzyme was obtained per liter of culture.  相似文献   

16.
A partial genomic library was prepared in E. coli JM109 using pBR322 as vector and 2.4 kb Sau 3A I chromosomal fragment, encoding a nitroaryl reductase (nbr A) gene, from Streptomyces aminophilus strain MCMB 411. From the library, 2.4 kb fragment was recloned in E. coli JM109 and S. lividans TK64 using pUC18 and pIJ702 as vectors respectively. The recombinant plasmids pSD103 and pSD105 expressed the reductase gene and exported the enzyme in periplasmic space of E. coli and in cytoplasm of S. lividans TK64. The proteins expressed by E. coli and S. lividans had the same molecular mass (70 kD) as that expressed by parent strain, which suggested that the enzyme was processed similarly by all strains. Activities of the enzymes cloned in E. coli JM109 and S. lividans TK64 containing recombinant plasmids pSD103 and pSD105 respectively were optimum at 30 degrees C and pH 9 and requirement of cofactors was same as that of the parent strain.  相似文献   

17.
18.
A small endodeoxyribonuclease )2.3 S) that is active on single-stranded DNA has been extensively purified from Escherichia coli so as to be free of other known DNases. It has an alkaline pH optimum (9.5), requires Mg2+, and makes 3'-hydroxy and 5'-phosphate termini. The nuclease nicks duplex DNA, particularly if treated with OsO4, irradiated with ultraviolet light, or exposed to pH 5. The uracil-containing duplex DNA from the Bacillus subtilis phage PBS-2 is an especially good substrate; it is made acid-soluble by levels of the enzyme which fail to produce any acid-soluble material in other single-stranded or duplex DNAs. Neither RNA nor RNA-DNA hybrid are degraded by the enzyme. The enzyme specificity suggests that it might act at abnormal regions in DNA, so that its in vivo function could be to initiate an excision repair sequence. Its high activity on uracil-containing DNA could imply that the enzyme provides an alternative mechanism for excising uracil residues from DNA to the pathway utilizing uracil-DNA N-glycosidase. We suggest that this enzyme be designated as endonuclease V of E. coli.  相似文献   

19.
20.
1. The ability of Escherichia coli ribosomes to function in poly(U)-directed protein synthesis was measured at elevated temperatures by using thermostable supernatant factors from Bacillus stearothermophilus. The amount of polyphenylalanine synthesized at 55 degrees C was about the same as at 37 degrees C, but the rate of synthesis was increased approximately fivefold. At 60 degrees C the activity of the ribosomes was halved. 2. E. coli ribosomes can sustain the loss of approx. 10% of the double-helical secondary structure of RNA without losing activity. 3. Within the active ribosome the double-helical secondary structure of the rRNA moiety is stabilized compared with isolated rRNA, as judged by enzymic hydrolysis and by measurements of E(260). 4. The main products, over the range 0-55 degrees C, of ribonuclease T(1) digestion of the smaller subribosomal particle of E. coli were two fragments (s(0) (20,w) 15S and 25.3S) of approximately one-quarter and three-quarters of the size of the intact molecule, revealing the presence of a ;weak spot' where intramolecular bonds appear insufficient to hold the fragments together. 5. Subribosomal particles of B. stearothermophilus were more stable to heating, by approx. 10 degrees C, than those of E. coli, and the stabilization of double-helical secondary structure of the RNA moiety was more striking. 6. Rabbit reticulocyte ribosomes were active in poly(U)-directed protein synthesis at 45 degrees C, and half the activity was lost after heating to 53 degrees C. Active subribosomal particles of rabbit reticulocytes and of oocytes of Xenopus laevis, like the bacterial subribosomal particles, underwent a conformational change to a slower-sedimenting form on heating. The temperature range of the transition depended on the species. 7. Slower-sedimenting particles, whether produced by EDTA treatment or by heating, had different ;melting' profiles compared with active subribosomal particles, providing another indication of conformational differences. 8. Comparison of the properties of the various subribosomal particles revealed greater variation in the secondary structure of the protein moieties (judged by measurement of circular dichroism) than in the secondary structure of the RNA moieties, which appeared to have features in common.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号