首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There is increasing evidence that nitrogen limitation is of widespread occurrence in tropical lakes. Nonetheless, data on the deep tropical Lake Alchichica (Mexico) show that dissolved inorganic nitrogen (DIN) to soluble reactive phosphorus (SRP) ratio fluctuates widely. To elucidate further the role of nitrogen and phosphorus limitation on the phytoplankton growth in tropical saline lakes, we present the results of a series of nutrient enrichment experiments with natural assemblages of Lake Alchichica phytoplankton conducted monthly for a year. Our assays indicate that phosphorus and nitrogen alternate in limiting Lake Alchichica phytoplankton biomass. Phosphorous limited phytoplankton growth most (41.7%) of the time, followed by nitrogen (33.3% of the time), and both nutrients for the rest of the time (25.0%). This alternation in nitrogen and phosphorus responsible for phytoplankton growth limitation in Lake Alchichica is attributed to the combination of natural conditions (e.g., young volcanic terrain rich in phosphorus) that would favor nitrogen limitation and anthropogenic impacts (e.g., agricultural nitrogen fertilization) which would cause phosphorus limitation. Guest Editors: J. John & B. Timms Salt Lake Research: Biodiversity and Conservation—Selected papers from the 9th Conference of the International Society for Salt Lake Research  相似文献   

2.
Dean W. Blinn 《Hydrobiologia》1991,210(1-2):101-104
Thirty-three diatom taxa were collected from the large terminal salt lake, Lake Eyre South, located in south-central Australia. The diatom assemblage included taxa that were widely distributed in marine and saline athalassic habitats in both northern and southern hemispheres, with the diatom flora of Lake Eyre South most similar to that of southern Africa. This study represents the first report on the diatom flora of Lake Eyre South and supports the findings that episodically filled lakes do not appear to be good evolutionary loci.  相似文献   

3.
In perennially ice-covered lakes of Taylor Valley, Antarctica, “legacy”, a carryover of past ecosystem events, has primarily been discussed in terms of nutrient and salinity concentrations and its effect on the current ecology of the lakes. In this study, we determine how residual pools of ancient carbon affect the modern carbon abundance and character in the water columns of Lakes Fryxell, Hoare, and Bonney. We measure the stable carbon isotopic compositions and concentrations of particulate organic carbon (POC) and dissolved inorganic carbon (DIC) in the water column of these lakes over four seasons (1999–2002). These data are presented and compared with all the previously published Taylor Valley lacustrine carbon stable isotopic data. Our results show that the carbon concentrations and isotopic compositions of the upper water columns of those lakes are controlled by modern processes, while the lower water columns are controlled to varying degrees by inherited carbon pools. The water column of the west lobe of Lake Bonney is dominated by exceptionally high concentrations of DIC (55,000–75,000 μmol l−1) reflecting the long period of ice-cover on this lake. The east lobe of Lake Bonney has highly enriched δ13CDIC values resulting from paleo-brine evaporation effects in its bottom waters, while its high DIC concentrations provide geochemical evidence that its middle depth waters are derived from West Lake Bonney during a hydrologically connected past. Although ancient carbon is present in both Lake Hoare and Lake Fryxell, the δ13CDIC values in bottom waters suggest dominance by modern primary productivity-related processes. Anaerobic methanogenesis and methanotrophy are also taking place in the lower water column of Lake Fryxell with enough methane, oxidized anaerobically, to contribute to the DIC pool. We also show how stream proximity and high flood years are only a minor influence on the carbon isotopic values of both POC and DIC. The Taylor Valley lake system is remarkably stable in both inter-lake and intra-lake carbon dynamics. Handling editor: K. Martens  相似文献   

4.
1. The influence of inorganic nitrogen and phosphorus enrichment on phytoplankton photosynthesis was investigated in Lakes Bonney (east and west lobes), Hoare, Fryxell and Vanda, which lie in the ablation valleys adjacent to McMurdo Sound, Antarctica. Bioassay experiments were conducted during the austral summer on phytoplankton populations just beneath the permanent ice cover in all lakes and on populations forming deep-chlorophyll maxima in the east and west lobes of Lake Bonney. 2. Phytoplankton photosynthesis in surface and mid-depth (13 m) samples from both lobes of Lake Bonney were stimulated significantly (P < 0.01) by phosphorus enrichment (2 μM) with further stimulation by simultaneous phosphorus plus NH4+ (20 μM) enrichment. Similar trends were observed in deeper waters (18 m) from the east lobe of Lake Bonney, although they were not statistically significant at P < 0.05. Photosynthesis in this lake was never enhanced by the addition of 20 μM NH4+ alone. Simultaneous addition of phosphorus plus nitrogen stimulated photosynthesis significantly (P < 0.01) in both Lake Hoare and Lake Fryxell. No nutrient response occurred in Lake Vanda, where activity in nutrient-enriched samples was below unamended controls; results from Lake Vanda are suspect owing to excessively long sample storage in the field resulting from logistic constraints. 3. Ambient dissolved inorganic nitrogen (DIN) (NH4++ NO2?+ NO3?): soluble reactive phosphorus (SRP) ratios partially support results from bioassay experiments indicating strong phosphorus deficiency in Lake Bonney and nitrogen deficiency in Lakes Hoare and Fryxell. DIN : SRP ratios also imply phosphorus deficiency in Lake Vanda, although not as strong as in Lake Bonney. Particulate carbon (PC): particulate nitrogen (PN) ratios all exceed published ratios for balanced phytoplankton growth, indicative of nitrogen deficiency. 4. Vertical nutrient profiles in concert with low advective flux, indicate that new (sensu Dugdale & Goering, 1967) phytoplankton production in these lakes is supported by upward diffusion of nutrients from deep nutrient pools. This contention was tested by computing upward DIN : SRP flux ratios across horizontal planes located immediately beneath each chlorophyll maximum and about 2 m beneath the ice (to examine flux to the phytoplankton immediately below the ice cover). These flux ratios further corroborated nutrient bioassay results and bulk DIN : SRP ratios indicating phosphorus deficiency in Lakes Bonney and Vanda and potential nitrogen deficiency in Lakes Hoare and Fryxell. 5. Neither biochemical reactions nor physical processes appear to be responsible for differences in nutrient deficiency among the study lakes. The differences may instead be related to conditions which existed before or during the evolution of the lakes.  相似文献   

5.
1. A method based on hierarchical clustering and Bayesian probabilities is used to identify phytoplankton assemblages and analyse their pattern of occurrence and temporal coherence in three deep, peri‐alpine lakes. The hierarchical properties of the method allowed ranking by order of importance of the effects of changes related to climate and to human activity on the phytoplankton structure. 2. The three deep, peri‐alpine lakes (the Lower Zurich, Upper Zurich and Walen lakes) investigated in this study have been monitored since 1972. During that period they have undergone oligotrophication as a result of management programmes and they have been subject to similar meteorological effects that have led to higher water temperatures since 1988. 3. The phytoplankton assemblages of the most eutrophic lake (Lower Zurich) differ strongly from those observed in the two meso‐oligotrophic lakes. Local environmental conditions appear to be the main factor responsible for species composition and change in climate characterised by the warmer water temperatures observed since 1988 have had a major impact on the winter composition of the lower basin of Lake Zurich by promoting Planktothrix rubescens. 4. Some phytoplankton assemblages are found in all the lakes. Their patterns of occurrence display strong synchrony at the annual and/or inter‐annual scales. However, temporal coherence between the lakes sometimes also involves different assemblages. 5. The reduction in phosphorus had a great influence on long‐term changes in composition. In all three lakes, decreases in phosphorus are associated with a community characterised by some mixotrophic species or species adapted to low nutrient concentrations or sensitive to transparency. In the Lower Lake Zurich the decrease in phosphorus has also led to the development of species adapted to low light intensities. 6. Seasonal meteorological forcing has also induced synchronous changes, but the same assemblages are not necessarily involved, because the pool of the well‐placed candidate taxa that may develop is determined by the local environmental conditions, and mainly by phosphorus concentrations. In the most eutrophic lake, the seasonal pattern is characterised by a succession of more stages. However, the seasonal assembly dynamics involve the succession of species sharing common selective advantages that make them relatively stronger under these nutrient and light conditions.  相似文献   

6.
Seasonal Dynamics of Periphyton in a Large Tropical Lake   总被引:1,自引:0,他引:1  
Tropical aquatic systems are generally assumed to have little seasonality in productivity patterns. However, this study indicated that there was substantial seasonal variation in epilithic productivity and biomass in tropical Lake Tanganyika, due primarily to seasonal patterns in lake hydrodynamics that influence nutrient availability. Although they support much of the lake’s biological diversity, epilithic algae made a minor contribution to the total energy budget in Lake Tanganyika. A comparison among large, oligotrophic lakes revealed no significant latitudinal trends in periphyton productivity or biomass. However, Lake Tanganyika has relatively low benthic algal biomass and is therefore more efficient at photosynthesis than the temperate lakes. The influence of wave action and consumer density and diversity may be important in moderating productivity of the epilithic community.  相似文献   

7.
Lake biodiversity is an incomplete indicator of exogenous forcing insofar as it ignores underlying deformations of community structure. Here, we seek a proxy for deformation in a network of diatom assemblages comprising 452 species in 273 lakes across China. We test predictions from network theory that nodes of similar type will tend to self‐organize in an unstressed system to a positively skewed frequency distribution of nodal degree. The empirical data reveal shifts in the frequency distributions of species associations across regions, from positive skew in lakes in west China with a history of low human impacts, to predominantly negative skew amongst lakes in highly disturbed regions in east China. Skew values relate strongly to nutrient loading from agricultural activity and urbanization, as measured by total phosphorus in lake water. Reconstructions through time show that positive skew reduces with temporal intensification of human impacts in the lake and surrounding catchments, and rises as lakes recover from disturbance. Our study illustrates how network parameters can track the loss of aquatic assemblage structure in lakes associated with human pressures.  相似文献   

8.
Over-abstraction of water places unsustainable pressures on river ecosystems, with the impacts amplified under drought conditions. Freshwater fishes are particularly vulnerable due to associated changes in water quality, and habitat availability, condition and connectivity. Accordingly, fish assemblages are ideal indicators of the impacts of drought and over-abstraction. The Murray-Darling Basin (MDB), south-eastern Australia, terminates at the Ramsar listed Coorong and Lower Lakes, which comprise Lake Alexandrina and Lake Albert. Over-abstraction and extreme drought during the last decade has placed these lakes under severe environmental stress. The purpose of this study was to investigate shifts in fish assemblages caused by substantial water level recession and salinization in the Lower Lakes. Small-bodied fish assemblages were sampled at the beginning and several years into the drought. Off-lake habitats held diverse fish assemblages in 2003, but most sites were dry by 2009. Remaining habitats were disconnected, salinities increased substantially, and aquatic vegetation shifted from freshwater to salt-tolerant species. There was a substantial decline in the proportion of specialist species, especially diadromous and threatened species, and an emerging dominance of generalist freshwater and estuarine species. The findings warn of the inevitable ecological impact of over-allocating water for human use in drought-prone regions, and highlight the need for adequate environmental water allocations. This study also emphasises that understanding the ecological attributes of a fish species, and the subsequent assignment to a functional group, will help predict vulnerability to decline and extirpation.  相似文献   

9.
Dating of sediments sampled from small lakes in the Kilpolansaari region, in the NW part of Lake Ladoga, indicate that the River Neva, which is the present outlet of Lake Ladoga, originated at 3,100 radiocarbon years BP This is in agreement with some earlier estimations but no consensus concerning the age of the River Neva has previously been reached. New diatom data provide information concerning salinity and nutrient conditions in northern Lake Ladoga prior to the formation of the River Neva, when the Litorina Sea occupied the Baltic basin and approached the level of the ancient Lake Ladoga. Some slightly brackish water diatom species may indicate occasional saline water incursions into the Ladoga basin but, on the other hand, slightly brackish water species also occur in the present Lake Ladoga.  相似文献   

10.
The viable counts of portions of the microbial communities of the water column of Lake Bonney and associated glacial melt-streams in South Victorialand, Antarctica, were monitored at regular intervals during two consecutive austral summers. Community fluctuations in the water column correlate with the period of input from the meltstream flow into the lake.  相似文献   

11.
Abstract Research of the microbial ecology of McMurdo Dry Valley lakes has concentrated primarily on phototrophs; relatively little is known about the heterotrophic bacterioplankton. Bacteria represent a substantial proportion of water column biomass in these lakes, comprising 30 to 60% of total microplankton biomass. Bacterial production and cell numbers were measured 3 to 5 times, within four Antarctic seasons (October to January), in Lakes Fryxell, Hoare, and Bonney. The winter-spring transition (September to October) was included during one year. Lake Fryxell was the most productive, but variable, lake, followed by Lakes Bonney and Hoare. Bacterial production ranged from 0 to 0.009 μg C ml-1 d-1; bacterial populations ranged from 3.2 x 10(4) to 4.4 x 10(7) cells ml-1. Bacterial production was always greatest just below the ice cover at the beginning of the season. A second maximum developed just above the chemocline of all the lakes, as the season progressed. Total bacterioplankton biomass in the lakes decreased as much as 88% between successive sampling dates in the summer, as evidenced by areal integration of bacterial populations; the largest decreases in biomass typically occurred in mid-December. A forward difference model of bacterial loss in the trophogenic zone and the entire water column of these lakes showed that loss rates in the summer reached 6.3 x 10(14) cells m-2 d-1 and 4.16 x 10(12) cells m-2 d-1, respectively. These results imply that bacteria may be a source of carbon to higher trophic levels in these lakes, through grazing.  相似文献   

12.
Diatom assemblages in sediments from two subalpine lakes in the Uinta Mountains, Utah, show asynchronous changes that are related to both anthropogenic and natural inputs of dust. These lakes are downwind of sources of atmospheric inputs originating from mining, industrial, urban, agricultural and natural sources that are distributed within tens to hundreds of kilometers west and south of the Uinta Mountains. Sediment cores were retrieved from Marshall and Hidden lakes to determine the impacts of atmospheric pollution, especially metals. Paleolimnological techniques, including elemental analyses and 210Pb and 239+240Pu dating, indicate that both lakes began receiving eolian inputs from anthropogenic sources in the late 1800s with the greatest increases occurring after the early 1900s. Over the last century, sediments in Marshall Lake, which is closer to the Wasatch Front and receives more precipitation than Hidden Lake, received twice the concentrations of metals and phosphorus as Hidden Lake. Comparison of diatom and elemental data reveals coeval changes in geochemistry and diatom assemblages at Marshall Lake, but not at Hidden Lake; however, a major shift in diatom assemblages occurs at Hidden Lake in the seventeenth century. The change in diatoms at Marshall Lake is marked by the near disappearance of Cyclotella stelligera and C. pseudostelligera and an increase in benthic, metal-tolerant diatoms. This change is similar to changes in other lakes that have been attributed to metal pollution. The marked change in diatom assemblages at Hidden Lake indicates a shift in lake-water pH from somewhat acidic to circumneutral. We hypothesize that this change in pH is related to drought-induced changes in input of carbonate-rich desert dust.  相似文献   

13.
Asian great lakes, especially Lake Biwa   总被引:1,自引:0,他引:1  
Synopsis The geological and biological history of Asian great lakes, especially Lake Biwa in Japan, are reviewed. The origins and affiliations of endemic flora and fauna are interpreted in light of current understanding of Lake Biwa. Recent historical changes in the lake, including detrimental impacts on native fauna and water quality are summarized. The social and cultural values associated with Asian lakes are reviewed, and contrasted to those of lakes elsewhere. In general Asian great lakes are smaller than those elsewhere, with the notable exception of Lake Baikal. Furthermore, Asian lakes are typically more eutrophic, with higher primary productivity. Societal values in China and other Asian countries have tended to favour nutrient enrichment and increased cultured fish production from lakes. Asian societies, however, have long attached important artistic, poetic and cultural values to their lakes.Paper from the Canadian Society of Zoologists symposium Great Lakes of the World, organized by David L.G. Noakes.  相似文献   

14.
1. We compared the extracellular enzyme activity (EEA) of sediment microbial assemblages with sediment and water chemistry, gradients in agricultural nutrient loading (derived from principal component analyses), atmospheric deposition and hydrological turnover time in coastal wetlands of the Laurentian Great Lakes. 2. There were distinct increases in nutrient concentrations in the water and in atmospheric N deposition along the gradient from Lake Superior to Lake Ontario, but few differences between lakes in sediment carbon (C), nitrogen (N) or phosphorus (P). Wetland water and sediment chemistry were correlated with the agricultural stress gradient, hydrological turnover time and atmospheric deposition. 3. The N : P ratio of wetland waters and sediments indicated that these coastal wetlands were N‐limited. Nutrient stoichiometry was correlated with the agricultural stress gradient, hydrological turnover time and atmospheric deposition. 4. Extracellular enzyme activity was correlated with wetland sediment and water chemistry and stoichiometry, atmospheric N deposition, the agricultural stress gradient and the hydrological turnover time. The ratios of glycosidases to peptidases and phosphatases yielded estimates of nutrient limitation that agreed with those based solely on nutrient chemistry. 5. This study, the first to link microbial enzyme activities to regional‐scale anthropogenic stressors, suggests that quantities and ratios of microbial enzymes are directly related to the concentrations and ratios of limiting nutrients, and may be sensitive indicators of nutrient dynamics in wetland ecosystems, but further work is needed to elucidate these relationships.  相似文献   

15.
Dickman EM  Vanni MJ  Horgan MJ 《Oecologia》2006,149(4):676-689
The stoichiometric composition of autotrophs can vary greatly in response to variation in light and nutrient availability, and can mediate ecological processes such as C sequestration, growth of herbivores, and nutrient cycling. We investigated light and nutrient effects on phytoplankton stoichiometry, employing five experiments on intact phytoplankton assemblages from three lakes varying in productivity and species composition. Each experiment employed two nutrient and eight irradiance levels in a fully factorial design. Light and nutrients interactively affected phytoplankton stoichiometry. Thus, phytoplankton C:N, C:P, and N:P ratios increased with irradiance, and slopes of the stoichiometric ratio versus irradiance relationships were steeper with ambient nutrients than with nutrients added. Our results support the light–nutrient hypothesis, which predicts that phytoplankton C:nutrient ratios are functions of the ratio of available light and nutrients; however, we observed considerable variation among lakes in the expression of this relationship. Phytoplankton species diversity was positively correlated with the slopes of the C:N and C:P versus irradiance relationships, suggesting that diverse assemblages may exhibit greater flexibility in the response of phytoplankton nutrient stoichiometry to light and nutrients. The interactive nature of light and nutrient effects may render it difficult to generate predictive models of stoichiometric responses to these two factors. Our results point to the need for future studies that examine stoichiometric responses across a wide range of phytoplankton communities.  相似文献   

16.
This study aims to identify reference conditions (nutrient status and diatom assemblages) as required by the European Water Framework Directive (WFD) for stratified, carbonate-rich lowland lakes with a large watershed area (watershed area to lake volume ratio (WV) > 1.5 km2 10−6 m−3) and a retention time (RT) from 0.1 to 10 years (Central Baltic Lake-Type 1, German Lake-Type 10) in European ecoregion 14. Diatoms, pollen and geochemistry were analysed from sediment cores of six lakes from northern Germany representing different subtypes of Lake-Type 10 (varying WV and RT) and covering the past 290–1,750 years. Historic total phosphorus levels were inferred using diatom-based transfer functions selected from a merged European data set and from optimised data sets identified with the moving-window approach. Pollen and geochemical proxies were used to identify occurrence and intensity of anthropogenic catchment usage. Lake trophic state reference conditions and associated diatom assemblages were identified for three of the six study lakes. In contrast, according to fossil pollen assemblages, two lakes were already strongly impacted by intensive catchment usage when the oldest investigated sediments were laid down. Thus, reference conditions of these already eutrophic lakes could not be identified. Similarly, the lowermost samples of a core from the sixth lake showed signs of impact, and it remains unclear whether the identified dystrophic conditions occurred naturally or if they were due to the drainage of wetlands in Medieval times. Lakes with a relatively small WV (1.5–5.0 km2 10−6 m−3) and RT > 1 year were naturally oligotrophic to low mesotrophic and a typical, representative diatom assemblage was identified. In contrast, typical reference conditions or diatom assemblages for lakes with higher WV (5–18.6 km2 10−6 m−3) and RT < 1 year could not be identified as chemical precipitation and upstream lakes (nutrient sinks or sources) additionally influenced natural nutrient levels. Therefore, the reference situation of both trophic state and diatom assemblages in a lake may be strongly influenced by other modifying, limnological processes in addition to WV and RT. Overall, this study helps to implement the WFD by identifying reference conditions and by discussing the level of differentiation of lake types required to set reference conditions. Guest editors: K. Buczkó, J. Korponai, J. Padisák & S. W. Starratt Palaeolimnological Proxies as Tools of Environmental Reconstruction in Fresh Water  相似文献   

17.
Salt Lakes in Australia: Present Problems and Prognosis for the Future   总被引:4,自引:4,他引:0  
Australia is a land of salt lakes and despite low human population density, many lakes are adversely impacted by a range of factors. Secondary salinisation is the most pernicious force degrading lakes, especially in south-west Western Australia where up to 30% of the landscape is predicted to be affected. Mining also impinges on many salt lakes in this state, mainly through the dewatering of saline groundwater. Exploitation of groundwater for irrigation caused some lakes in Victoria, Australia, to dry, especially the significant Red Rock Complex. Global climate change will result in new water balances in endorheic lakes, with most having less water, particularly the seasonal lakes of southern Australia. This has already happened in Lake Corangamite, Victoria, but the prime reason is diversion of inflowing floodwater. Consequently, the lake has retreated and become salinised compromising its status as a Ramsar site. Various other lakes suffer from enhanced sedimentation, have introduced biota or their catchments are being disturbed to their detriment. Enlightened management should be able to maintain some important lakes in an acceptable condition, but, for most others, the future is bleak.  相似文献   

18.
Current status and future tendency of lake eutrophication in China   总被引:3,自引:0,他引:3  
Current trophic status and trend of Chinese freshwater lakes were investigated in this study. The results showed that all lakes studied were commonly undergoing the eutrophication process, water quality decreased and lake's ecosystem is being declined. Most of the urban lakes are facing serious eutrophication. Many medium-sized lakes are in metrophic or eutrophic status, some local water are even approaching the hypertrophic level. The famous five freshwater lakes in China have entered into eutrophication in the condition of higher nutrient load. Lake Taihu, Hongze and Caohu are already in eutrophic state. Eutrophic lakes are mainly distributed in the middle and lower reaches of Yangtze River and Yungui plateau. Lake eutrophication developed rapidly. Among the 34 lakes studied in 1970's, most of lakes were in the mesotrophic status,mesotrophic water area accounted for 91.8%. With the nine year of 1978-1987 the area percentage of oligotrophic lakes decreased from 3.2% to 0.53%, and that of eutrophic lakes increased from 5.0% to 55.01%. Recent data showed 57.5% lakes were in eutrophic and hypertrophic status of the 40 surveyed lakes.Eutrophic trend of Lake Taihu, Chaohu and Xuanwu in the region of the middle and lower reaches of Yangtze River was predicated using the ecological stress model. The results showed that in 2008 Lake Taihu, Chaohu and Xuanwu might be of eutrophication, eutrophication and hypertrophication, respectively if no control measurement is taken. Provided the pollution water treatment rate is 60% in 2030, approximately 30 billion ton pollution water would still be discharged directly in the lakes. Therefore, in 2030 the urban lakes in China might be eutrophication or hypertrophication, and most of the medium-sized lakes at the urban-rural fringe might be in eutrophication or hypertrophication. The famous five biggest freshwater lakes in China might be eutrophication if control countermeasures are taken as now.Lake eutrophication has become a serious environmental problem in China. Based on the domestic and foreign experiences of the eutrophic control technologies, both nutrient pollution control and lake ecological restoration should be carried out and this may be the guidance for the eutrophic control of lakes in China.  相似文献   

19.
The organic carbon and nitrogen contents of sediments in the upper 2 cm of the soils surrounding several lakes in the McMurdo Dry Valleys were measured in a relatively high-density sampling grid, in order to better understand the present-day distribution of organic matter in the ecosystem that is most readily transportable via aeolean processes. Carbon and nitrogen contents of the bulk sediments and size-differentiated sediments decreased in a series according to lake basins oriented along the Taylor Valley's main axis (Lake Fryxell > Hoare ≥ west lobe Bonney ≥ east lobe Bonney). Samples were also obtained around Lake Vida and showed this basin to contain less organic matter than those in the Taylor Valley. This regional spatial analysis supports the emerging view that each basin provides distinct environments for in situ microbial activity, lithogenic weathering, aeolian deposition and sorting that can be detected through synoptic sampling. Accepted: 2 August 1999  相似文献   

20.
Lake Bonney is one of numerous permanently ice-covered lakes located in the McMurdo Dry Valleys, Antarctica. The perennial ice cover maintains a chemically stratified water column and unlike other inland bodies of water, largely prevents external input of carbon and nutrients from streams. Biota are exposed to numerous environmental stresses, including year-round severe nutrient deficiency, low temperatures, extreme shade, hypersalinity, and 24-hour darkness during the winter 1. These extreme environmental conditions limit the biota in Lake Bonney almost exclusively to microorganisms 2.Single-celled microbial eukaryotes (called "protists") are important players in global biogeochemical cycling 3 and play important ecological roles in the cycling of carbon in the dry valley lakes, occupying both primary and tertiary roles in the aquatic food web. In the dry valley aquatic food web, protists that fix inorganic carbon (autotrophy) are the major producers of organic carbon for organotrophic organisms 4, 2. Phagotrophic or heterotrophic protists capable of ingesting bacteria and smaller protists act as the top predators in the food web 5. Last, an unknown proportion of the protist population is capable of combined mixotrophic metabolism 6, 7. Mixotrophy in protists involves the ability to combine photosynthetic capability with phagotrophic ingestion of prey microorganisms. This form of mixotrophy differs from mixotrophic metabolism in bacterial species, which generally involves uptake dissolved carbon molecules. There are currently very few protist isolates from permanently ice-capped polar lakes, and studies of protist diversity and ecology in this extreme environment have been limited 8, 4, 9, 10, 5. A better understanding of protist metabolic versatility in the simple dry valley lake food web will aid in the development of models for the role of protists in the global carbon cycle.We employed an enrichment culture approach to isolate potentially phototrophic and mixotrophic protists from Lake Bonney. Sampling depths in the water column were chosen based on the location of primary production maxima and protist phylogenetic diversity 4, 11, as well as variability in major abiotic factors affecting protist trophic modes: shallow sampling depths are limited for major nutrients, while deeper sampling depths are limited by light availability. In addition, lake water samples were supplemented with multiple types of growth media to promote the growth of a variety of phototrophic organisms.RubisCO catalyzes the rate limiting step in the Calvin Benson Bassham (CBB) cycle, the major pathway by which autotrophic organisms fix inorganic carbon and provide organic carbon for higher trophic levels in aquatic and terrestrial food webs 12. In this study, we applied a radioisotope assay modified for filtered samples 13 to monitor maximum carboxylase activity as a proxy for carbon fixation potential and metabolic versatility in the Lake Bonney enrichment cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号