首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Modified nucleotides are useful tools to study the structures, biological functions and chemical and thermodynamic stabilities of nucleic acids. Derivatives of 2,6-diaminopurine riboside (D) are one type of modified nucleotide. The presence of an additional amino group at position 2 relative to adenine results in formation of a third hydrogen bond when interacting with uridine. New method for chemical synthesis of protected 3′-O-phosphoramidite of LNA-2,6-diaminopurine riboside is described. The derivatives of 2′-O-methyl-2,6-diaminopurine and LNA-2,6-diaminopurine ribosides were used to prepare complete 2′-O-methyl RNA and LNA-2′-O-methyl RNA chimeric oligonucleotides to pair with RNA oligonucleotides. Thermodynamic stabilities of these duplexes demonstrated that replacement of a single internal 2′-O-methyladenosine with 2′-O-methyl-2,6-diaminopurine riboside (DM) or LNA-2,6-diaminopurine riboside (DL) increases the thermodynamic stability (ΔΔG°37) on average by 0.9 and 2.3 kcal/mol, respectively. Moreover, the results fit a nearest neighbor model for predicting duplex stability at 37°C. D-A and D-G but not D-C mismatches formed by DM or DL generally destabilize 2′-O-methyl RNA/RNA and LNA-2′-O-methyl RNA/RNA duplexes relative to the same type of mismatches formed by 2′-O-methyladenosine and LNA-adenosine, respectively. The enhanced thermodynamic stability of fully complementary duplexes and decreased thermodynamic stability of some mismatched duplexes are useful for many RNA studies, including those involving microarrays.  相似文献   

2.
The base-pairing fidelity of oligonucleotides depends on the identity of the nucleobases involved and the position of matched or mismatched base pairs in the duplex. Nucleobases forming weak base pairs, as well as a terminal position favor mispairing. We have searched for 5′-appended acylamido caps that enhance the stability and base-pairing fidelity of oligonucleotides with a 5′-terminal 2′-deoxyadenosine residue using combinatorial synthesis and MALDI-monitored nuclease selections. This provided the residue of 4-(pyren-1-yl)butyric acid as a lead. Lead optimization gave (S)-N-(pyren-1-ylmethyl)pyrrolidine-3-phosphate as a cap that increases duplex stability and base-pairing fidelity. For the duplex of 5′-AGGTTGAC-3′ with its fully complementary target, this cap gives an increase in the UV melting point Tm of +10.9°C. The Tm is 6.3–8.3°C lower when a mismatched nucleobase faces the 5′-terminal dA residue. The optimized cap can be introduced via automated DNA synthesis. It was combined with an anthraquinone carboxylic acid residue as a cap for the 3′-terminal residue. A doubly capped dodecamer thus prepared gives a melting point decrease for double-terminal mismatches that is 5.7–5.9°C greater than that for the unmodified control duplex.  相似文献   

3.
Based on our recent studies of RNA cleavage by oligonucleotide–terpyridine·Cu(II) complex 5′- and/or 3′-conjugates, we designed 2′-O-methyloligonucleotides with two terpyridine-attached nucleosides at contiguous internal sites. To connect the 2′-terpyridine-modified uridine residue at the 5′-side to the 5′-O-terpyridyl nucleoside residue at the 3′-side, a dimethoxytrityl derivative of 5-hydroxypropyl-5′-O-terpyridyl-2′-deoxyuridine-3′-phosphoramidite was newly synthesized. Using this unit, we constructed two terpyridine conjugates, with either an unusual phophodiester bond or the bond extended by a propanediol(s)-containing linker. Cleavage reactions of the target RNA oligomer, under the conditions of conjugate excess in the presence of Cu(II), indicated that the conjugates precisely cleaved the RNA at the predetermined site and that one propanediol-containing linker was the most appropriate for inducing high cleavage activity. Furthermore, a comparison of the activity of the propanediol agent with those of the control conjugates with one complex confirmed that the two complexes are required for efficient RNA cleavage. The reaction of the novel cleaver revealed a bell-shaped pH–rate profile with a maximum at pH ~7.5, which is a result of the cooperative action of the complexes. In addition, we demonstrated that the agent catalytically cleaves an excess of the RNA, with the kinetic parameter kcat/Km = 0.118 nM–1 h–1.  相似文献   

4.
Twisted intercalating nucleic acid (TINA) is a novel intercalator and stabilizer of Hoogsteen type parallel triplex formations (PT). Specific design rules for position of TINA in triplex forming oligonucleotides (TFOs) have not previously been presented. We describe a complete collection of easy and robust design rules based upon more than 2500 melting points (Tm) determined by FRET. To increase the sensitivity of PT, multiple TINAs should be placed with at least 3 nt in-between or preferable one TINA for each half helixturn and/or whole helixturn. We find that ΔTm of base mismatches on PT is remarkably high (between 7.4 and 15.2°C) compared to antiparallel duplexes (between 3.8 and 9.4°C). The specificity of PT by ΔTm increases when shorter TFOs and higher pH are chosen. To increase ΔTms, base mismatches should be placed in the center of the TFO and when feasible, A, C or T to G base mismatches should be avoided. Base mismatches can be neutralized by intercalation of a TINA on each side of the base mismatch and masked by a TINA intercalating direct 3′ (preferable) or 5′ of it. We predict that TINA stabilized PT will improve the sensitivity and specificity of DNA based clinical diagnostic assays.  相似文献   

5.
Synthesis and antisense activity of oligonucleotides modified with 2′-O-[2-[(N,N-dimethylamino)oxy] ethyl] (2′-O-DMAOE) are described. The 2′-O-DMAOE-modified oligonucleotides showed superior metabolic stability in mice. The phosphorothioate oligonucleotide ‘gapmers’, with 2′-O-DMAOE- modified nucleoside residues at the ends and 2′-deoxy nucleosides residues in the central region, showed dose-dependent inhibition of mRNA expression in cell culture for two targets. ‘Gapmer’ oligonucleotides have one or two 2′-O-modified regions and a 2′-deoxyoligonucleotide phosphorothioate region that allows RNase H digestion of target mRNA. To determine the in vivo potency and efficacy, BalbC mice were treated with 2′-O-DMAOE gapmers and a dose-dependent reduction in the targeted C-raf mRNA expression was observed. Oligonucleotides with 2′-O-DMAOE modifications throughout the sequences reduced the intercellular adhesion molecule-1 (ICAM-1) protein expression very efficiently in HUVEC cells with an IC50 of 1.8 nM. The inhibition of ICAM-1 protein expression by these uniformly modified 2′-O-DMAOE oligonucleotides may be due to selective interference with the formation of the translational initiation complex. These results demonstrate that 2′-O-DMAOE- modified oligonucleotides are useful for antisense-based therapeutics when either RNase H-dependent or RNase H-independent target reduction mechanisms are employed.  相似文献   

6.
A salicylic acid (SA)-inducible uridine 5′-diphosphate (UDP)-glucose:SA 3-O-glucosyltransferase was extracted from oat (Avena sativa L. cv Dal) roots. Reverse phase high-performance liquid chromatography or anion exchange chromatography was used to separate SA from the product, β-O-d-glucosylsalicylic acid. The soluble enzyme was purified 176-fold with 5% recovery using a combination of pH fractionation, anion exchange, gel filtration, and chromatofocusing chromatography. The partially purified protein had a native molecular weight of about 50,000, an apparent isoelectric point at pH 5.0, and maximum activity at pH 5.5. The enzyme had a Km of 0.28 mm for UDP-glucose and was highly specific for this sugar donor. More than 20 hydroxybenzoic and hydroxycinnamic acid derivatives were assayed as potential glucose acceptors. UDP-glucose:SA 3-O-glucosyltransferase activity was highly specific toward SA (Km = 0.16 mm). The enzyme was inhibited by UDP and uridine 5′-triphosphate but not by up to 7.5 mm uridine 5′-monophosphate.  相似文献   

7.
Antigenes, which are substances that inhibit gene expression by binding to double-stranded DNA (dsDNA) in a sequence-specific manner, are currently sought for the treatment of various gene-related diseases. As such antigenes, we developed new nuclease-resistant oligopyrimidine nucleotides that are partially modified with 2′-O,4′-C-ethylene nucleic acids (ENA), which are constrained in the C3′-endo conformation and can form a triplex with dsDNA at physiological pH. It was found that these oligonucleotides formed triplexes similarly to those partially modified with 2′-O,4′-C-methylene nucleic acids (2′,4′-BNA or LNA), as determined by UV melting analyses, electromobility shift assays, CD spectral analyses and restriction enzyme inhibition assays. In our studies, oligonucleotides fully modified with ENA have δ torsion angle values that are marginally higher than those of 2′,4′-BNA/LNA. ENA oligonucleotides present in 10-fold the amount of dsDNA were found to be favorable in forming triplexes. These results provide useful information for the future design of triplex-forming oligonucleotides fully modified with such nucleic acids constrained in the C3′-endo conformation considering that oligonucleotides fully modified with 2′,4′-BNA/LNA do not form triplexes.  相似文献   

8.
To investigate the binding of 5′–CpG–3′ sequences by small molecules, two pyrrole (Py)–imidazole (Im) hairpin polyamides, PyImPyIm–γPyImPyIm–βDp (1) and PyIm–βIm–γPyIm–β–Im–β–Dp (2), which recognize the sequence 5′–CGCG–3′, were synthesized. The binding affinities of the 5′–CGCG–3′ sequence to the Py–Im hairpin polyamides were measured by surface plasmon resonance (SPR) analysis. SPR data revealed that dissociation equilibrium constants (Kd) of polyamides 1 and 2 were 1.1 (± 0.3) × 10–6 M and 1.7 (± 0.4) × 10–8 M, respectively. Polyamide 2 possesses great binding affinity for this sequence, 65-fold higher than polyamide 1. Moreover, when all cytosines in 5′–CpGpCpG–3′ were replaced with 5-methylcytosines (mCs), the Kd value of polyamide 2 increased to 5.8 (± 0.7) × 10–9 (M), which indicated about 3-fold higher binding than the unmethylated 5′–CGCG–3′ sequence. These results suggest that polyamide 2 would be suitable to target CpG-rich sequences in the genome.  相似文献   

9.
Eleven RNA hairpins containing 2-aminopurine (2-AP) in either base-paired or single nucleotide bulge loop positions were optically melted in 1 M NaCl; and, the thermodynamic parameters ΔH°, ΔS°, ΔG°37, and TM for each hairpin were determined. Substitution of 2-AP for an A (adenosine) at a bulge position (where either the 2-AP or A is the bulge) in the stem of a hairpin, does not affect the stability of the hairpin. For group II bulge loops such as AA/U, where there is ambiguity as to which of the A residues is paired with the U, hairpins with 2-AP substituted for either the 5′ or 3′ position in the hairpin stem have similar stability. Fluorescent melts were performed to monitor the environment of the 2-AP. When the 2-AP was located distal to the hairpin loop on either the 5′ or 3′ side of the hairpin stem, the change in fluorescent intensity upon heating was indicative of an unpaired nucleotide. A database of phylogenetically determined RNA secondary structures was examined to explore the presence of naturally occurring bulge loops embedded within a hairpin stem. The distribution of bulge loops is discussed and related to the stability of hairpin structures.  相似文献   

10.
The deamination of nucleobases in DNA occurs by a variety of mechanisms and results in the formation of hypoxanthine from adenine, uracil from cytosine, and xanthine and oxanine from guanine. 2′-Deoxyxanthosine (dX) has been assumed to be an unstable lesion in cells, yet no study has been performed under biological conditions. We now report that dX is a relatively stable lesion at pH 7, 37°C and 110 mM ionic strength, with a half-life (t1/2) of 2.4 years in double-stranded DNA. The stability of dX as a 2′-deoxynucleoside (t1/2 = 3.7 min at pH 2; 1104 h at pH 6) was increased substantially upon incorporation into a single-stranded oligodeoxynucleotide, in which the half-life of dX at different pH values was found to range from 7.7 h at pH 2 to 17 700 h at pH 7. Incorporation of dX into a double-stranded oligodeoxynucleotide resulted in a statistically insignificant increase in the half-life to 20 900 h at pH 7. Data for the pH dependence of the stability of dX in single-stranded DNA were used to determine the rate constants for the acid-catalyzed (2.6 × 10–5 s–1) and pH-independent (1.4 × 10–8 s–1) depurination reactions for dX as well as the dissociation constant for the N7 position of dX (6.1 × 10–4 M). We conclude that dX is a relatively stable lesion that could play a role in deamination-induced mutagenesis.  相似文献   

11.
In this study, we characterize the thermodynamics of hybridization, binding kinetics and conformations of four ribose-modified (2′-fluoro, 2′-O-propyl, 2′-O-methoxyethyl and 2′-O-aminopropyl) decameric mixed-sequence oligonucleotides. Hybridization to the complementary non-modified DNA or RNA decamer was probed by fluorescence and circular-dichroism spectroscopy and compared to the same duplex formed between two non-modified strands. The thermal melting points of DNA–DNA duplexes were increased by 1.8, 2.2, 0.3 and 1.3°C for each propyl, methoxyethyl, aminopropyl and fluoro modification, respectively. In the case of DNA–RNA duplexes, the melting points were increased by 3.1, 4.1 and 1.0°C for each propyl, methoxyethyl and aminopropyl modification, respectively. The high stability of the duplexes formed with propyl-, methoxyethyl- and fluoro-modified oligonucleotides correlated with high preorganization in these single-strands. Despite higher thermodynamic duplex stability, hybridization kinetics to complementary DNA or RNA was slower for propyl- and methoxyethyl-modified oligonucleotides than for the non-modified control. In contrast, the positively-charged aminopropyl-modified oligonucleotide showed rapid binding to the complementary DNA or RNA.  相似文献   

12.
The crystal and molecular structure of 2′-O-Me(CGCGCG)2 has been determined at 1.19 Å resolution, at 100 K, using synchrotron radiation. The structure in space group P3212 is a half-turn right-handed helix that includes two 2-methyl-2,4-pentanediol (MPD) molecules bound in the minor groove. The structure deviates from A-form RNA. The duplex is overwound with an average value of 9.7 bp per turn, characterised as having a C3′-endo sugar pucker, very low base pair rise and high helical twist and inclination angles. The structure includes 65 ordered water molecules. Only a single row of water molecules is observed in the minor groove due to the presence of hydrophobic 2′-O-methyl groups. As many as five magnesium ions are located in the structure. Two are in the major groove and interact with O6 and N7 of guanosine and N4 of cytidine residues through their hydration spheres. This work provides the first example of molecular interactions of nucleic acids with MPD, which was used as a precipitant, cryo-solvent and resolution enhancing agent. The two MPD molecules intrude into the hydration network in the minor groove, each forming hydrogen bonds between their secondary hydroxyl group and exo-amino functions of guanosine residues. Comparison of the 2′-O-Me(CGCGCG)2 structure in the P3212 and P6122 crystals delineates stability of the water network within the minor groove to dehydration by MPD and is of interest for evaluating factors governing small molecule binding to RNA. Intrusion of MPD into the minor groove of 2′-O-Me(CGCGCG)2 is discussed with respect to RNA dehydration, a prerequisite of Z-RNA formation.  相似文献   

13.
Design of antisense oligonucleotides stabilized by locked nucleic acids   总被引:24,自引:14,他引:10  
The design of antisense oligonucleotides containing locked nucleic acids (LNA) was optimized and compared to intensively studied DNA oligonucleotides, phosphorothioates and 2′-O-methyl gapmers. In contradiction to the literature, a stretch of seven or eight DNA monomers in the center of a chimeric DNA/LNA oligonucleotide is necessary for full activation of RNase H to cleave the target RNA. For 2′-O-methyl gapmers a stretch of six DNA monomers is sufficient to recruit RNase H. Compared to the 18mer DNA the oligonucleotides containing LNA have an increased melting temperature of 1.5–4°C per LNA depending on the positions of the modified residues. 2′-O-methyl nucleotides increase the Tm by only <1°C per modification and the Tm of the phosphorothioate is reduced. The efficiency of an oligonucleotide in supporting RNase H cleavage correlates with its affinity for the target RNA, i.e. LNA > 2′-O-methyl > DNA > phosphorothioate. Three LNAs at each end of the oligonucleotide are sufficient to stabilize the oligonucleotide in human serum 10-fold compared to an unmodified oligodeoxynucleotide (from t1/2 = ~1.5 h to t1/2 = ~15 h). These chimeric LNA/DNA oligonucleotides are more stable than isosequential phosphorothioates and 2′-O-methyl gapmers, which have half-lives of 10 and 12 h, respectively.  相似文献   

14.
The binding of oligodeoxynucleotides modified with adenine 2′-O-methyl riboside, 2,6-diaminopurine 2′-O-methyl riboside, cytosine 2′-O-methyl riboside, 2,6-diaminopurine deoxyriboside or 5-bromodeoxyuridine was studied with a microarray containing all possible (4096) polyacrylamide-bound hexadeoxynucleotides (a generic microchip). The generic microchip was manufactured by using reductive immobilization of aminooligonucleotides in the activated copolymer of acrylamide, bis-acrylamide and N-(2,2-dimethoxyethyl) acrylamide. The binding of the fluorescently labeled modified octanucleotides to the array was analyzed with the use of both melting profiles and the fluorescence distribution at selected temperatures. Up to three substitutions of adenosines in the octamer sequence by adenine 2′-O-methyl ribosides (Am), 2,6-diaminopurine 2′-O-methyl ribosides (Dm) or 2,6-diaminopurine deoxyribosides (D) resulted in increased mismatch discrimination measured at the melting temperature of the corresponding perfect duplex. The stability of complexes formed by 2′-O-methyl-adenosine-modified oligodeoxynucleotides was slightly decreased with every additional substitution, yielding ~4°C of total loss in melting temperature for three modifications, as followed from microchip thermal denaturation experiments. 2,6-Diaminopurine 2′-O-methyl riboside modifications led to considerable duplex stabilization. The cytosine 2′-O-methyl riboside and 5-bromodeoxyuridine modifications generally did not change either duplex stability or mismatch resolution. Denaturation experiments conducted with selected perfect duplexes on microchips and in solution showed similar results on thermal stabilities. Some hybridization artifacts were observed that might indicate the formation of parallel DNA.  相似文献   

15.
We developed a new fluorescent analog of cytosine, the 4-amino-1H-benzo[g]quinazoline-2-one, which constitute a probe sensitive to pH. The 2′-O-Me ribonucleoside derivative of this heterocycle was synthesized and exhibited a fluorescence emission centered at 456 nm, characterized by four major excitation maxima (250, 300, 320 and 370 nm) and a fluorescence quantum yield of Φ = 0.62 at pH 7.1. The fluorescence emission maximum shifted from 456 to 492 nm when pH was decreased from 7.1 to 2.1. The pKa (4) was close to that of cytosine (4.17). When introduced in triplex forming oligonucleotides this new nucleoside can be used to reveal the protonation state of triplets in triple-stranded structures. Complex formation was detected by a significant quenching of fluorescence emission (~88%) and the N-3 protonation of the quinazoline ring by a shift of the emission maximum from 485 to 465 nm. Using this probe we unambiguously showed that triplex formation of the pyrimidine motif does not require the protonation of all 4-amino-2-one pyrimidine rings.  相似文献   

16.
trans-Sialidase (TS) enzymes catalyze the transfer of sialyl (Sia) residues from Sia(α2-3)Gal(β1-x)-glycans (sialo-glycans) to Gal(β1-x)-glycans (asialo-glycans). Aiming to apply this concept for the sialylation of linear and branched (Gal)nGlc oligosaccharide mixtures (GOS) using bovine κ-casein-derived glycomacropeptide (GMP) as the sialic acid donor, a kinetic study has been carried out with three components of GOS, i.e., 3′-galactosyl-lactose (β3′-GL), 4′-galactosyl-lactose (β4′-GL), and 6′-galactosyl-lactose (β6′-GL). This prebiotic GOS is prepared from lactose by incubation with suitable β-galactosidases, whereas GMP is a side-stream product of the dairy industry. The trans-sialidase from Trypanosoma cruzi (TcTS) was expressed in Escherichia coli and purified. Its temperature and pH optima were determined to be 25°C and pH 5.0, respectively. GMP [sialic acid content, 3.6% (wt/wt); N-acetylneuraminic acid (Neu5Ac), >99%; (α2-3)-linked Neu5Ac, 59%] was found to be an efficient sialyl donor, and up to 95% of the (α2-3)-linked Neu5Ac could be transferred to lactose when a 10-fold excess of this acceptor substrate was used. The products of the TcTS-catalyzed sialylation of β3′-GL, β4′-GL, and β6′-GL, using GMP as the sialic acid donor, were purified, and their structures were elucidated by nuclear magnetic resonance spectroscopy. Monosialylated β3′-GL and β4′-GL contained Neu5Ac connected to the terminal Gal residue; however, in the case of β6′-GL, TcTS was shown to sialylate the 3 position of both the internal and terminal Gal moieties, yielding two different monosialylated products and a disialylated structure. Kinetic analyses showed that TcTS had higher affinity for the GL substrates than lactose, while the Vmax and kcat values were higher in the case of lactose.  相似文献   

17.
The synthesis of N4-benzoyl-5′-O-dimethoxytrityl-2′,3′-dideoxy-3′-thiocytidine and its phosphorothioamidite is described for the first time, together with a shortened procedure for the preparation of 5′-O-dimethoxytrityl-3′-deoxy-3′-thiothymidine and its corresponding phosphorothioamidite. The first fully automated coupling procedure for the incorporation of a phosphorothioamidite into a synthetic oligodeoxynucleotide has been developed, which conveniently uses routine activators and reagents. Coupling yields using this protocol were in the range of 85–90% and good yields of singularly modified oligonucleotides were obtained. Coupling yields were also equally good when performed on either a 0.2 or 1 µmol reaction column, thus facilitating large scale syntheses required for mechanistic studies.  相似文献   

18.
1. The formation of adenosine 5′-phosphate, guanosine 5′-phosphate and inosine 5′-phosphate from [8-14C]adenine, [8-14C]guanine and [8-14C]hypoxanthine respectively in the presence of 5-phosphoribosyl pyrophosphate and an extract from Ehrlich ascites-tumour cells was assayed by a method involving liquid-scintillation counting of the radioactive nucleotides on diethylaminoethylcellulose paper. The results obtained with guanine were confirmed by a spectrophotometric assay which was also used to assay the conversion of 6-mercaptopurine and 5-phosphoribosyl pyrophosphate into 6-thioinosine 5′-phosphate in the presence of 6-mercaptopurine phosphoribosyltransferase from these cells. 2. At pH 7·8 and 25° the Michaelis constants for adenine, guanine and hypoxanthine were 0·9 μm, 2·9 μm and 11·0 μm in the assay with radioactive purines; the Michaelis constant for guanine in the spectrophotometric assay was 2·6 μm. At pH 7·9 the Michaelis constant for 6-mercaptopurine was 10·9 μm. 3. 25 μm-6-Mercaptopurine did not inhibit adenine phosphoribosyltransferase. 6-Mercaptopurine is a competitive inhibitor of guanine phosphoribosyltransferase (Ki 4·7 μm) and hypoxanthine phosphoribosyltransferase (Ki 8·3 μm). Hypoxanthine is a competitive inhibitor of guanine phosphoribosyltransferase (Ki 3·4 μm). 4. Differences in kinetic parameters and in the distribution of phosphoribosyltransferase activities after electrophoresis in starch gel indicate that different enzymes are involved in the conversion of adenine, guanine and hypoxanthine into their nucleotides. 5. From the low values of Ki for 6-mercaptopurine, and from published evidence that ascites-tumour cells require supplies of purines from the host tissues, it is likely that inhibition of hypoxanthine and guanine phosphoribosyltransferases by free 6-mercaptopurine is involved in the biological activity of this drug.  相似文献   

19.
Antisense oligodeoxynucleotides (ODNs) have biological activity in treating various forms of cancer. The antisense effects of two types of 20mer ODNs, phosphorothioate-modified ODNs (S-ODNs) and S-ODNs with 12 2′-O-methyl groups (Me-S-ODNs), targeted to sites 109 and 277 of bcl-2 mRNA, were compared. Both types were at least as effective as G3139 (Genta, Inc.) in reducing the level of Bcl-2 protein in T24 cells following a 4 h transfection at a dose of 0.1 µM. Circular dichroism spectra showed that both types formed A-form duplexes with the complementary RNA, and the melting temperatures were in the order of Me-S-ODN·RNA > normal DNA·RNA > S-ODN·RNA. In comparison with the S-ODN, the Me-S-ODN had reduced toxic growth inhibitory effects, was less prone to bind the DNA-binding domain A of human replication protein A, and was as resistant to serum nucleases. Neither type of oligomer induced apoptosis, according to a PARP-cleavage assay. Hybrids formed with Me-S-ODN sequences were less sensitive to RNase H degradation than those formed with S-ODN sequences. Despite this latter disadvantage, the addition of 2′-O-methyl groups to a phosphorothioate-modified ODN is advantageous because of increased stability of binding and reduced non-specific effects.  相似文献   

20.
The reaction mechanism for the formation of 2′-deoxyoxanosine from 2′-deoxyguanosine by nitrous acid was explored using methyl derivatives of guanosine and an isolated intermediate of the reaction. When 1-methylguanosine was incubated with NaNO2 under acidic conditions, N5-methyloxanosine and 1-methylxanthosine were generated, whereas the same treatment of N2,N2-dimethylguanosine generated no product. In a similar experiment without NO2, participation of a Dimroth rearrangement was ruled out. In the guanosine–HNO2 reaction system, an intermediate with a half-life of 5.6 min (pH 7.0, 20°C) was isolated and tentatively identified as a diazoate derivative of guanosine. The diazoate intermediate was converted into oxanosine and xanthosine at a molar ratio (oxanosine:xanthosine) of 0.26 at pH 7.0 and 20°C. The ratio was not affected by the incubation pH between 2 and 10, but increased linearly with temperature from 0.22 (0°C) to 0.32 (50°C). The addition of acetone also increased the ratio up to 0.85 (98% acetone). Based on these results, a con-ceivable pathway for the formation of 2′-deoxyoxanosine from 2′-deoxyguanosine by HNO2 is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号