首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An unusual, spontaneous, phage sk1-resistant mutant (RMSK1/1) of Lactococcus lactis C2 apparently blocks phage DNA entry into the host. Although no visible plaques formed on RMSK1/1, this host propagated phage at a reduced efficiency. This was evident from center-of-infection experiments, which showed that 21% of infected RMSK1/1 formed plaques when plated on its phage-sensitive parental strain, C2. Moreover, viable cell counts 0 and 4 h after infection were not significantly different from those of an uninfected culture. Further characterization showed that phage adsorption was normal, but burst size was reduced fivefold and the latent period was increased from 28.5 to 36 min. RMSK1/1 was resistant to other, but not all, similar phages. Phage sensitivity was restored to RMSK1/1 by transformation with a cloned DNA fragment from a genomic library of a phage-sensitive strain. Characterization of the DNA that restored phage sensitivity revealed an open reading frame with similarity to sequences encoding lysozymes (beta-1,4-N-acetylmuramidase) and lysins from various bacteria, a fungus, and phages of Lactobacillus and Streptococcus and also revealed DNA homologous to noncoding sequences of temperate phage of L. lactis, DNA similar to a region of phage sk1, a gene with similarity to tRNA genes, a prophage attachment site, and open reading frames with similarities to sun and to sequences encoding phosphoprotein phosphatases and protein kinases. Mutational analyses of the cloned DNA showed that the region of homology with lactococcal temperate phage was responsible for restoring the phage-sensitive phenotype. The region of homology with DNA of lactococcal temperate phage was similar to DNA from a previously characterized lactococcal phage that suppresses an abortive infection mechanism of phage resistance. The region of homology with lactococcal temperate phage was deleted from a phage-sensitive strain, but the strain was not phage resistant. The results suggest that the cloned DNA with homology to lactococcal temperate phage was not mutated in the phage-resistant strain. The cloned DNA apparently suppressed the mechanism of resistance, and it may do so by mimicking a region of phage DNA that interacts with components of the resistance mechanism.  相似文献   

2.
Resistance of Lactococcus lactis subsp. cremoris SK110 to bacteriophage sk11G, encoded on the plasmid pSK112, is due to poor phage adsorption. Its phage-sensitive variant SK112, cured of pSK112, adsorbs phages effectively. Incubation of SK112 with concanavalin A remarkably reduced phage adsorption to this strain. This treatment also caused agglutination of SK112 that was not found with SK110, indicating different concanavalin A adsorption characteristics of cell walls of both strains. The differences between the two strains were reduced by a mild alkali treatment of cells. This resulted in a positive agglutination with concanavalin A for both strains and in parallel adsorption of phage sk11G to both. Moreover, isolated cell walls of the two strains were investigated, and both bound phage sk11G. These observations suggest the presence of phage receptor material in SK112 as well as in SK110. SK110 contained a relatively high level of bound galactose when compared with the phage-sensitive SK112. After the mild alkali treatment, however, the galactose content of SK110 was diminished such that it became comparable with that of SK112. It is hypothesized that the alkali treatment liberates a galactose-containing component from the cell wall and causes phage sensitivity in L. lactis subsp. cremoris SK110.  相似文献   

3.
Plasmids carrying the cohesive end region from temperate lactococcal bacteriophage ΦLC3 could be packaged in vivo by ΦLC3 and transduced into its host strain, Lactococcus lactis subsp. cremoris NCDO 1201. The transduction frequencies were between 10-4 and 10-3 transducing particles per PFU, depending on the size of the phage DNA insert. This transduction system is limited to only certain lactococcal strains. The ΦLC3 cohesive site region (cos) appears to play an important role in plasmid transduction.  相似文献   

4.
Lactococcus lactis subsp. cremoris strains are used globally for the production of fermented dairy products, particularly hard cheeses. Believed to be of plant origin, L. lactis strains that are used as starter cultures have undergone extensive adaptation to the dairy environment, partially through the acquisition of extrachromosomal DNA in the form of plasmids that specify technologically important phenotypic traits. Here, we present a detailed analysis of the eight plasmids of L. lactis UC509.9, an Irish dairy starter strain. Key industrial phenotypes were mapped, and genes that are typically associated with lactococcal plasmids were identified. Four distinct, plasmid-borne bacteriophage resistance systems were identified, including two abortive infection systems, AbiB and AbiD1, thereby supporting the observed phage resistance of L. lactis UC509.9. AbiB escape mutants were generated for phage sk1, which were found to carry mutations in orf6, which encodes the major capsid protein of this phage.  相似文献   

5.
The mechanism of the initial steps of bacteriophage infection in Lactococcus lactis subsp. lactis C2 was investigated by using phages c2, ml3, kh, l, h, 5, and 13. All seven phages adsorbed to the same sites on the host cell wall that are composed, in part, of rhamnose. This was suggested by rhamnose inhibition of phage adsorption to cells, competition between phage c2 and the other phages for adsorption to cells, and rhamnose inhibition of lysis of phage-inoculated cultures. The adsorption to the cell wall was found to be reversible upon dilution of the cell wall-adsorbed phage. In a reaction step that apparently follows adsorption to the cell wall, all seven phages adsorbed to a host membrane protein named PIP. This was indicated by the inability of all seven phages to infect a strain selected for resistance to phage c2 and known to have a defective PIP protein. All seven phages were inactivated in vitro by membranes from wild-type cells but not by membranes from the PIP-defective, phage c2-resistant strain. The mechanism of membrane inactivation was an irreversible adsorption of the phage to PIP, as indicated by adsorption of [35S] methionine-labeled phage c2 to purified membranes from phage-sensitive cells but not to membranes from the resistant strain, elimination of adsorption by pretreatment of the membranes with proteinase K, and lack of dissociation of 35S from the membranes upon dilution. Following membrane adsorption, ejection of phage DNA occurred rapidly at 30°C but not at 4°C. These results suggest that many lactococcal phages adsorb initially to the cell wall and subsequently to host cell membrane protein PIP, which leads to ejection of the phage genome.  相似文献   

6.
The mechanism of reduced sensitivity to the small isometric-headed bacteriophage sk1 encoded on a 19-kilobase (kb) HpaII fragment subcloned from pKR223 of Lactococcus lactis subsp. lactis KR2 was examined. The reduced sensitivity to phage sk1 was due to a modest restriction/modification (R/M) system that was not active against prolate-headed phage c2. The genetic loci for the R/M system against sk1 and the abortive phage infection (Abi) mechanism effective against phage c2 were then localized by restriction mapping, subcloning, and deletion analysis. The restriction gene was localized to a region of a 2.7-kb EcoRV fragment and included an EcoRI site within that fragment. The modification gene was found to be physically separable from the restriction gene and was present on a 1.75-kb BstEII-XbaI fragment. The genetic locus for the Abi phenotype against phage c2 was localized to a region containing a 1.3-kb EcoRI fragment. Attempts to clone the c2 Abi mechanism independent of the sk1 R/M system were unsuccessful, suggesting that expression of the abi genes required sequences upstream of the modification gene. Some pGBK17 (vector pGB301 plus a 19-kb HpaII insert fragment) transformants exhibited the R/M system against phage sk1 but lost the Abi mechanism against phage c2. These transformants contained a 1.2- to 1.3-kb insertion in the Abi region. The data identified genetic loci on a cloned 19-kb HpaII fragment responsible for restriction activity and for modification activity against a small isometric-headed phage and for Abi activity against prolate-headed phage c2. A putative insertion element was also found to inactivate the abi gene(s).  相似文献   

7.
The phage insensitivity gene of lactococcal plasmid pCI829 which encodes an abortive infection defense mechanism (Abi) was inserted into the Lactococcus lactis subsp. lactis CH919 chromosome by utilizing the integration plasmid pCI194, which contains 4.2 kb of homology with the conjugative transposon Tn919. Chloramphenicol-resistant transformants expressed phage insensitivity to the prolate-headed phage c2 and the small isometric-headed phage 712, and hybridization analysis indicated that transformants contained pCI194 integrated in single copy. The level of phage insensitivity expressed by the transformants was reduced from that observed when the abi gene was located on a replicating plasmid, as determined by plaque assay and burst size analysis. Amplification of the integrated structure after growth in increased concentrations of chloramphenicol resulted in an increase in the expression of phage insensitivity. Hybridization analysis revealed that while pCI194 was stably maintained in an integrated state over 100 generations in the absence of selective pressure, the ability to express phage insensitivity was lost. Hybridization analysis also revealed that DNA flanking the abi gene contains homology to the CH919 chromosome.  相似文献   

8.
We report the genetic organisation of six prophages present in the genome of Lactococcus lactis IL1403. The three larger prophages (36–42 kb), belong to the already described P335 group of temperate phages, whereas the three smaller ones (13–15 kb) are most probably satellites relying on helper phage(s) for multiplication. These data give a new insight into the genetic structure of lactococcal phage populations. P335 temperate phages have variable genomes, sharing homology over only 10–33% of their length. In contrast, virulent phages have highly similar genomes sharing homology over >90% of their length. Further analysis of genetic structure in all known groups of phages active on other bacterial hosts such as Escherichia coli, Bacillus subtilis, Mycobacterium and Streptococcus thermophilus confirmed the existence of two types of genetic structure related to the phage way of life. This might reflect different intensities of horizontal DNA exchange: low among purely virulent phages and high among temperate phages and their lytic homologues. We suggest that the constraints on genetic exchange among purely virulent phages reflect their optimal genetic organisation, adapted to a more specialised and extreme form of parasitism than temperate/lytic phages.  相似文献   

9.
Thirteen virulent phages and two temperate phages of two closely related bacterial species (Lactobacillus lactis and L. bulgaricus) were compared for their protein composition, their antigenic properties, their restriction endonuclease patterns, and their DNA homology. The immunoblotting studies and the DNA-DNA hybridizations showed that the phages could be differentiated into two groups. One group contained 2 temperate phages of L. bulgaricus and 11 virulent phages of L. lactis. Inside each group, at least two common proteins of identical sizes could be detected for each phage. These proteins were able to cross-react in immunoblotting experiments with an antiserum raised against one phage of the same group. Temperate phage DNAs showed partial homology with DNAs from some virulent phages. These homologies seem to be located on the region coding for the structural proteins since recombinant plasmids coding for one of the major phage proteins of one phage were able to hybridize with the DNAs from phages of the same group. These results suggest that temperate and virulent phages may be related to one another.  相似文献   

10.
Summary Phage adsorption tests and transfection by electroporation were carried out to decide whether phage-resistance in Lactococcus lactis subsp. lactis strain 4513-5 is based on intracellular or extracellular mechanisms. Using high voltage (12.5 kV/cm) electroporation, untreated phage DNA was introduced into phage-sensitive and phage-resistant cells. Since phages showed low adsorption frequencies on resistant bacteria, resistance is localized in the cell wall preventing phage DNA from entering the cell. This is the only mechanism responsible for the resistance of L. lactis subsp. lactis 4513-5 against its homologous phage P4513-K12 and non-homologous phages P05M-13 and P05M-47, but not against phage P530-7 and phage P530-12. In the case of the latter two phage strains, intracellular resistance mechanisms are involved and discussed.  相似文献   

11.
Superinfection exclusion (Sie) proteins are prophage-encoded phage resistance systems. In this study, genes encoding Sie systems were identified on the genomes of Lactococcus lactis subsp. cremoris MG1363 and L. lactis subsp. lactis IL1403. These Sie systems are genetically distinct and yet were shown to act specifically against a particular subset of the 936 phage group. Each of the systems allows normal phage adsorption while affecting plasmid transduction and intracellular phage DNA replication, which points to the blocking of phage DNA injection as their common mode of action. Sie-specifying genes found on the MG1363 prophages are also present in various lactococcal strains, whereas the prophage-encoded Sie systems of IL1403 do not appear to be as widely disseminated.  相似文献   

12.
The complete genome sequences of two dairy phages, Streptococcus thermophilus phage 7201 and Lactobacillus casei phage A2, are reported. Comparative genomics reveals that both phages are members of the recently proposed Sfi21-like genus of Siphoviridae, a widely distributed phage type in low-GC-content gram-positive bacteria. Graded relatedness, the hallmark of evolving biological systems, was observed when different Sfi21-like phages were compared. Across the structural module, the graded relatedness was represented by a high level of DNA sequence similarity or protein sequence similarity, or a shared gene map in the absence of sequence relatedness. This varying range of relatedness was found within Sfi21-like phages from a single species as demonstrated by the different prophages harbored by Lactococcus lactis strain IL1403. A systematic dot plot analysis with 11 complete L. lactis phage genome sequences revealed a clear separation of all temperate phages from two classes of virulent phages. The temperate lactococcal phages share DNA sequence homology in a patchwise fashion over the nonstructural gene cluster. With respect to structural genes, four DNA homology groups could be defined within temperate L. lactis phages. Closely related structural modules for all four DNA homology groups were detected in phages from Streptococcus or Listeria, suggesting that they represent distinct evolutionary lineages that have not uniquely evolved in L. lactis. It seems reasonable to base phage taxonomy on data from comparative genomics. However, the peculiar modular nature of phage evolution creates ambiguities in the definition of phage taxa by comparative genomics. For example, depending on the module on which the classification is based, temperate lactococcal phages can be classified as a single phage species, as four distinct phage species, or as two if not three different phage genera. We propose to base phage taxonomy on comparative genomics of a single structural gene module (head or tail genes). This partially phylogeny-based taxonomical system still mirrors some aspects of the current International Committee on Taxonomy in Virology classification system. In this system the currently sequenced lactococcal phages would be grouped into five genera: c2-, sk1, Sfi11-, r1t-, and Sfi21-like phages.  相似文献   

13.
Lactococcus lactis subsp. lactis 425A is an atypical strain which excretes a high concentration of α-acetolactate when grown in milk. The conjugative lactococcal plasmid pNP40, which encodes phage and nisin resistance, was introduced to strain 425A by conjugation, using resistance to phage and nisin as a selection. No phage-nisin resistance mutants were encountered. Transconjugants display complete resistance at both 21 and 39°C to those phage previously identified as lytic for 425A. Transconjugants lose their resistance characteristics when spontaneously cured of pNP40. The commercially important property of 425A—production of high levels of α-acetolactic acid—is unaffected by the presence of pNP40.  相似文献   

14.
Prophage Lrm1 was induced with mitomycin C from an industrial Lactobacillus rhamnosus starter culture, M1. Electron microscopy of the lysate revealed relatively few intact bacteriophage particles among empty heads and disassociated tails. The defective Siphoviridae phage had an isometric head of approximately 55 nm and noncontractile tail of about 275 nm with a small baseplate. In repeated attempts, the prophage could not be cured from L. rhamnosus M1, nor could a sensitive host be identified. Sequencing of the phage Lrm1 DNA revealed a genome of 39,989 bp and a G+C content of 45.5%. A similar genomic organization and mosaic pattern of identities align Lrm1 among the closely related Lactobacillus casei temperate phages A2, ΦAT3, and LcaI and with L. rhamnosus virulent phage Lu-Nu. Of the 54 open reading frames (ORFs) identified, all but 8 shared homology with other phages of this group. Five unknown ORFs were identified that had no homologies in the databases nor predicted functions. Notably, Lrm1 encodes a putative endonuclease and a putative DNA methylase with homology to a methylase in Lactococcus lactis phage Tuc2009. Possibly, the DNA methylase, endonuclease, or other Lrm1 genes provide a function crucial to L. rhamnosus M1 survival, resulting in the stability of the defective prophage in its lysogenic state. The presence of a defective prophage in an industrial strain could provide superinfection immunity to the host but could also contribute DNA in recombination events to produce new phages potentially infective for the host strain in a large-scale fermentation environment.  相似文献   

15.
Recombinant phages are generated when Lactococcus lactis subsp. lactis harboring plasmids encoding the abortive type (Abi) of phage resistance mechanisms is infected with small isometric phages belonging to the P335 species. These phage variants are likely to be an important source of virulent new phages that appear in dairy fermentations. They are distinguished from their progenitors by resistance to Abi defenses and by altered genome organization, including regions of L. lactis chromosomal DNA. The objective of this study was to characterize four recombinant variants that arose from infection of L. lactis NCK203 (Abi+) with phage 31. HindIII restriction maps of the variants (31.1, 31.2, 31.7, and 31.8) were generated, and these maps revealed the regions containing recombinant DNA. The recombinant region of phage 31.1, the variant that occurred most frequently, was sequenced and revealed 7.8 kb of new DNA compared with the parent phage, 31. This region contained numerous instances of homology with various lactococcal temperate phages, as well as homologues of the lambda recombination protein BET and Escherichia coli Holliday junction resolvase Rus, factors which may contribute to efficient recombination processes. A sequence analysis and phenotypic tests revealed a new origin of replication in the 31.1 DNA, which replaced the 31 origin. Three separate HindIII fragments, accounting for most of the recombinant region of 31.1, were separately cloned into gram-positive suicide vector pTRK333 and transformed into NCK203. Chromosomal insertions of each plasmid prevented the appearance of different combinations of recombinant phages. The chromosomal insertions did not affect an inducible prophage present in NCK203. Our results demonstrated that recombinant phages can acquire DNA cassettes from different regions of the chromosome in order to overcome Abi defenses. Disruption of these regions by insertion can alter the types and diversity of new phages that appear during phage-host interactions.  相似文献   

16.
A bacteriophage of a certain Staphylococcus (a strain of Staphylococcus lactis) employed in the manufacture of dry sausage has been characterized. The host range of this bacteriophage is wide. In addition to the original host, 15 other strains (out of 40 strains tested) were found to support reproduction of the phage. The sensitive strains represented Staphylococcus saprophyticus and different types of S. lactis.

The growth rate of the bacterial host did not influence the rates of phage adsorption, nor the maximal reproduction rate of new particles. With increasing bacterial growth rate, the “lag” observed before phage reproduction started was distinctly decreased. This phase was shorter with the original host strain than with other sensitive strains.

Resistant cultures of the original host strain were easily obtained. These cultures grew as rapidly and gave as good yields of cell mass as the original phage-sensitive host. However, phage resistance was frequently lost.

  相似文献   

17.
The 7.8-kb lactococcal plasmid pSRQ700 encodes the LlaII restriction/modification system which recognizes and cleaves the sequence 3(prm1)-GATC-5(prm1). When the plasmid pSRQ700 is introduced into a phage-sensitive Lactococcus lactis strain, strong phage resistance is conferred by the LlaII system. In this report, we show that pSRQ700 cannot replicate in Streptococcus thermophilus. However, if cloned into the vector pNZ123, the native LlaII system is expressed and strong phage resistance is conferred to various industrial S. thermophilus strains. Resistance against phages isolated from yogurt and mozzarella wheys was observed. To our knowledge, this is the first report of increased phage resistance in S. thermophilus.  相似文献   

18.
The natural plasmid pSRQ800 isolated from Lactococcus lactis subsp. lactis W1 conferred strong phage resistance against small isometric phages of the 936 and P335 species when introduced into phage-sensitive L. lactis strains. It had very limited effect on prolate phages of the c2 species. The phage resistance mechanism encoded on pSRQ800 is a temperature-sensitive abortive infection system (Abi). Plasmid pSRQ800 was mapped, and the Abi genetic determinant was localized on a 4.5-kb EcoRI fragment. Cloning and sequencing of the 4.5-kb fragment allowed the identification of two large open reading frames. Deletion mutants showed that only orf1 was needed to produce the Abi phenotype. orf1 (renamed abiK) coded for a predicted protein of 599 amino acids (AbiK) with an estimated molecular size of 71.4 kDa and a pI of 7.98. DNA and protein sequence alignment programs found no significant homology with databases. However, a database query based on amino acid composition suggested that AbiK might be in the same protein family as AbiA. No phage DNA replication nor phage structural protein production was detected in infected AbiK+ L. lactis cells. This system is believed to act at or prior to phage DNA replication. WHen cloned into a high-copy vector, AbiK efficiency increased 100-fold. AbiK provides another powerful tool that can be useful in controlling phages during lactococcal fermentations.  相似文献   

19.
The aim of this work was to identify genes responsible for host recognition in the lactococcal phages sk1 and bIL170 belonging to species 936. These phages have a high level of DNA identity but different host ranges. Bioinformatic analysis indicated that homologous genes, orf18 in sk1 and orf20 in bIL170, could be the receptor-binding protein (RBP) genes, since the resulting proteins were unrelated in the C-terminal part and showed homology to different groups of proteins hypothetically involved in host recognition. Consequently, chimeric bIL170 phages carrying orf18 from sk1 were generated. The recombinant phages were able to form plaques on the sk1 host Lactococcus lactis MG1614, and recombination was verified by PCR analysis directly with the plaques. A polyclonal antiserum raised against the C-terminal part of phage sk1 ORF18 was used in immunogold electron microscopy to demonstrate that ORF18 is located at the tip of the tail. Sequence analysis of corresponding proteins from other lactococcal phages belonging to species 936 showed that the N-terminal parts of the RBPs were very similar, while the C-terminal parts varied, suggesting that the C-terminal part plays a role in receptor binding. The phages investigated could be grouped into sk1-like phages (p2, fd13, jj50, and 7) and bIL170-like phages (P008, P113G, P272, and bIL66) on the basis of the homology of their RBPs to the C-terminal part of ORF18 in sk1 and ORF20 in bIL170, respectively. Interestingly, sk1-like phages bind to and infect a defined group of L. lactis subsp. cremoris strains, while bIL170-like phages bind to and infect a defined group of L. lactis subsp. lactis strains.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号