首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When E. coli outer membrane protein is dissolved in sodium dodecyl sulfate (SDS) solution and boiled briefly, a single major peak (peak B) with a molecular weight of 42,000 daltons is observed on SDS-containing polyacrylamide gels. If the protein is dissolved in SDS solution at 37 °C and applied to gels without further treatment, peak B disappears and two other major peaks appear: Peak A, which is composed of aggregates and migrates more slowly than peak B, and peak C which is composed of monomeric protein not fully reacted with SDS and which migrates faster than peak B. When cyanogen bromide peptides of protein from peak A and peak C were compared, it was evident that peak A and peak C contained entirely different polypeptides. This was further confirmed by differential labeling studies with methionine and leucine. The cyanogen bromide peptide profiles of protein from peak A suggested that this peak was composed of two polypeptides, and this was confirmed by electrophoresis in an alkaline gel system which resolves peak B into three subcomponents. Two of these were derived from peak A and the third was derived from peak C. These results indicate that the outer membrane of E. coli contains at least three nonidentical major polypeptides, each of which has a nearly identical molecular weight of about 42,000 daltons. These polypeptides are present in identical proportions in the soluble and insoluble fractions obtained when the outer membrane is treated with Triton X-100 plus EDTA.  相似文献   

2.
Previous studies have shown that the outer membrane of Escherichia coli O111 gives a single, major, 42,000-dalton protein peak when analyzed by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis at neutral pH. Further studies have shown that this peak consists of more than a single polypeptide species, and on alkaline SDS-gel electrophoresis this single peak is resolved into three subcomponents designated as proteins 1, 2, and 3. By chromatography of solubilized, outer membrane protein on diethylaminoethyl-cellulose followed by chromatography on Sephadex G-200 in the presence of SDS, it was possible to separate the 42,000-dalton major protein into four distinct protein fractions. Comparison of cyanogen bromide peptides derived from these fractions indicated that they represented at least four distinct polypeptide species. Two of these proteins migrated as proteins 1 and 2 on alkaline gels. The other two proteins migrated as protein 3 on alkaline gels and cannot be separated by SDS-polyacrylamide gel electrophoresis. In purified form, these major proteins do not contain bound lipopolysaccharide, phospholipid, or phosphate. These proteins may contain a small amount of carbohydrate, as evidenced by the labeling of these proteins by glucosamine, and to a lesser extent by glucose, under conditions where the metabolism of these sugars to amino acids and lipids is blocked. All of the proteins were labeled to the same extent by these sugars. Thus, it was concluded that there are at least four distinct polypeptide species with apparent molecular masses of about 42,000 daltons in the outer membrane of E. coli O111.  相似文献   

3.
Choline acetyltransferase (ChAT; EC 2.3.1.6) was purified from the heads of Schistocerca gregaria to a final specific activity of 1.61 mumol acetylcholine (ACh) formed min-1 mg-1 protein. The molecular mass of the enzyme as determined by gel filtration is 66,800 daltons. The final enzyme preparation showed one major band at 65,000 daltons on sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis, which corresponds with the native molecular mass of the enzyme, a band at 56,000 daltons, and two bands at 40,500 and 38,000 daltons. Antibodies raised against ChAT in rabbit react only with the active band on native gel after Western blotting. They strongly react with the 65,000-dalton polypeptide band on Western blots of SDS gel separation of pure preparation of enzyme and with both the 65,000- and 56,000-dalton bands after SDS gel separation of crude extract.  相似文献   

4.
Lipopolysaccharide (LPS) bound to isolated porin was detected on polyacrylamide gels by using a carbohydrate-specific silver stain and on Western blots by using anti-lipid A monoclonal antibodies. Porin was isolated from Escherichia coli JF733 (Ra chemotype) and D21f2 (Re chemotype). Isolated porin was separated from loosely associated LPS by polyacrylamide gel electrophoresis (PAGE) in sodium dodecyl sulfate (SDS). Unheated porin traveled on gels as aggregates, presumably trimers, with an apparent molecular weight of 78,000 to 83,000. After heating to 100 degrees C for 2 min in SDS, the porin traveled as a monomer with a molecular weight of 36,000. The unheated, high-molecular-weight trimer band reacted in the gel with the carbohydrate-specific silver stain, while the heated monomer band showed no staining. In contrast, lipid A-specific monoclonal antibodies showed reactivity on Western blots to the 36,000-molecular-weight band but not to the trimer. Finally, both monomer and trimer bands were isolated from gels and rerun by SDS-PAGE. LPS was released from the trimer preparation when the sample was heated, but the monomer band that was formed by heating the trimer isolate still reacted with anti-lipid A antibodies. Quantitative Limulus amebocyte lysate analysis revealed an approximately equal molar ratio of LPS to protein in the electroeluted porin monomer. Thus, some but not all of the LPS could be released from trimer complexes by boiling in SDS. The isolated monomer did not release more LPS on boiling in SDS a second time but still had LPS tightly bound, as detected by lipid A-specific monoclonal antibodies.  相似文献   

5.
A subunit with carboxymethyl cellulase (CMCase) activity was isolated from the cellulosomes of Clostridium thermocellum after dissociation of the cellulosomes by a mild sodium dodecyl sulfate (SDS) treatment. The subunit displayed only one protein band of 51 kDa on SDS-polyacrylamide gel electrophoresis (SDS-PAGE), but after boiling with SDS it had 3 bands of 60, 56, and 48 kDa. Prolonged incubation with SDS changed the subunit to display exclusively the 48-kDa band after boiling. The 51-kDa subunit was presumably a partially denatured form, and differentiated into 3 species with apparent M(r) of 60, 56, and 48 k through deglycosylation in SDS solution. Enzymatic properties of the 51-kDa subunit resembled those of the endoglucanase A which was purified from the culture fluid and from a E. coli clone with exceptions of temperature and pH optima.  相似文献   

6.
HeLa cells infected with adenovirus type 2 (Ad2)-simian virus 40 (SV40) hybrid viruses produce several SV40-specific proteins. These include the previously reported 28,000-dalton protein of Ad2+ND1, and 42,000- and 56,000-dalton proteins of Ad2+ND2, the 56,000-dalton protein of Ad2+ND4, and the 42,000-dalton protein of Ad2+ND5. In this report, we extend the list of SV40-specific proteins induced by Ad2+ND4 to include proteins of apparent molecular weights of 28,000 42,000, 60,000, 64,000, 72,000, 74,000, and a doublet of 95,000. Cell fractionation studies demonstrate that the SV40-specific proteins are detectable in the nuclear, cytoplasmic, and plasma membrane fractions. By pulse-chase and cell fractionation experiments, three classes of SV40-specific proteins can be distinguished with regard to metabolic stability: (i) unstable in the cytoplasmic but stable in the nuclear and plasma membrane fractions; (ii) stable in the nuclear, cytoplasmic, and plasma membrane fractions; and (iii) unstable in all subcellular fractions. Immunoprecipitation of infected cell extracts demonstrates that most of the above proteins share antigenic determinants with proteins expressed in hamsters bearing SV40-induced tumors. Only the 42,000-dalton protein of Ad2+ND5 is not immunoprecipitable.  相似文献   

7.
Three distinct proteins, actin (42,000 daltons), the principal form of fibroblast 10 nm filament protein (55,000 daltons), and a protein with a molecular weight of 52,000 and a pI of 5.8 were detected in nonionic detergent-insoluble cytoskeletal and 10 nm filament preparations of control BHK21/C13 and line 9 hamster fibroblasts. Cytoskeletal preparations of other hamster fibroblast cell types, such as NIL8 and primary embryo fibroblasts, contained the 55,000-dalton component but lacked the 52,000-dalton protein. A Rous sarcoma virus transformant of the BHK21/C13 line and an adenovirus transformant of line 9, resembled the NIL8 and other fibroblast types in that they contained only the 55,000- and 42,000-dalton polypeptides. The identity of the 52,000-dalton protein in BHK21/C13 cells was studied. This protein co-electrophoreses on both one- and two-dimensional polyacrylamide gels with the predominant muscle form of 10 nm filament protein. Further, one-dimensional peptide maps of the hamster smooth muscle 10 nm filament protein and the hamster fibroblast 52,000-dalton protein are identical to one another and distinct from the peptide maps of both the 42,000- and the 55,000-dalton components of the fibroblast cytoskeletal preparations. We conclude that BHK21/C13 cells contain both the fibroblast and the muscle form of 10 nm filament protein.  相似文献   

8.
A direct comparison of the asymmetry properties of phosphofructokinases (PFK) from two functionally different mammalian tissues has been made by determining the intrinsic viscosities of rabbit muscle PFK and pig kidney PFK at 3.5°C. The intrinsic viscosity of the muscle PFK is 6.9 cc/g, which is significantly higher than for typical globular proteins (3 to 4 cc/g). Furthermore, the intrinsic viscosity of the kidney PFK, 34.0 cc/g, is dramatically higher, indicating a highly asymmetric enzyme. Hence, both phosphofructokinases are asymmetric, but they differ markedly in degree of asymmetry and, therefore, in structure. These studies open up an important new area of investigation of this key group of asymmetric, regulatory enzymes.  相似文献   

9.
SDS electrophoresis gels of complex III from yeast mitochondria were run after incubation of the enzyme at several different temperatures. It was found that the intensity of the more slowly moving core protein band was substantially affected by the incubation temperature. Four low molecular weight polypeptides were eluted from gels electrophoresed after preincubation of the enzyme at 15° C for 12 hours. These polypeptides were then incubated for 5 minutes at 100° followed by SDS gel electrophoresis. A polypeptide with the same molecular weight as the anomalous core protein was resolved.  相似文献   

10.
Preparations containing Type II (immune induced) interferon suppressed the immune response to sheep erythrocytes (SRBC) both in vitro and in vivo. Type II interferon preparations were 250 times more active in immunosuppression than Type I (L cell) interferon preparations in parallel experiments. The antiviral and immunosuppressive activities shared several unique physical-chemical activities including pH 2 lability, 56 °C stability, and resistance to inactivation by anti-L-cell interferon antibody. Both activities were denatured by boiling at 100 °C for 2.5 min, but were not renatured by boiling for 1 min with 1% SDS, 1% β-mercaptoethanol and 5M urea. The bulk of both the immunosuppressive and antiviral activities were recovered from a 41–60% saturated ammonium sulfate precipitate of Type II interferon. Sephadex G-100 column chromatography of Type II interferon preparations yielded two major peaks of anti-viral activity of molecular weights of approximately 40,000 and 90,000, both of which together contained the total immunomodulating activity observed in the proteins of the Chromatographic effluent. The 90,000-dalton species was also detected by its anti-viral and immunosuppressive activity on polyacrylamide gel electrophoresis.  相似文献   

11.
Neuronal and glial surface glycoproteins have been isolated from human foetal brains by affinity chromatography on 8 M urea or 6 M guanidine-treated Con A-Sepharose 4B at 4 degrees C and three groups of glycoproteins of molecular mass 65-73 kDa, 52-63 kDa and 43-48 kDa have been identified on SDS/PAGE. These glycoproteins exhibited anomalous behaviour on SDS/PAGE, indicating the existence of a gradation of mutually interconvertible protein-SDS aggregates in dynamic equilibrium with one another. Deglycosylation and deacylation did not alter the SDS/PAGE multiple band pattern. Purified glycoproteins contained 160 +/- 90 micrograms carbohydrate/mg protein, and a sialic acid content of 25 +/- 5 nmole/mg protein. The N-terminals were blocked. The glycoproteins moved preferentially on acid/urea/PAGE. Sepharose 6B gel filtration in the absence of lipid and detergents resolved the glycoproteins into an excluded peak I and a low molecular mass peak II. Peaks I and II were non-interconvertible on Sepharose 6B gel filtration or on reversed phase HPLC in an isopropanol/water/TFA gradient system. Both peaks rendered a single fast moving band of identical mobility on acid/urea/PAGE, suggesting that peak I was possibly a micellar aggregate of the monomeric peak II. The glycoproteins were refractory to digestion by trypsin or pronase and reacted identically towards various lectins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The chromatographic separation and biochemical characterization of a beta-bungarotoxin is described. This toxin is isolated as the most basic eluting protein of Bungarus multicinctus venom when separated by column chromatography on CM-Sephadex C-25. The protein migrated as a single band on pH 4.3 and sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. The molecular weight of this toxin was estimated to be 10 000 +/- 1000 by analytical sedimentation analysis. This value was consistent with the electrophoretic mobility of the toxin in SDS-polyacrylamide gels. The amino acid composition of this 11 000-dalton beta-bungarotoxin was similar to that of the 22 000-dalton beta-bungarotoxin previously reported (Lee et al. (1972) J. Chromatogr. 72, 71--82; Kelly, R.B. and Brown, III, F.R. (1974) J. Neurobiol. 5, 135--150; Kondo et al. (1978) J. Biochem. Tokyo 83, 91--99), suggesting that the 11 000-dalton toxin may be one of the polypeptide chains of the larger toxin. The 11 000-dalton beta-bungarotoxin was toxic to mice when injected intravenously. Animals that received lethal doses exhibited hyperexcitability followed by ataxia, convulsions, and death. The minimum lethal dose was 0.12 microgram/g body weight. This beta-bungarotoxin exhibited Ca2+-dependent phospholipase A activity comparable to that of the 22 000-dalton beta-bungarotoxin. The enzyme exhibited phospholipid substrate specificity in the rank order of phosphatidyl-choline, phosphatidylserine, phosphatidylethanolamine, and phosphatidyl-inositol. The enzyme activity was destroyed by boiling for 3 min at pH 8.6. In addition, an enzymatically inactive quantity of the 11 000-dalton toxin, equivalent to five times the minimum lethal dose of enzymatically active toxin, was not lethal when injected into mice. To test whether phospholipase A activity is responsible for lethality, bee venom phospholipase A2 was injected into mice at similar and greater concentrations with no toxic effect. Thus, while phospholipase A activity may be required for the lethal effect of the 11 000-dalton beta-bungarotoxin, the specificity of action of the toxin is not determined by its enzyme activity.  相似文献   

13.
An OmpA family protein (FopA) previously reported as one of the major outer membrane proteins of an acidophilic iron-oxidizing bacterium Acidithiobacillus ferrooxidans was characterized with emphasis on the modification by heat and the interaction with peptidoglycan. A 30-kDa band corresponding to the FopA protein was detected in outer membrane proteins extracted at 75°C or heated to 100°C for 10 min prior to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). However, the band was not detected in outer membrane proteins extracted at ≤40°C and without boiling prior to electrophoresis. By Western blot analysis using the polyclonal antibody against the recombinant FopA, FopA was detected as bands with apparent molecular masses of 30 and 90 kDa, suggesting that FopA existed as an oligomeric form in the outer membrane of A. ferrooxidans. Although the fopA gene with a sequence encoding the signal peptide was successfully expressed in the outer membrane of Escherichia coli, the recombinant FopA existed as a monomer in the outer membrane of E. coli. FopA was detected in peptidoglycan-associated proteins from A. ferrooxidans. The recombinant FopA also showed the peptidoglycan-binding activity.  相似文献   

14.
Modification of a ferric enterobactin receptor protein of Escherichia coli was observed upon incubation of either whole membranes or Triton X-100 solubilized outer membrane at 37°C. The modification was characterized by a change in mobility of the receptor band on SDS polyacrylamide gel electrophoresis and by a decreased binding capacity for ferric enterobactin. The rate of modification was affected by temperature and trypsin inhibitor, benzamidine. Ferric enterobactin inhibited the reaction in whole membrane. The modification affected the limited chymotrypsin digestion pattern of the receptor. The activity may represent a specific modification of the receptor, one possibly mediated by a membran-associated enzyme.  相似文献   

15.
Human erythrocyte ankyrin was cleaved by restricted proteolysis at 0 degrees C into two distinct chemical domains. The site on ankyrin that binds spectrin was found to be within a 55,000-dalton domain by spectrin affinity chromatography and co-sedimentation with spectrin in a sucrose gradient. A 32,000-dalton fragment of this domain was prepared (tryptic digest, 0 degrees C, 24 h), separated by gel filtration, and shown to inhibit spectrin binding to the membrane. By comparison with previous two-dimensional peptide maps, the spectrin-binding site was located within this 32,000-dalton fragment near the end of the molecule. The band 3-binding site was identified within an 82,000-dalton domain by binding to a band 3 affinity column. Gel electrophoresis in the absence of detergents confirmed these results and demonstrated that a peptide from the cytoplasmic portion of band 3 retained the capacity to bind the 82,000-dalton domain. The binding properties of the structural domains of ankyrin were correlated with a determination of the affinity constant of the intact molecule. Ankyrin bound with a high affinity to the cytoplasmic portion of band 3 (KD = 8 X 10(-8) M) and to spectrin tetramer (KD = 1 X 10(-7) M) but less so to spectrin dimer (KD = 1 X 10(-6) M). These findings are summarized in a preliminary structural and functional model of ankyrin's role in linking spectrin to the membrane.  相似文献   

16.
Transport of long-chain fatty acids across the inner membrane of Escherichia coli K-12 requires a functional fadL gene (Maloy, S. R., Ginsburgh, C. L., Simons, R. W., and Nunn, W. D. (1981) J. Biol. Chem. 256, 3735-3742). Mutants defective in the fadL gene lack a 33,000-dalton inner membrane protein as evaluated using two-dimensional pI/sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis (Ginsburgh, C. L., Black, P. N., and Nunn, W. D. (1984) J. Biol. Chem. 259, 8437-8443). In an effort to determine whether the fadL gene is the structural gene for this 33,000-dalton protein, we have cloned, mapped, and analyzed the expression of the fadL gene. The fadL gene has been localized on a 2.8-kilobase EcoRV fragment of E. coli genomic DNA. Plasmids containing this gene (i) complement all fadL mutants, (ii) increase the long-chain fatty acid transport activity of fadL strains harboring them by 2- to 3-fold, and (iii) direct the synthesis of a membrane protein which has the same molecular weight and isoelectric point as that described by Ginsburgh et al. This is a heat-modifiable protein which has an apparent molecular weight of 43,000 daltons when solubilized at 100 degrees C in the presence of SDS and 33,000 daltons when solubilized at 50 degrees C in the presence of SDS.  相似文献   

17.
Isolation and properties of platelet myosin light chain kinase.   总被引:8,自引:0,他引:8  
J L Daniel  R S Adelstein 《Biochemistry》1976,15(11):2370-2377
A protein kinase which phosphorylates the 20 000-dalton light chain of platelet myosin has been isolated from human blood platelets and purified approximately 600-fold. Elution of a 7.5% polyacrylamide gel following electrophoresis of the partially purified enzyme yielded a single peak of kinase activity which could be aligned with a protein band on a stained gel. Assuming a globular shape, a native molecular weight of 83 000 (+/- 10%) was determined by gel filtration on Bio-Gel P-200. The kinase requires Mg2+ for activity and is not sensitive to the removal of trace Ca2+. The enzyme purified from human platelets phosphorylates the 20 000-dalton light chain of mouse fibroblast and chicken gizzard myosin, but does not phosphorylate human skeletal and cardiac myosin.  相似文献   

18.
Incubation of quiescent chicken embryo cells with platelet-derived growth factor, epidermal growth factor, or serum was found to stimulate phosphorylation of two proteins of ca. 42,000 daltons on tyrosine. These proteins are structurally related to each other and to two proteins phosphorylated on tyrosine under similar conditions in mitogen-treated mouse fibroblasts. Three other very different mitogenic agents, the protease trypsin and the chemically unrelated tumor promoters 12-O-tetradecanoyl-phorbol-13-acetate and teleocidin, stimulated phosphorylation of the same proteins. In all cases, phosphotyrosine was detected in these phosphoproteins. Although additional changes in protein phosphorylation were evident, no other proteins were observed by two-dimensional gel electrophoresis which contained increased amounts of phosphotyrosine in mitogen-treated chicken embryo cells. One of these 42,000-dalton proteins was shown previously to be phosphorylated on tyrosine in chicken embryo cells transformed with various retroviruses whose transforming proteins possess tyrosine protein kinase activity. Phosphorylation of the 42,000-dalton proteins could be important in the regulation of cell division.  相似文献   

19.
Intact rat fat cells exposed to 12.5 microM [gamma-32P]ATP incorporate label into specific proteins within minutes. By solubilizing the reaction mixture with SDS which by passes the subcellular fractionation steps, the labeled proteins can be identified in autoradiographs of SDS-PAGE gels. The most prominently labeled protein has an Mr of 42,000. Localization of this component to the cell surface can be made on the basis of inhibition of phosphorylation by addition of a protein derived from the rat brain with protein kinase inhibitory property, susceptibility of the phosphorylated protein to tryptic digestion, whereas the unphosphorylated protein is unaffected by digestion with trypsin (15 min), inhibition of phosphorylation of this protein after brief exposure to melittin, and the consistent observation that more label is associated with the 42,000 Mr band in homogenates and permeabilized cells than in comparable numbers of intact cells exposed to the same amount of label. A 42,000 Mr phosphoprotein is also present in mitochondria which is most likely the alpha subunit of pyruvate dehydrogenase. To rule out the possibility that the cell surface protein might be a mitochondrial contaminant from broken cells, 32Pi-labeled and [gamma-32P]ATP-labeled cells were solubilized with Triton and chromatographed on a rabbit anti-pyruvate dehydrogenase antibody-Sepharose 4B column. A single labeled peak was detected upon elution of the bound fraction only in the 32Pi-labeled sample, and not in the [gamma-32P]ATP-labeled sample. Subcellular fractionation studies of intact cells labeled with [gamma-32P]ATP showed differences in the recovery of phosphoproteins of 42,000 Mr depending on whether a continuous sucrose gradient (27.6-54.1%, g/ml) or a discontinuous sucrose gradient (16, 35 and 48%, g/ml) was used. Phosphoproteins of 42,000 Mr were located in the mitochondrial and membrane fractions collected by discontinuous sucrose gradient separation, whereas a phosphoprotein of 42,000 Mr was found primarily in the mitochondrial fraction after continuous sucrose gradient separation. By 5'-nucleotidase activity measurements, the latter approach appears to result in the isolation of a heavy fragment of the plasma membrane with the mitochondrial light fraction which is 42,000 in Mr and labeled. Finally, comparison of the autoradiographs of two-dimensional (2D) gels (isoelectric focusing followed by 10% SDS-PAGE) show different isoelectric points for 42,000 Mr components in [gamma-32P]ATP- and 32Pi-labeled cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Sodium dodecyl sulfate(SDS) in a protein sample solution migrates in SDS-polyacrylamide gel electrophoresis as a band with a mobility higher than those of protein bands. Behind this band, which is mostly composed of SDS micelles, SDS concentration is raised uniformly in a gel column as a result of the retardation effect of the gel matrix on SDS micelles. Electrophoretic patterns of SDS were obtained when SDS was omitted from various portions of the gel electrophoretic system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号