首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We recently demonstrated that the LKB1 tumour suppressor kinase, in complex with the pseudokinase STRAD and the scaffolding protein MO25, phosphorylates and activates AMP-activated protein kinase (AMPK). A total of 12 human kinases (NUAK1, NUAK2, BRSK1, BRSK2, QIK, QSK, SIK, MARK1, MARK2, MARK3, MARK4 and MELK) are related to AMPK. Here we demonstrate that LKB1 can phosphorylate the T-loop of all the members of this subfamily, apart from MELK, increasing their activity >50-fold. LKB1 catalytic activity and the presence of MO25 and STRAD are required for activation. Mutation of the T-loop Thr phosphorylated by LKB1 to Ala prevented activation, while mutation to glutamate produced active forms of many of the AMPK-related kinases. Activities of endogenous NUAK2, QIK, QSK, SIK, MARK1, MARK2/3 and MARK4 were markedly reduced in LKB1-deficient cells. Neither LKB1 activity nor that of AMPK-related kinases was stimulated by phenformin or AICAR, which activate AMPK. Our results show that LKB1 functions as a master upstream protein kinase, regulating AMPK-related kinases as well as AMPK. Between them, these kinases may mediate the physiological effects of LKB1, including its tumour suppressor function.  相似文献   

2.
Members of the KIN1/PAR-1/MARK kinase family are conserved from yeast to humans and share a similar primary structural organization. Several kinases of this family appear to be at the crossroads of various biological functions including cell polarity, cell cycle control, intracellular signalisation, microtubules stability and protein stability. Here we present an overview of known roles of KIN1/PAR-1/MARK kinases including pEg3 a newly identified member which is regulated during the cell cycle and is a potential regulator of the cell cycle progression. Some common modes of action can be deciphered for this protein kinase family.  相似文献   

3.
Expression and activity of the germinal center kinase, Ste20-like kinase (SLK), are increased during kidney development and recovery from ischemic acute renal failure. In this study, we characterize the activation and functional role of SLK. SLK underwent dimerization via the C-terminal domain, and dimerization enhanced SLK activity. In contrast, the C-terminal domain of SLK did not dimerize with a related kinase, Mst1, and did not affect Mst1 activity. Phosphorylation/dephosphorylation of SLK were not associated with changes in kinase activity. SLK induced phosphorylation of apoptosis signal-regulating kinase-1 (ASK1) and increased ASK1 activity, indicating that ASK1 is a substrate of SLK. Moreover, SLK stimulated phosphorylation of p38 mitogen-activated protein kinase via ASK1, but not c-Jun N-terminal kinase nor extracellular signal-regulated kinase. Chemical anoxia and recovery during re-exposure to glucose (ischemia-reperfusion injury in cell culture) stimulated SLK activity. Overexpression of SLK enhanced anoxia/recovery-induced apoptosis, release of cytochrome c, and activities of caspase-8 and -9, and apoptosis was reduced significantly with p38 and caspase-9 inhibitors. Induction of the endoplasmic reticulum stress response by anoxia/recovery or tunicamycin (monitored by induction of Bip or Grp94 expression, phosphorylation of eukaryotic translation initiation factor 2alpha subunit, expression of CHOP, and activation of caspase-12) was attenuated in cells that overexpress SLK. Thus, SLK is an anoxia/recovery-dependent kinase that is activated via homodimerization and that signals via ASK1 and p38 to promote apoptosis. Attenuation of the protective aspects of the endoplasmic reticulum stress response by SLK may contribute to its proapoptotic effect.  相似文献   

4.
5.
In Alzheimer disease (AD), the microtubule-associated protein tau is found hyperphosphorylated in paired helical filaments. Among many phosphorylated sites in tau, Ser-262 is the major site for abnormal phosphorylation of tau in AD brain. The kinase known to phosphorylate this particular site is MARK2, whose activation mechanism is yet to be studied. Our first finding that treatment of cells with LiCl, a selective inhibitor of another major tau kinase, glycogen synthase kinase-3beta (GSK-3beta), inhibits phosphorylation of Ser-262 of tau led us to investigate the possible involvement of GSK-3beta in MARK2 activation. In vitro kinase reaction revealed that recombinant GSK-3beta indeed phosphorylates MARK2, whereas it failed to phosphorylate Ser-262 of tau. Our further findings led us to conclude that GSK-3beta phosphorylates MARK2 on Ser-212, one of the two reported phosphorylation sites (Thr-208 and Ser-212) found in the activation loop of MARK2. Down-regulation of either GSK-3beta or MARK2 by small interfering RNAs suppressed the level of phosphorylation on Ser-262. These results, respectively, indicated that GSK-3beta is responsible for phosphorylating Ser-262 of tau through phosphorylation and activation of MARK2 and that the phosphorylation of tau at this particular site is predominantly mediated by a GSK-3beta-MARK2 pathway. These findings are of interest in the context of the pathogenesis of AD.  相似文献   

6.
MST4, a novel member of the germinal center kinase subfamily of human Ste20-like kinases, was cloned and characterized. Composed of a C-terminal regulatory domain and an N-terminal kinase domain, MST4 is most closely related to mammalian Ste20 kinase family member MST3. Both the kinase and C-terminal regulatory domains of MST4 are required for full activation of the kinase. Northern blot analysis indicates that MST4 is ubiquitously distributed, and the MST4 gene is localized to chromosome Xq26, a disease-rich region, by fluorescence in situ hybridization. Although some members of the MST4 family function as upstream regulators of mitogen-activated protein kinase cascades, expression of MST4 in 293 cells was not sufficient to activate or potentiate extracellular signal-regulated kinase, c-Jun N-terminal kinase, or p38 kinase. An alternatively spliced isoform of MST4 (MST4a) was isolated by yeast two-hybrid interaction with the catalytic domain of Raf from a human fetal brain cDNA library and also found in a variety of human fetal and adult tissues. MST4a lacks an exon encoding kinase subdomains IX-XI that stabilizes substrate binding. The existence of both MST4 isoforms suggests that the MST4 kinase activity is highly regulated, and MST4a may function as a dominant-negative regulator of the MST4 kinase.  相似文献   

7.
The serine/threonine kinase, PAR-1, is an essential component of the evolutionary-conserved polarity-regulating system, PAR-aPKC system, which plays indispensable roles in establishing asymmetric protein distributions and cell polarity in various biological contexts (Suzuki, A. and Ohno, S. (2006). J. Cell Sci., 119: 979-987; Matenia, D. and Mandelkow, E.M. (2009). Trends Biochem. Sci., 34: 332-342). PAR-1 is also known as MARK, which phosphorylates classical microtubule-associated proteins (MAPs) and detaches MAPs from microtubules (Matenia, D. and Mandelkow, E.M. (2009). Trends Biochem. Sci., 34: 332-342). This MARK activity of PAR-1 suggests its role in microtubule (MT) dynamics, but surprisingly, only few studies have been carried out to address this issue. Here, we summarize our recent study on live imaging analysis of MT dynamics in PAR-1b-depleted cells, which clearly demonstrated the positive role of PAR-1b in maintaining MT dynamics (Hayashi, K., Suzuki, A., Hirai, S., Kurihara, Y., Hoogenraad, C.C., and Ohno, S. (2011). J. Neurosci., 31: 12094-12103). Importantly, our results further revealed the novel physiological function of PAR-1b in maintaining dendritic spine morphology in mature neurons.  相似文献   

8.
We have previously shown that the Ste20-like kinase SLK is a microtubule-associated protein inducing actin stress fiber disassembly. Here, we show that v-Src expression can down-regulate SLK activity. This down-regulation is independent of focal adhesion kinase but requires v-Src kinase activity and membrane translocation. SLK down-regulation by v-Src is indirect and is accompanied by SLK hyperphosphorylation on serine residues. Deletion analysis revealed that casein kinase II (CK2) sites at position 347/348 are critical for v-Src-dependent modulation of SLK activity. Further studies show that CK2 can directly phosphorylate SLK at these positions and that inhibition of CK2 in v-Src-transformed cells results in normal kinase activity. Finally, CK2 and SLK can be co-localized in fibroblasts spreading on fibronectin-coated substrates, suggesting a mechanism whereby SLK may be regulated at sites of actin remodeling, such as membrane lamellipodia and ruffles, through CK2.  相似文献   

9.
10.
11.
Mst1 is a ubiquitously expressed serine-threonine kinase, homologous to the budding yeast Ste20, whose physiological regulation and cellular function are unknown. In this paper we show that Mst1 is specifically cleaved by a caspase 3-like activity during apoptosis induced by either cross-linking CD95/Fas or by staurosporine treatment. CD95/Fas-induced cleavage of Mst1 was blocked by the cysteine protease inhibitor ZVAD-fmk, the more selective caspase inhibitor DEVD-CHO and by the viral serpin CrmA. Caspase-mediated cleavage of Mst1 removes the C-terminal regulatory domain and correlates with an increase in Mst1 activity in vivo, consistent with caspase-mediated cleavage activating Mst1. Overexpression of either wild-type Mst1 or a truncated mutant induces morphological changes characteristic of apoptosis. Furthermore, exogenously expressed Mst1 is cleaved, indicating that Mst1 can activate caspases that result in its cleavage. Kinase-dead Mst1 did not induce morphological alterations and was not cleaved upon overexpression, indicating that Mst1 must be catalytically active in order to mediate these effects. Mst1 activates MKK6, p38 MAPK, MKK7 and SAPK in co-transfection assays, suggesting that Mst1 may activate these pathways. Our findings suggest the existence of a positive feedback loop involving Mst1, and possibly the SAPK and p38 MAPK pathways, which serves to amplify the apoptotic response.  相似文献   

12.
We report the characterization of pEg3, a Xenopus protein kinase related to members of the KIN1/PAR-1/MARK family. The founding members of this newly emerging kinase family were shown to be involved in the establishment of cell polarity and both microtubule dynamic and cytoskeleton organization. Sequence analyses suggest that pEg3 and related protein kinases in human, mouse, and Caenorhabditis elegans might constitute a distinct group in this family. pEg3 is encoded by a maternal mRNA, polyadenylated in unfertilized eggs and specifically deadenylated in embryos. In addition to an increase in expression, we have shown that pEg3 is phosphorylated during oocyte maturation. Phosphorylation of pEg3 is cell cycle dependent during Xenopus early embryogenesis and in synchronized cultured XL2 cells. In embryos, the kinase activity of pEg3 is correlated to its phosphorylation state and is maximum during mitosis. Using Xenopus egg extracts we demonstrated that phosphorylation occurs at least in the noncatalytic domain of the kinase, suggesting that this domain might be important for pEg3 function.  相似文献   

13.
The placenta is essential in transferring gases and nutrients from the mother to the developing fetus. Trophoblast apoptosis may cause labor or other pregnancy-related disorders. This study demonstrated the essential role of Mst3, a human Ste20-like protein kinase, in the oxidative stress-induced apoptosis of trophoblasts of term placenta in normal spontaneous delivery. Oxidative stress, but not hormones released during labor such as prostaglandin E1, oxytocin or angiotensin II, induces the expression of Mst3 and apoptosis of human term placenta after elective Cesarean section without labor pain. The role of Mst3 in oxidative stress-induced apoptosis was further demonstrated in the 3A-sub-E, a human trophoblast cell line. The H2O2-induced apoptosis of 3A-sub-E cells was largely suppressed by overexpressed Mst3KR, the kinase-dead mutant or by selective knockdown of endogenous Mst3. Further studies showed that Jun N-terminal kinase (JNK) may participate in the signaling pathway of H2O2-induced apoptosis by mediating the level of Mst3. Subsequently, caspase 3 and other downstream apoptotic components may be activated by Mst3 and trigger the apoptotic process in human trophoblasts.  相似文献   

14.
Protein kinases of the microtubule affinity-regulating kinase (MARK) family were originally discovered because of their ability to phosphorylate certain sites in tau protein (KXGS motifs in the repeat domain). This type of phosphorylation is enhanced in abnormal tau from Alzheimer brain tissue and causes the detachment of tau from microtubules. MARK-related kinases (PAR-1 and KIN1) occur in various organisms and are involved in establishing and maintaining cell polarity. Herein, we report the ability of MARK2 to affect the differentiation and outgrowth of cell processes from neuroblastoma and other cell models. MARK2 phosphorylates tau protein at the KXGS motifs; this results in the detachment of tau from microtubules and their destabilization. The formation of neurites in N2a cells is blocked if MARK2 is inactivated, either by transfecting a dominant negative mutant, or by MARK2 inhibitors such as hymenialdisine. Alternatively, neurites are blocked if the target KXGS motifs on tau are rendered nonphosphorylatable by point mutations. The results suggest that MARK2 contributes to the plasticity of microtubules needed for neuronal polarity and the growth of neurites.  相似文献   

15.
Ste20/PAK serine/threonine protein kinases have been suggested as playing essential roles in cell signalling and morphogenesis as potential targets of Cdc42 and Rac GTPases. We have isolated and characterized the Saccharomyces cerevisiae SKM1 gene, which codes for a novel member of this family of protein kinases. The amino acid sequence analysis of Skm1p revealed the presence of a PH domain and a putative p21-binding domain near its amino terminus, suggesting its involvement in cellular signalling or cytoskeletal functions. However, deletion of SKM1 produced no detectable phenotype under standard laboratory conditions. Moreover, disruption of each of the two other S. cerevisiae Ste20/PAK-like kinase-encoding genes, STE20 and CLA4 , in skm1 backgrounds, showed that Skm1p is not redundant with Ste20p or Cla4p. Interestingly, overexpression of SKM1 led to morphological alterations, indicating a possible role for this protein in morphogenetic control. Furthermore, overproduction of Skm1p lacking its N-terminus caused growth arrest. This effect was also seen when similarly truncated versions of Ste20p or Cla4p were overexpressed. We further observed that overproduction of this C-terminal fragment of Skm1p complements the mating defect of a ste20 mutant strain. These results suggest that the N-terminal domains of S. cerevisiae Ste20/PAK-like protein kinases share a negative regulatory function and play a role in substrate specificity.  相似文献   

16.
In examining the protein kinase components of mitogen-activated protein (MAP) kinase (MAPK) cascades that regulate the c-Jun N-terminal kinase (JNK) in Drosophila S2 cells, we previously found that distinct upstream kinases were involved in responses to sorbitol and lipopolysaccharide. Here we have extended that analysis to the possible MAPK kinase kinase kinases (MAP4Ks) in the JNK pathway. Fray, a putative Drosophila MAP4K, provided a major contribution to JNK activation by sorbitol. To explore the possible link to JNK in mammalian cells, we isolated and characterized OSR1 (oxidative stress-responsive 1), one of two human Fray homologs. OSR1 is a 58-kDa protein of 527 amino acids that is widely expressed in mammalian tissues and cell lines. Of potential regulators surveyed, endogenous OSR1 is activated only by osmotic stresses, notably sorbitol and to a lesser extent NaCl. However, OSR1 did not increase the activity of coexpressed JNK, nor did it activate three other MAPKs, p38, ERK2, and ERK5. A two-hybrid screen implicated another Ste20p family member, the p21-activated protein kinase PAK1, as an OSR1 target. OSR1 phosphorylated threonine 84 in the N-terminal regulatory domain of PAK1. Replacement of threonine 84 with glutamate reduced the activation of PAK1 by an active form of the small G protein Cdc42, suggesting that phosphorylation by OSR1 modulates the G protein sensitivity of PAK isoforms.  相似文献   

17.
Although the sterile 20 (Ste20) serine/threonine protein kinase was originally identified as a component of the S. cerevisiae mating pathway, it has homologs in higher eukaryotes and is part of a larger family of Ste20-like kinases. Ste20-like kinases are involved in multiple cellular processes, such as cell growth, morphogenesis, apoptosis and immune response. Carrying out such a diverse array of biological functions requires numerous regulatory inputs and outputs in the form of protein-protein interactions and post-translational modifications. Hence, a thorough knowledge of Ste20-like kinase binding partners and phosphorylation sites will be essential for understanding the various roles of these kinases. Our recent study revealed that Schizosaccharomyces pombe Nak1 (a conserved member of the GC-kinase sub-family of Ste20-like kinases) is in a complex with the leucine-rich repeat-containing protein Sog2. Here, we show a novel and unexpected interaction between the Nak1-Sog2 kinase complex and Casein kinase 2 (Cka1, Ckb1 and Ckb2) using tandem-affinity purification followed by mass spectrometric analysis. In addition, we identify unique phosphosites on Nak1, Sog2 and the catalytic subunit of casein kinase 2, Cka1. Given the conserved nature of these kinases, we expect this work will shed light on the functions of these proteins both in yeast and higher eukaryotes.  相似文献   

18.
Mammalian homologs of the yeast protein kinase, Sterile 20 (Ste20), can be divided into two groups based on their regulation and structure. The first group, which includes PAK1, is regulated by Rac and Cdc42Hs, and activators have been identified. In contrast, very little is known about activators, regulatory mechanisms or physiological roles of the other group, which consists of GC kinase and MST1. We have identified a human Ste20-like kinase from the GC kinase group, SOK-1 (Ste20/oxidant stress response kinase-1), which is activated by oxidant stress. The kinase is activated by autophosphorylation and is markedly inhibited by its non-catalytic C-terminal region. SOK-1 is activated 3- to 7-fold by reactive oxygen intermediates, but is not activated by growth factors, alkylating agents, cytokines or environmental stresses including heat shock and osmolar stress. Although these data place SOK-1 on a stress response pathway, SOK-1, unlike GC kinase and PAK1, does not activate either of the stress-activated MAP kinase cascades (p38 and SAPKs). SOK-1 is the first mammalian Ste20-like kinase which is activated by cellular stress, and the activation is relatively specific for oxidant stress. Since SOK-1 does not activate any of the known MAP kinase cascades, its activation defines a novel stress response pathway which is likely to include a unique stress-activated MAP kinase cascade.  相似文献   

19.
The serine/threonine kinase Mst1, a mammalian homolog of the budding yeast Ste20 kinase, is cleaved by caspase-mediated proteolysis in response to apoptotic stimuli such as ligation of CD95/Fas or treatment with staurosporine. Furthermore, overexpression of Mst1 induces morphological changes characteristic of apoptosis in human B lymphoma cells. Mst1 may therefore represent an important target for caspases during cell death which serves to amplify the apoptotic response. Here we report that Mst1 has two caspase cleavage sites, and we present evidence indicating that cleavage may occur in an ordered fashion and be mediated by distinct caspases. We also show that caspase-mediated cleavage alone is insufficient to activate Mst1, suggesting that full activation of Mst1 during apoptosis requires both phosphorylation and proteolysis. Another role of phosphorylation may be to influence the susceptibility of Mst1 to proteolysis. Autophosphorylation of Mst1 on a serine residue close to one of the caspase sites inhibited caspase-mediated cleavage in vitro. Finally, Mst1 appears to function upstream of the protein kinase MEKK1 in the SAPK pathway. In conclusion, Mst1 activity is regulated by both phosphorylation and proteolysis, suggesting that protein kinase and caspase pathways work in concert to regulate cell death.  相似文献   

20.
A novel protein kinase, polyploidy-associated protein kinase (PAPK), was isolated using a subtraction cDNA library approach from a mouse erythroleukemia cell line that had been induced to polyploidy after serum withdrawal. PAPK shares homology with members of the Ste20/germinal center kinase family of protein kinases and is ubiquitously expressed as two spliced forms, PAPK-A and PAPK-B, that encode for proteins of 418 and 189 amino acids, respectively. The expression of endogenous PAPK-A protein increased after growth factor withdrawal in murine hematopoietic and fibroblast cells. When tested in an in vitro kinase assay, PAPK-A was activated in response to the stress-inducing agent hydrogen peroxide and slightly by fetal calf serum. Biochemical characterization of the PAPK-A-initiated pathway revealed that this novel kinase does not affect MAP kinase activity but can stimulate both c-Jun N-terminal kinase 1 (JNK1) and ERK6/p38 gamma. The kinase activity of PAPK appears to be required for the activation of ERK6/p38 gamma but not JNK1. When an inducible construct of PAPK-A was expressed in stably transfected NIH3T3 cells, the cells exhibited distinct cytoskeletal changes and became resistant to apoptotic cell death induced by serum withdrawal, effects of PAPK that require its kinase activity. These data suggest that PAPK is a new member of the Ste20/germinal center kinase family that modulates cytoskeletal organization and cell survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号