首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Effects of increase in intracellular calcium on PTH-induced homologous desensitization were investigated using calcium ionophores. Pretreatment of UMR-106 cells (rat osteoblast like osteosarcoma cell line) with calcium ionophores (A23187 or ionomycin) for 6h resulted in approximately 50% decrease of PTH-stimulated cAMP production. PTH receptor binding, assessed with 125I-[Nle8,Nle18,Tyr34]PTH-(1-34) as radioligand, was significantly decreased in 10(-6) M calcium ionophore-pretreated (for 6h) cells without affecting the dissociation constant (Kd) for PTH. Minimal effective treatment period was 2h and similar inhibitory effect was observed in 12h-treated cells. These data suggest that increase in intracellular calcium might also act on PTH receptor in the similar manner as protein kinase C activation to induce desensitization.  相似文献   

2.
We used the osteogenic sarcoma cell line, UMR-106-01, to determine whether the rise in free cytosolic Ca2+ concentration ([Ca2+]i) and cellular cAMP following PTH stimulation are able to be regulated independently. For this purpose, we compared the effect of a PTH antagonist, stimulation of protein kinase C, augmentation by prostaglandins, and the time course of desensitization of the two cellular responses. Two x 10(-7) M of the PTH antagonist 8,18Nle 34Tyr-bPTH(3-34) amide ([Nle,Tyr]bPTH(3-34)A) was required to inhibit 10(-9) M bPTH(1-34)-stimulated cAMP generation by 50%. 10(-7) M bPTH(1-34) completely overcame the inhibition induced by 10(-6) M [Nle,Tyr]bPTH(3-34)A. Only 7 x 10(-8) M and 2.7 x 10(-7) M [Nle,Tyr]bPTH(3-34)A were required to half maximally inhibit the [Ca2+]i increase evoked by 3 x 10(-8) and 10(-7) M bPTH(1-34), respectively. In addition, dissociation between [Ca2+]i and cAMP signals was observed when modulation by protein kinase C and prostaglandins was tested. Preincubation of the cells with 10 nM TPA for 5 minutes markedly inhibited the PTH-evoked [Ca2+]i increase. Short incubation with PGF2 alpha augmented the PTH-evoked [Ca2+]i increase. Similar pretreatments had no effect on the PTH-stimulated cAMP increase. Finally, preincubation with 1.5 x 10(-9) M bPTH(1-34) for 20 minutes almost completely blocked the effect of 10(-7) M bPTH(1-34) on [Ca2+]i, while preincubation with 5 x 10(-9) M bPTH(1-34) for 4 hours was required to inhibit the effect of 10(-8) M bPTH(1-34) on cAMP production by 50%. The differences in the regulation of the two PTH-stimulated cellular signaling systems, in particular, the response to antagonists and the time course of desensitization, could be at the level of the PTH receptor(s) or at a postreceptor domain.  相似文献   

3.
The present study was designed to characterize the cross-talk of parathyroid hormone (PTH)-responsive dual signal transduction systems (cAMP-dependent protein kinase (PKA) and calcium/protein kinase C [PKC]) and its participation in PTH-induced homologous desensitization of intracellular calcium ([Ca2+]i) in osteoblastic UMR-106 cells. Although our recent study revealed that prolonged (more than 2 h) pretreatment with PKC-activating phorbol ester, phorbol 12-myristate 13-acetate (PMA) significantly decreased the PTH-stimulated cAMP production, pretreatment with PMA (10?7 and 10?6 M) but not 10?6 M 4alphaphorbol 12,13-didecanoate (PDD), incapable of activating PKC for 30 min significantly augmented 10?7 M hPTH-(1-34)-stimulated cAMP production. H-7 (50 uM), a PKC inhibitor, significantly antagonized this PMA-induced effect. Pretreatment with 10?6 M PMA for 30 min did not affect PTH receptor binding but significantly augmented a cAMP responsiveness to 10?5 M forskolin and 1 ug/ml cholera toxin. Pertussis toxin (0.5 ug/ml) did not affect the PMA-induced augmentation of the PTH-stimulated cAMP production. PTH caused a complete homologous desensitization of [Ca2+]i response within 30 min. Pretreatment with 10?4 M dibutyryl cAMP for 30 min and 6 h significantly reduced and completely blocked the PTH-induced increase in [Ca2+]i, respectively. Pretreatment with 10?4 M Sp-cAMPS, a direct PKA activator, for 30 min completely blocked the PTH-induced increase in [Ca2+]i. Rp-cAMPS (10?4 M), an antagonist of PKA, slightly but significantly antagonized the PTH-induced homologous desensitization of [Ca2+]i response. The present study indicates that the time of exposure to PKC activation is a critical determinant in modulating the cAMP system, while PKA activation counterregulatorily acts on the [Ca2+]i system, and that PKA activation is linked to the PTH-induced homologous desensitization of [Ca2+]i response. © 1994 Wiley-Liss, Inc.  相似文献   

4.
Bovine parathyroid hormone (PTH) 1-34 [bPTH(1-34)] and human PTH related protein [hPTHrP(1-34)] stimulated cAMP accumulation in opossum kidney (OK) cells with Km of 5 x 10(-9) M, but inhibition of phosphate uptake was obtained with 17-fold lower Km of 3 x 10(-10) M. Phosphate uptake was partially inhibited with [Nle8.18Tyr34]bPTH(3-34)NH2 without concomitant cAMP stimulation. With hPTHrP(7-34)NH2, cAMP accumulation was increased in parallel to inhibition of phosphate uptake. [D-Trp12Tyr34]bPTH(7-34)NH2 and [Tyr34]hPTH(7-34)NH2 had no agonist activity on cellular cAMP and inhibition of phosphate uptake. bPTH(1-34)-stimulated cAMP accumulation was antagonized by [Nle8.18Tyr34]bPTH(3-34)NH2, [D-Trp12Tyr34]bPTH(7-34)NH2, hPTHrP(7-34)NH2 and [Tyr34]hPTH(7-34)NH2 with Ki of 1.4 x 10(-7), 2 x 10(-7), 4.7 x 10(-7) and 3.7 x 10(-6) M, respectively. But [Nle8.18Tyr34]bPTH(3-34)NH2 and [D-Trp12Tyr34]bPTH(7-34)NH2 reversed the inhibition of phosphate uptake only marginally, and hPTHrP(7-34)NH2 and [Tyr34]hPTH(7-34)NH2 were inactive. With hPTHrP(1-34) the Ki for cAMP accumulation of [Nle8,18Tyr34]bPTH(3-34)NH2 and hPTHrP(7-34)NH2 were 1.9 x 10(-7) and 7.2 x 10(-7) M, and inhibition of phosphate uptake was partially reversed with [Nle8,18Tyr34]bPTH(3-34)NH2, but not with hPTHrP(7-34)NH2. The present results indicate that truncated hPTHrP(7-34)NH2, unlike [Tyr34]hPTH(7-34)NH2 and [D-Trp12Tyr34]bPTH(7-34)NH2, elevates cellular cAMP and inhibits phosphate uptake. bPTH(1-34)- and hPTHrP(1-34)-evoked cAMP accumulation is suppressed by PTH and PTHrP fragments while inhibition of phosphate uptake remains largely unaltered.  相似文献   

5.
Truncated N-terminal fragments of parathyroid hormone (PTH), [Tyr34]bovine PTH(7-34)NH2, and parathyroid hormone related protein (PTHrP), PTHrP(7-34)NH2, inhibit [Nle8,18,[125I]iodo-Tyr34]-bPTH(1-34)NH2 binding and PTH-stimulated adenylate cyclase in bone and kidney assays. However, the receptor interactions of these peptides are 2-3 orders of magnitude weaker than those of their agonist counterparts. To produce an antagonist with increased receptor-binding affinity but lacking agonist-like properties, structure-function studies were undertaken. Glycine at position 12 (present in all homologues of PTH and in PTHrP), which is predicted in both hormones to participate in a beta-turn, was examined by substituting conformational reporters, such as D- or L-Ala, Pro, and alpha-aminoisobutyric acid (Aib), in both agonist and antagonist analogues. Except for N-substituted amino acids, which substantially diminished potency, substitutions were well tolerated, indicating that this site can accept a wide latitude of modifications. To augment receptor avidity, hydrophobic residues compatible with helical secondary structure were introduced. Incorporation of the nonnatural amino acids D-Trp, D-alpha-naphthylalanine (D-alpha-Nal), or D-beta-Nal into either [Tyr34]bPTH(7-34)NH2 or [Nle8,18,Tyr34]bPTH(7-34)NH2 resulted in antagonists that were about 10-fold more active than their respective 7-34 parent compound. Similarly, [D-Trp12]PTHrP(7-34)NH2 was 6 times more potent than the unsubstituted peptide but retained partial agonistic properties, although markedly reduced, similar to PTHrP(7-34)NH2. The antagonistic potentiating effect was configurationally specific.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The effect of activation of protein kinase C on stimulation of ornithine decarboxylase (ODC) activity and cAMP production was studied in fetal rat osteoblasts. Both phorbol 12-myristate, 13-acetate (PMA), an activator of protein kinase C, and 4 alpha-phorbol, ineffective in activating protein kinase C, failed to stimulate ODC activity and cAMP production. We tested the effect of protein kinase C on stimulation of ODC activity by parathyroid hormone (PTH) and forskolin. In contrast to PTH-stimulated ODC activity, which was not affected by PMA, forskolin-stimulated (1 and 10 microM) ODC activity was dose dependently reduced. PMA (400 nM) reduced both 1 and 10 microM forskolin-stimulated ODC activity to the same level, approximately 3 nmol CO2/mg protein, which suggests a controlling role of protein kinase C in forskolin-stimulated ODC activity. The study of the effect of protein kinase C on PTH- and forskolin-stimulated cAMP production also revealed differences between PTH and forskolin. When PMA was added simultaneously with PTH (4 and 20 nM) or forskolin (1 and 10 microM) the PTH-stimulated cAMP production was dose-dependently potentiated by PMA, whereas forskolin-stimulated cAMP production was not affected. However, both PTH- and forskolin-stimulated cAMP production was dose-dependently augmented when PMA was added 3 min prior to PTH or forskolin. With increasing preincubation periods (up to 24 h) with PMA instead of a potentiation an inhibition was observed. This inhibition is not due to PTH receptor desensitization, although, on basis of the present results desensitization can not completely be excluded. In all cases 4 alpha-phorbol was without effect. The present results show that protein kinase C modulates stimulation of ODC activity and cAMP production in fetal rat osteoblasts. The modulation of both ODC activity and cAMP production appears to be dependent on the nature of the stimulator. The present data suggest a role for protein kinase C in limiting the cAMP-mediated stimulation of ODC activity in these cells. Furthermore, it is suggested that protein kinase C can interfere at more than one site in the cAMP-generating system.  相似文献   

7.
Agonist-mediated activation of the type 1 parathyroid hormone receptor (PTH1R) results in several signaling events and receptor endocytosis. It is well documented that arrestins contribute to desensitization of both G(s)- and G(q)-mediated signaling and mediate PTH1R internalization. However, whether PTH1R trafficking directly contributes to signaling remains unclear. To address this question, we investigated the role of PTH1R trafficking in cAMP signaling and activation of extracellular signal-regulated kinases ERK1/2 in HEK-293 cells. Dominant negative forms of dynamin (K44A-dynamin) and beta-arrestin1 (beta-arrestin1-(319-418)) abrogated PTH1R internalization but had no effect on cAMP signaling; neither acute cAMP production by PTH nor desensitization and resensitization of cAMP signaling were affected. Therefore, PTH1R trafficking is not necessary for regulation of cAMP signaling. PTH-(1-34) induced rapid and robust activation of ERK1/2. A PTHrP-based analog ([p-benzoylphenylalanine1, Ile5,Arg(11,13),Tyr36]PTHrP-(1-36)NH2), which selectively activates the G(s)/cAMP pathway without inducing PTH1R endocytosis, failed to stimulate ERK1/2 activity. Inhibition of PTH1R endocytosis by K44A-dynamin dampened ERK1/2 activation in response to PTH-(1-34) by 69%. Incubation with the epidermal growth factor receptor inhibitor AG1478 reduced ERK1/2 phosphorylation further. In addition, ERK1/2 phosphorylation occurred following internalization of a PTH1R mutant induced by PTH-(7-34) in the absence of G protein signaling. Collectively, these data indicate that PTH1R trafficking and G(q) (but not G(s)) signaling independently contribute to ERK1/2 activation, predominantly via transactivation of the epidermal growth factor receptor.  相似文献   

8.
Activation of M3 muscarinic receptors in HT-29 cells by carbachol rapidly increases polyphosphoinositide breakdown. Pretreatment of these cells with carbachol (0.1 mM) for 5 h completely inhibits the subsequent ability of carbachol to increase [3H]inositol monophosphate ([3H]InsP) accumulation, paralleled by a total loss of muscarinic binding sites. In contrast, protein kinase C (PK-C)-mediated desensitization by incubation with phorbol esters [PMA (phorbol 12-myristate 13-acetate)], leading to a time- and dose-dependent inhibition of cholinergically stimulated InsP release (95% inhibition after 4 h with 0.1 microM-PMA), is accompanied by only a 40% decrease in muscarinic receptor binding, which suggests an additional mechanism of negative-feedback control. Neither carbachol nor PMA pretreatment had any effect on receptor affinity. Incubation with carbachol for 15 min caused a small increase of membrane-associated PK-C activity (15% increase, P less than 0.05) as compared with the potency of phorbol esters (PMA) (3-4-fold increase, P less than 0.01). Long-term incubation (4-24 h) with PMA resulted in a complete down-regulation of cytosolic and particulate PK-C activity. Stimulation of InsP release by NaF (20 mM) was not affected after a pretreatment with phorbol esters or carbachol, demonstrating an intact function of G-protein and phospholipase-C (PL-C) at the effector side. Determination of PL-C activity in a liposomal system with [3H]PtdInsP2 as substrate, showed no change in PL-C activity after carbachol (13 h) and short-term PMA (2.5 h) pretreatment, whereas long-term preincubation with phorbol esters (13 h) caused a small but significant decrease in PL-C activity (19%, P less than 0.05). Our results indicate that agonist-induced desensitization of phosphoinositide turnover occurs predominantly at the receptor level, with a rapid loss of muscarinic receptors. Exogenous activation of PK-C by phorbol esters seems to dissociate the interaction between receptor and G-protein/PL-C, without major effects on total cellular PL-C activity.  相似文献   

9.
Lysine occupies position 13 in the parathyroid hormone (PTH) antagonist, [Nle8,18,Tyr34]bPTH(7-34)NH2. Acylation of the epsilon-amino group in lysine 13 by a hydrophobic moiety is well tolerated in terms of bioactivity: the analog [Nle8,18, D-Trp12,Lys 13 (epsilon-3-phenylpropanoyl),Tyr34]bPTH(7-34)NH2 is equivalent to the parent peptide in its affinity for PTH receptors and its ability to inhibit PTH-stimulated adenylate cyclase in both kidney- and bone-based assays. Truncation of this peptide by deletion of phenylalanyl7 with concomitant removal of the amino-terminal alpha-amino group yielded the analog desamino[Nle8,18,D-Trp12,Lys13 (epsilon-3-phenylpropanoyl),Tyr34]bPTH(8-34)NH2, an antagonist of high potency in vitro (Kb = 4 and 9 nM, Ki = 73 and 3.5 nM in kidney- and bone-based assays, respectively). Also this analog is potentially stable to aminopeptidases present in many biological systems.  相似文献   

10.
11.
[Tyr36]human adenylate cyclase stimulating peptide (1-36)-NH2, an amino-terminal analog of a tumor peptide which is associated with hypercalcemia of malignancy, and [Nle8, Nle18, Tyr34]bovine parathyroid hormone (PTH)-(1-34)-NH2 both bind with similar affinities to receptors on rat osteosarcoma cells, ROS 17/2.8, when either of the peptides is used as the radioligand. Pretreatment of the cells with either peptide down-regulates available binding sites for either radioligand and desensitizes the cAMP accumulation stimulated by either peptide. Prior exposure of the cells to dexamethasone increases these responses to both peptides. Photoderivatized radioiodinated [Tyr36]human adenylate cyclase-stimulating peptide (1-36)-NH2 and [Nle8, Nle18, Tyr34]bovine PTH-(1-34)-NH2 both specifically label a Mr = 80,000 membrane protein on ROS 17/2.8 cells. The intensity of labeling this receptor band by either photoprobe is reduced by co-incubation with either peptide over the same dose range. Equivalent dose-dependent down-regulation of receptors which bind both photoprobes is also found when ROS 17/2.8 cells are preincubated with either peptide. Dexamethasone increases the intensity of receptor labeling. Our findings strongly indicate that both peptides recognize the same plasma membrane receptor on ROS 17/2.8 cells. Although the physiological function(s) of human adenylate cyclase-stimulating peptide is unknown, these results could explain why its biological actions on mineral ion metabolism so closely simulate those of PTH and raise interesting questions about the general biological and evolutionary significance of the use of the same receptor by chemically distinct peptides.  相似文献   

12.
The role of protein kinase C activation in changes in muscarinic receptor functions and in the appearance of biochemical properties characteristic of neuronal cells was studied in SH-SY5Y human neuroblastoma cells induced to differentiate with the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA). A decrease in muscarinic receptor sensitivity with respect to agonist induced Ca2+ mobilization and receptor number parallelled the increase in membrane-associated protein kinase C (PK-C) activity. These changes occurred during the first 6 h of culture, and they were associated with rounding-up of cells. A subsequent decrease in particulate PK-C activity was followed by an increase in noradrenaline content, the appearance of an electrically excitable membrane, and an increase in the level of neuron-specific enolase. These changes were accompanied by a pronounced neurite outgrowth. 1-(5-Isoquinolinesulphonyl)-2-methylpiperazine (H-7), an inhibitor of PK-C and cyclic nucleotide-dependent protein kinases, enhanced the morphological differentiation induced by TPA, whereas N-(2-guanidinoethyl)-5-isoquinolinesulphonamide (HA-1004), which primarily inhibits cyclic nucleotide-dependent protein kinases, had no effect on the TPA-induced phenotypic differentiation. H-7 inhibited the decrease in muscarinic receptor sensitivity and receptor number, but had no effect on the appearance of the electrically excitable membrane or on the increase in the neuron-specific enolase level. Both H-7 and HA-1004 inhibited the TPA-induced increase in noradrenaline content.  相似文献   

13.
To understand further the mechanism of action of parathyroid hormone (PTH) in the stimulation of the number of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) binding sites in UMR 106-01 cells we studied the role of cAMP and calcium. In addition to PTH other agents known to act via the cAMP signal pathway, prostaglandin E2, forskolin and dibutyryl cAMP, caused an increase in 1,25(OH)2D3 binding. Addition of the adenylate cyclase inhibitor 9-(tetrahydro-2-furyl)adenine resulted in a marked decrease of PTH-stimulated cAMP production but this was not followed by a reduction of 1,25(OH)2D3 receptor up-regulation by PTH. Increasing the intracellular calcium concentration by Bay K 8644 and A23817 independent of an activation of the cAMP signal pathway did not result in an increased 1,25(OH)2D3 binding. The calcium channel blockers nitrendipine and verapamil and chelating extracellular calcium with EGTA all reduced cAMP-mediated stimulation of 1,25(OH)2D3 binding. This reduction was not due to a reduce cAMP production as verapamil even potentiated PTH- and forskolin-stimulated cAMP production in a dose-dependent manner. The present study provides evidence for an interrelated action of calcium and cAMP in the heterologous up-regulation of the 1,25(OH)2D3 receptor. The current data show an interaction between the cAMP and calcium signal pathway at (1) the level of cAMP generation/degradation, and (2) a level located distal in the cascade leading to 1,25(OH)2D3 receptor up-regulation.  相似文献   

14.
肿瘤坏死因子α(TNFα)是激活的单核巨噬细胞分泌的蛋白质,分子量17kD。其多功能性和选择性抑制肿瘤细胞生长的作用受到高度重视。我们的实验表明:TNFα(3×10~(-10)-1×10~(-7)mol/L)能显著降低大鼠成骨肉瘤细胞株ROS17/2.8的甲状旁腺素(PTH)受体总结合率,比对照降低7.47-37.45%,且与TNFα的浓度呈正相关。时间曲线显示,TNFα作用时间越长,受体总结合率降低越明显。Scatchard作图表明PTH受体数目降低而其亲和力无显著变化。细胞周期分析显示,TNFα(3.83×10~(-10) mol/L作用3天)能抑制S期DNA合成。可见TNFα通过减少PTH受体数目以调节骨代谢。同时通过抑制DNA的合成以调节骨细胞的增殖。  相似文献   

15.
It has been suggested that intracellular Ca2+, in addition to cAMP, plays an important role in PTH-stimulated bone resorption. There is now strong evidence indicating that the osteoblast is the main target cell for PTH action, regulating indirectly, via cell-cell communication, osteoclastic bone resorption. In order to investigate the possible role of free cytosolic calcium in stimulated bone resorption, we studied the effects of the intact hormone (bPTH 1-84) and some of its fragments (bPTH (1-34), bPTH(3-34,) (Nle-8, Nle-18,Tyr-34) bPTH (3-34) amide) on their capacity to modify the cytosolic Ca2+ concentration in rat osteoblast-like cells. The experiments were performed using Quin-2, a fluorescent indicator of free calcium. We found an excellent correlation between the ability of PTH and PTH fragments to transiently increase cytosolic Ca2+ concentration in rat osteoblast-like cells and their ability to stimulate bone resorption in embryonic rat calvaria in vitro. On the other hand, no direct correlation was found for the cAMP and bone-resorbing responses. On the ground of these data we propose a two-receptor model for PTH action in osteoblasts, in which one receptor is coupled to the production of cAMP, whereas the other is involved in the increase of cytosolic Ca2+. Activation of both receptors by PTH (1-84) or PTH (1-34) leads to the full physiological response in osteoblasts, most probably the release of one or more factors which stimulate the activity of existing osteoclasts and others which stimulate the recruitment of additional osteoclasts.  相似文献   

16.
Recent mutagenesis and cross-linking studies suggest that residues in the carboxyl-terminal portion of PTH(1-34) interact with the amino-terminal extracellular domain of the receptor and thereby contribute strongly to binding energy; and that residues in the amino-terminal portion of the ligand interact with the receptor region containing the transmembrane helices and extracellular loops and thereby induce second messenger signaling. We investigated the latter component of this hypothesis using the short amino-terminal fragment PTH(1-14) and a truncated rat PTH-1 receptor (r delta Nt) that lacks most of the amino-terminal extracellular domain. The binding of PTH(1-14) to LLC-PK1 or COS-7 cells transfected with the intact PTH-1 receptor was too weak to detect; however, PTH(1-14) dose-dependently stimulated cAMP formation in these cells over the dose range of 1-100 microM. PTH(1-14) also stimulated cAMP formation in COS-7 cells transiently transfected with r delta Nt, and its potency with this receptor was nearly equal to that seen with the intact receptor. In contrast, PTH(1-34) was approximately 100-fold weaker in potency with r delta Nt than it was with the intact receptor. Alanine scanning of PTH(1-14) revealed that for both the intact and truncated receptors, the 1-9 segment of PTH forms a critical receptor activation domain. Taken together, these results demonstrate that the amino-terminal portion of PTH(1-34) interacts with the juxtamembrane regions of the PTH-1 receptor and that these interactions are sufficient for initiating signal transduction.  相似文献   

17.
Position 18 in a parathyroid hormone (PTH) antagonist, [Nle8,18,Tyr34]bPTH(7-34)NH2 (ii), was shown to tolerate substitutions by a range of amino acids with retention of inhibitory activity. The effects of hydrophobic substitutions at this position as a means of enhancing binding interactions with the receptor were evaluated. Substitution of Nle at position 18 with either D-Ala, D-Trp, or L-Trp in analog ii or with Trp (D or L) in the recently reported, highly potent antagonist, [Nle8,18,D-Trp12,Tyr34]bPTH(7-34)NH2 (in vitro activities; Kb = 15 nM and Ki = 125 nM), was performed. In terms of activity on renal receptors, one antagonist, [Nle8,D-Trp12,18,Tyr34]bPTH(7-34)NH2, is the most active in vitro PTH antagonist yet reported (Kb = 4 nM; Ki = 30 nM). The rationale for design of this antagonist and the conclusions regarding PTH-receptor interactions are discussed.  相似文献   

18.
The regulation of prostaglandin stimulated cAMP accumulation in cells of the human T-cell leukemia line Jurkat was examined. Pretreatment with PGE2 (0.1-10 nM) for 2 hour caused a concentration dependent desensitization of the prostaglandin receptor. Tumor promoting phorbol esters (1-1000 nM) could also inhibit PGE2 stimulated cAMP production dose dependently. Inhibition of tubulin polymerization with colchicine or nocodazole (1 microM) eliminated prostaglandin but not phorbol ester induced desensitization of the receptor. It is concluded that agonist and phorbol ester induced desensitization are mediated by two distinct mechanisms and that tubulin polymerization appear to be required only for agonist induced desensitization of the prostaglandin receptor.  相似文献   

19.
We have employed parathyroid hormone (PTH) responsive human cells cultured from dermis or giant cell tumors of bone (GT) to evaluate the biological properties of a newly developed in vivo PTH inhibitor, [Tyr34]bPTH-(7-34)-amide (PTH-Inh). Short periods of incubation of cells from dermis or GT with maximal stimulatory concentrations of PTH in the presence of increasing concentrations of PTH-Inh resulted in a dose-dependent inhibition of the adenosine cyclic 3',5'-phosphate (cAMP) response (Ki = 3 X 10(-7) M and 4.2 X 10(-7) M for GT and dermal cells, respectively). In both cell cultures, PTH-Inh alone did not increase cAMP levels, and in desensitization experiments, preincubation with PTH-Inh alone did not desensitize cells to PTH. Hence, the analogue displayed no agonist properties. Unexpectedly, when PTH-Inh was incubated with dermal cells in the presence of PTH, the PTH-Inh failed to block desensitization, suggesting a loss of biological effectiveness of the inhibitor. When medium containing PTH-Inh alone was removed from dermal cells and tested for inhibition of the acute PTH response in untreated cells, there was apparent loss of inhibitory efficacy (t1/2 = 20 h). In contrast, incubation of native PTH or bPTH-(1-34) with cells did not affect the biological activity of these ligands. Unlike the dermal cells, the PTH-Inh did block desensitization to PTH in GT, and there was no loss of inhibitor efficacy when medium containing PTH-Inh was incubated with GT (48 h) and then tested in untreated cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The effects of the monokines tumor necrosis factor alpha (TNF) and interleukin 1 (IL 1) on parathyroid hormone (PTH)-responsive adenylate cyclase were examined in clonal rat osteosarcoma cells (UMR-106) with the osteoblast phenotype. Recombinant TNF and IL 1 incubated with UMR-106 cells for 48 hr each produced concentration-dependent inhibition of PTH-sensitive adenylate cyclase, with maximal inhibition of PTH response (40% for TNF, 24% for IL 1) occurring at 10(-8) M of either monokine. Both monokines also decreased adenylate cyclase stimulation by the tumor-derived PTH-related protein (PTHrP). In contrast, TNF and IL 1 had little or no inhibitory effect on receptor-mediated stimulation of adenylate cyclase by isoproterenol and nonreceptor-mediated enzyme activation by cholera toxin and forskolin; both monokines increased prostaglandin E2 stimulation of adenylate cyclase. Binding of the radioiodinated agonist mono-[125I]-[Nle8,18, Tyr34]bPTH-(1-34)NH2 to UMR-106 cells in the presence of increasing concentrations of unlabeled [Nle8,18, Tyr34]bPTH-(1-34)NH2 revealed a decline in PTH receptor density (Bmax) without change in receptor binding affinity (dissociation constant, Kd) after treatment with TNF or IL 1. Pertussis toxin increased PTH-sensitive adenylate cyclase activity but did not attenuate monokine-induced inhibition of PTH response. In time course studies, brief (1 hr) exposure of cells to TNF or IL 1 during early culture was sufficient to decrease PTH response but only after exposed cells were subsequently allowed to grow for prolonged periods. Inhibition of PTH response by monokines was blocked by cycloheximide. The results indicate that TNF and IL 1 impair responsiveness to PTH (and PTHrP) by a time- and protein synthesis-dependent down-regulation of PTH receptors linked to adenylate cyclase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号