首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The CD94 transmembrane-anchored glycoprotein forms disulfide-bonded heterodimers with the NKG2A subunit to form an inhibitory receptor or with the NKG2C or NKG2E subunits to assemble a receptor complex with activating DAP12 signaling proteins. CD94 receptors expressed on human and mouse NK cells and T cells have been proposed to be important in NK cell tolerance to self, play an important role in NK cell development, and contribute to NK cell-mediated immunity to certain infections including human cytomegalovirus. We generated a gene-targeted CD94-deficient mouse to understand the role of CD94 receptors in NK cell biology. CD94-deficient NK cells develop normally and efficiently kill NK cell-susceptible targets. Lack of these CD94 receptors does not alter control of mouse cytomegalovirus, lymphocytic choriomeningitis virus, vaccinia virus, or Listeria monocytogenes. Thus, the expression of CD94 and its associated NKG2A, NKG2C, and NKG2E subunits is dispensable for NK cell development, education, and many NK cell functions.  相似文献   

2.
Natural killer (NK) cells play a pivotal role in the innate immune response to viral infections, particularly murine cytomegalovirus (MCMV) and human herpesviruses. In poxvirus infections, the role of NK cells is less clear. We examined disease progression in C57BL/6 mice after the removal of NK cells by both antibody depletion and genetic means. We found that NK cells were crucial for survival and the early control of virus replication in spleen and to a lesser extent in liver in C57BL/6 mice. Studies of various knockout mice suggested that gammadelta T cells and NKT cells are not important in the C57BL/6 mousepox model and CD4+ and CD8+ T cells do not exhibit antiviral activity at 6 days postinfection, when the absence of NK cells has a profound effect on virus titers in spleen and liver. NK cell cytotoxicity and/or gamma interferon (IFN-gamma) secretion likely mediated the antiviral effect needed to control virus infectivity in target organs. Studies of the effects of ectromelia virus (ECTV) infection on NK cells demonstrated that NK cells proliferate within target tissues (spleen and liver) and become activated following a low-dose footpad infection, although the mechanism of activation appears distinct from the ligand-dependent activation observed with MCMV. NK cell IFN-gamma secretion was detected by intracellular cytokine staining transiently at 32 to 72 h postinfection in the lymph node, suggesting a role in establishing a Th1 response. These results confirm a crucial role for NK cells in controlling an ECTV infection.  相似文献   

3.
Natural killer (NK) cells are important effectors in resistance to viral infections. The role of NK cells in the acute response to human immunodeficiency virus 1 (HIV-1) infected cells was investigated in a mouse model based on a HIV-1/murine leukemia virus (MuLV) pseudovirus. Splenocytes infected with HIV-1/MuLV were injected intraperitoneally and local immunologic responses and persistence of infected cells were investigated. In vivo depletion with an anti-NK1.1 antibody showed that NK cells are important in resistance to virus infected cells. Moreover, NK cell frequency in the peritoneal cavity increased in response to infected cells and these NK cells had a more mature phenotype, as determined by CD27 and Mac-1 expression. Interestingly, after injection of HIV-1/MuLV infected cells, but not MuLV infected cells, peritoneal NK cells had an increased cytotoxic activity. In conclusion, NK cells play a role in the early control of HIV-1/MuLV infected cells in vivo.  相似文献   

4.
Previous results from this laboratory demonstrated that treatment of mice with the adenosine analog tubercidin (Tub) reduced natural killer (NK) cell activity while stimulating antibody production whereas the deoxyadenosine analog, 2-fluoroadenine arabinoside-5'-monophosphate (FaraAMP), produced opposite effects; i.e., it stimulated NK cell activity at doses that inhibited antibody formation (Cancer Res. 48, 4799, 1988). Since NK cells have been reported to play a suppressor role in immunoglobulin induction, it was hypothesized that the actions of Tub and FaraAMP on antibody production occurred secondary to their opposing effects on NK cells. To test this hypothesis, abilities of these nucleoside analogs to modulate primary antibody response to sheep red blood cells were evaluated in a C57BL/6 mutant mouse lacking NK cell activity (the beige mutation. C57BL/6-bg/bg). As previously found with C3H/He mice. NK cell activity was inhibited (Tub, doses 2-6 mg/kg/day for 3 days) or stimulated (FaraAMP, doses 75-250 mg/kg/day for 3 days) in heterozygous mice C57BL/6-bg/+. In support of the hypothesis, these nucleosides had no effect on primary antibody formation in the homozygous mutant mice at doses that clearly stimulated (Tub) or inhibited (FaraAMP) this immune response in heterozygous C57BL/6-bg/+ animals. This results was corroborated in C57BL/6 wild-type mice by abrogation of NK cell activity using a monoclonal antibody to the NK cell surface glycophisingolipid, ganglio-n-tetraosylceramide. We conclude that under the conditions of drug administration, modulation of primary antibody formation by Tub and FaraAMP in mice occurs indirectly via NK cells. Similar experiments using the potent ADA inhibitor, deoxycoformycin, indicated that its enhancement of primary antibody formation is independent of NK cell activity.  相似文献   

5.
Natural killer (NK) cells are immune cells that play a crucial role against viral infections and tumors. To be tolerant against healthy tissue and simultaneously attack infected cells, the activity of NK cells is tightly regulated by a sophisticated array of germline-encoded activating and inhibiting receptors. The best characterized mechanism of NK cell activation is “missing self” detection, i.e., the recognition of virally infected or transformed cells that reduce their MHC expression to evade cytotoxic T cells. To monitor the expression of MHC-I on target cells, NK cells have monomorphic inhibitory receptors which interact with conserved MHC molecules. However, there are other NK cell receptors (NKRs) encoded by gene families showing a remarkable genetic diversity. Thus, NKR haplotypes contain several genes encoding for receptors with activating and inhibiting signaling, and that vary in gene content and allelic polymorphism. But if missing-self detection can be achieved by a monomorphic NKR system why have these polygenic and polymorphic receptors evolved? Here, we review the expansion of NKR receptor families in different mammal species, and we discuss several hypotheses that possibly underlie the diversification of the NK cell receptor complex, including the evolution of viral decoys, peptide sensitivity, and selective MHC-downregulation.  相似文献   

6.
Summary Neuroblastoma is a tumor of neuroectodermal origin arising most commonly from the adrenal medulla. We have examined the ability of several monoclonal antibodies which recognize markers predominantly expressed on human natural killer (NK) cells to react with neuroblastoma cell lines in vivo derived sections of tumor. HNK-1 (Leu 7) is a monoclonal IgM antibody which recognizes a carbohydrate epitope on NK cells and a wide range of tumor cell types. We have shown that HNK-1 recognizes the human neuroblastoma lines SMS-KCNR, SMS-KAN, NMB/N7, and IMR/5. Expression of this antigen on cell lines can be slightly increased by retinoic acid-induced differentiation of the cells. N901 (NKH1), a monoclonal antibody raised against interleukin 2-dependent human NK cell lines also recognizes all human neuroblastoma cell lines examined. This expression is independent of differentiation induction and levels remain unaltered following retinoic acid treatment of the cell lines. Lastly, with monoclonal antibody 49H.8, it has been found that reactivity of the lines is weak until induction of differentiation, after which highly significant increases of reactivity are seen. 49H.8 recognizes several cryptic carbohydrate antigens with varying affinities, shown to identify mouse and rat NK cells. In contrast to other NK markers, human neuroblastoma cell lines did not express significant reactivity with B73.1, Leu 11b, or Leu 18. Immunohistochemical staining of sections of human neuroblastoma tumors correlated with the in vitro findings; however, staining with N901 and 49H.8 was only seen on frozen sections, not paraffin-embedded. The significance of shared NK cell-neuroblastoma/neuron antigens is currently under investigation.  相似文献   

7.
自然杀伤(natural killer,NK)细胞和自然杀伤T(natural killer T,NKT)细胞是参与机体抗病毒免疫和肿瘤免疫的两群淋巴细胞亚群,是介导先天性免疫(innate immunity)应答和调节适应性免疫(adaptive immunity)应答的重要效应细胞。近年来,随着对NK细胞和NKT细胞及其转录调控因子研究的不断深入,NK细胞和NKT细胞的发育机制逐步被阐明,这将为提高NK细胞和NKT细胞的抗病毒和肿瘤免疫疗效提供新的策略。  相似文献   

8.
Characterization of an antigen expressed by human natural killer cells   总被引:25,自引:0,他引:25  
A monoclonal antibody, anti-N901, was produced by fusing NS-1 myeloma cells with spleen cells of a mouse immunized with human CML cells. This antibody was reactive with a subpopulation of peripheral blood LGL, including the natural killer cells. Monocytes, granulocytes, B cells, T cells (T3+ cells), erythrocytes, and platelets were nonreactive. The N901-positive cells in the peripheral blood were heterogeneous with respect to expression of other cell surface antigens. The majority of N901+ cells co-expressed T11, Mo1, and HNK-1, whereas a smaller percentage expressed T8. Ia, T3, T4, Mo2, or B1 antigens were very uncommon on N901+ cells. The heterogeneity of the N901+ LGL was further investigated by examining the expression of N901 antigen on a series of cloned normal human NK cell lines. N901 antigen was expressed by each of the NK cell lines tested, and by a minority of cloned T cell lines without NK activity. Anti-N901 does not block NK activity and can be used to rapidly purify functional NK cells for further study.  相似文献   

9.
The role of natural killer (NK) cells in the natural resistance of mice to infections by several viruses was examined. Mice were specifically depleted of NK cells by i.v. injection of rabbit antiserum to asialo GM1, a neutral glycosphingolipid present at high concentrations on the surface of NK cells. Control mice were left untreated or were injected with normal rabbit serum. Four to 6 hr later, these mice were infected with lymphocytic choriomeningitis virus (LCMV), mouse hepatitis virus (MHV), murine cytomegalovirus (MCMV), or vaccinia virus. The mice were sacrificed 3 days post-infection and assayed for virus in liver and spleen, spleen NK cell activity, and plasma interferon (IFN). All mice treated with anti-asialo GM1 antibody had drastically reduced NK cell-mediated lysis. Correlating with NK cell depletion, these mice had significantly higher (up to 500-fold) titers of MCMV, MHV, or vaccinia virus in their livers and spleens as compared to control mice. NK cell-depleted MCMV and MHV-infected mice had higher levels of plasma IFN than controls, correlating with the higher virus titers. These NK cell-depleted, virus-infected mice had more extensive hepatitis, assayed by the number of inflammatory foci in their livers, as compared to control virus-infected mice; these foci were also larger and contained more degenerating liver cells than those in control mice. In contrast to the results obtained with MHV, MCMV, and vaccinia virus, NK cell depletion had no effect on virus titers in the early stages of acute LCMV infection or during persistent LCMV infection. Mice depleted of NK cells had similar amounts of LCMV in their spleens and similar plasma IFN levels. Because this antibody to asialo GM1 does not impair other detectable immunologic mechanisms, these data support the hypothesis that NK cells act as a natural resistance mechanism to a number of virus infections, but suggest that their relative importance may vary from virus to virus.  相似文献   

10.
Natural killer (NK) cells belong to the innate immune system and protect against cancers and a variety of viruses including retroviruses by killing transformed or infected cells. They express activating and inhibitory receptors on their cell surface and often become activated after recognizing virus-infected cells. They have diverse antiviral effector functions like the release of cytotoxic granules, cytokine production and antibody dependent cellular cytotoxicity. The importance of NK cell activity in retroviral infections became evident due to the discovery of several viral strategies to escape recognition and elimination by NK cells. Mutational sequence polymorphisms as well as modulation of surface receptors and their ligands are mechanisms of the human immunodeficiency virus-1 to evade NK cell-mediated immune pressure. In Friend retrovirus infected mice the virus can manipulate molecular or cellular immune factors that in turn suppress the NK cell response. In this model NK cells lack cytokines for optimal activation and can be functionally suppressed by regulatory T cells. However, these inhibitory pathways can be overcome therapeutically to achieve full activation of NK cell responses and ultimately control dissemination of retroviral infection. One effective approach is to modulate the crosstalk between NK cells and dendritic cells, which produce NK cell-stimulating cytokines like type I interferons (IFN), IL-12, IL-15, and IL-18 upon retrovirus sensing or infection. Therapeutic administration of IFNα directly increases NK cell killing of retrovirus-infected cells. In addition, IL-2/anti-IL-2 complexes that direct IL-2 to NK cells have been shown to significantly improve control of retroviral infection by NK cells in vivo. In this review, we describe novel approaches to improve NK cell effector functions in retroviral infections. Immunotherapies that target NK cells of patients suffering from viral infections might be a promising treatment option for the future.  相似文献   

11.
The importance of innate immune cells in HIV-1 pathogenesis and protection has been highlighted by the role of natural killer (NK) cells in the containment of viral replication. Use of peripheral blood mononuclear cells (PBMC) in immunologic studies provides both HIV-1 target cells (ie. CD4+ T cells), as well as anti-HIV-1 effector cells, such as NK cells. In this study, NK and other immune cell populations were analyzed in HIV-negative donor PBMC for an impact on the anti-HIV activity of polyclonal and monoclonal antibodies. NK cell percentages were significantly higher in donor PBMC that supported lower levels of viral replication. While the percentage of NK cells was not directly associated with neutralization titers, NK cell-depletion significantly diminished the antiviral antibody activity by up to three logs, and polymorphisms in NK killer immunoglobulin receptor (KIR) and FcγRIIIa alleles appear to be associated with this affect. These findings demonstrate that NK cells and NK cell receptor polymorphisms may influence assessment of traditional HIV-1 neutralization in a platform where antibody is continuously present. This format appears to simultaneously assess conventional entry inhibition (neutralization) and non-neutralizing antibody-dependent HIV inhibition, which may provide the opportunity to delineate the dominant antibody function(s) in polyclonal vaccine responses.  相似文献   

12.
Murine natural killer cells limit coxsackievirus B3 replication   总被引:10,自引:0,他引:10  
Previous indirect evidence suggested that natural killer (NK) cells play a role in coxsackie virus B3 serotype 3, myocarditic variant (CVB3m)-induced myocarditis by limiting virus replication. In this study, we present direct evidence that NK cells can limit CVB3m replication both in vitro and in vivo. Virus titers are lowered in primary murine neonatal skin fibroblast (MNSF) cultures incubated with activated splenic large granular lymphocytes (LGL) taken from mice 3 days postinoculation of CVB3m, a time of maximal NK cell activity. The antiviral effect of this cell population is diminished by complement-mediated lysis with the use of anti-asialo GM1 antiserum but not with anti-Lyt-2 monoclonal antibody. Neither interferon nor anti-CVB3m-neutralizing antibody was detected in these cultures. Although activated LGL initiate lysis within CVB3m-infected MNSF in vitro within 3 hr of addition, they do not lyse uninfected MNSF cultures. CVB3m replication is required for expression of surface changes on MNSF that result in lysis by NK cells because cell cultures treated with compounds that prevent CVB3m replication are not killed by LGL. LGL also do not lyse MNSF cultures inoculated with UV-inactivated virus. Mice inoculated with activated LGL and subsequently challenged with CVB3m had reduced titers of virus in heart tissues in comparison to titers of CVB3m in heart tissues of mice not given LGL. The antiviral activity of the LGL preparation was abolished by prior treatment with anti-asialo GM1 antiserum plus complement but not by prior treatment with anti-Lyt-2 monoclonal antibody and complement. These data suggest that NK cells can specifically limit a nonenveloped virus infection by killing virus-infected cells.  相似文献   

13.
The athymic nude mouse is a useful animal model for assaying the neoplastic growth potential in vivo of animal cells transformed in vitro. Despite the demonstrated absence of thymus-dependent immunological functions, however, the nude mouse has now been shown to reject transplants of certain highly malignant heterologous tumors. In addition, a few transformed mammalian cell lines that exhibit all or most of the cellular phenotypes usually associated with malignancy fail to grow as tumors when injected into nude mice. In a continuing study to identify the in vitro phenotypes associated with tumor-forming ability in vivo, we investigated the role of cellular susceptibility to the naturally occurring, thymus-independent lymphocytes (natural killer or NK cells) in determining tumor induction by animal cells in nude mice. A representative collection of animal cells (ranging from normal human diploid cell strains to highly tumorigenic clonal cell lines, either transformed in vitro or derived from experimental tumors) was tested to see if the ability of cells to form tumors is consistently correlated with their susceptibility to NK cell-mediated lysis measured in vitro with splenic leukocytes from nude mice. If the physiological role of the NK cells in vivo were to recognize, and possibly to destroy, incipient tumor cells in situ, a direct association between cellular tumorigenicity and susceptibility to NK activity, might be expected. If, on the other hand, the formation of growing tumors by animal cells in nude mice depended on their ability to escape the cytolytic activity of NK cells, cellular tumorigenicity would be associated with cellular resistance to NK cells. Results obtained in this study failed to confirm either of these associations. Thus, cellular suscepbibility to NK cells, at least as determined by direct cytotoxicity assay in vitro, is not a useful predictive indicator of cellular tumorigenicity in nude mice.  相似文献   

14.
NK cells are defined here as cells, other than macrophages and polymorphonuclear leucocytes, from non-immunized animals (or humans) which are cytotoxic for neoplastic and non-neoplastic targets in the absence of specific antibody. Though not requiring antibody, they may function as K cells in ADCC. This definition includes cells activated nonspecifically by such agents as IFN and IL-2. Murine NK cells may be subdivided into two types by differences in the kinetics of target-cell lysis. Those we label Type 1 correspond roughly to what others have called NKA, NKL or simply NK cells; those of Type 2 to NKB, NKS and NC cells. Type 1 cells express various antigens, including NK-1, Thy-1 (50%), Ly-1 (25%), Qa-3, Qa-4, Qa-5, Ly-5, Ly-6, Ly-10, Ly-11 and asialo-GM1, not expressed by Type 2 cells, whereas Mac-1 may be expressed by both types. At least some NK cells appear to be pre-thymic cells which, in the presence of a thymus, can differentiate into T cells. The level of NK activity is influenced by the age and genetic background of the mouse, the organ from which the cells are obtained, and a variety of experimental manipulations. Type 1 activity is increased by IFN and IL-2; Type 2 activity by IL-3. IFN appears to be concerned in the development of spontaneous NK activity in young mice. Many experiments have shown that NK cells may inhibit the growth of tumours which are sensitive to NK cells of the same type in vitro. Inhibitory cells which suppress NK activity may play an important regulatory role in vivo. There is still uncertainty about how NK cells recognize their targets. Possibilities discussed are: (1) specific interacting molecules; (2) more diffuse properties of target cell membranes; (3) absence of MHC-coded self-recognition markers. Certainly, the presence of a Class 1 MHC molecule is not necessary. NK killing appears to be mediated by cytotoxins released by NK cells. In vivo, NK cells contribute to limiting the development of transplanted and primary tumours, and metastasis from established tumours. NK cells seem well qualified to act as a first-line defence against neoplasia, and may kill cells not killed by T cells. Transfer of NK cells may be of value in the treatment of cancer.  相似文献   

15.
Interleukin (IL)-10 is an anti-inflammatory cytokine known to modulate the outcome of sepsis by decreasing pro-inflammatory cytokine production, including IL-12, a main activator of natural killer (NK) cells. We hypothesized that neutralization of IL-10 would increase NK and natural killer T (NKT) cell activation through increased IL-12 in a mouse model of bacterial peritonitis. NK and NKT cell activations were measured by CD69 expression on NK1.1+/CD3- and NK1.1+/CD3+ cells after cecal ligation and puncture (CLP). NK cells were significantly more activated in mice treated with anti-IL-10 antibodies, whereas no such effect was observed in NKT cells. Similarly, intracellular interferon gamma (IFN-gamma) levels were increased in NK cells of anti-IL-10-treated mice, but not in NKT cells. IL-12 and IL-18 levels were increased in both CLP groups, but in anti-IL-10-treated mice, early IL-12 and late IL-18 levels were significantly higher than in controls. Survival at 18 h after CLP was lower in anti-IL-10 mice, which was associated with increased liver neutrophil accumulation. In summary, these data show an activating effect of IL-10 on NK, but not on NKT cells after CLP, which corresponded with decreased survival, higher IFN-gamma production, and increased remote organ neutrophil accumulation. These effects were not mediated by IL-12 and IL-18 alone, and reinforce a role for NK cells in remote organ dysfunction following peritonitis.  相似文献   

16.
Natural killer (NK) cells play an essential role in the immune response to infections, inflammations, and malignancies. Recent studies suggest that NK cell surface receptors and cytokines are the key points of the disease development and protection. We hypothesized that the interactions between NK cell receptors and targeted cells construct an eventual niche, and this niche has an eventual profile in various autoimmune diseases and cancers. The NK cells preactivated with cytokines, such as interleukin-2 (IL-2), IL-12, IL-15, and IL-18 can have higher cytotoxicity; however, the toxic side effect of IL-2 should be considered. The vicissitudes of NK cell profile and its receptors obey the environmental communications and cell interactions. Our vision around the NK cells as an immune axis remained dual, and we still cannot judge the immune responses based on the NK cell flip-flop. A design of eventual niche to monitor the NK cell and targeted cell interaction is needed to strengthen our ability in diagnosis and treatment approaches based on the NK cells. Here, we have reviewed the shifts in the NK cells and their surface receptors in autoimmune diseases, solid tumors, and leukemia, and also discussed the effective chemokines that affect NK cell activation and proliferation. The main aim of this review is to present a broader vision of the NK cell changes in autoimmune disease and cancers.  相似文献   

17.
The effects of a monoclonal antibody directed against immune response gene products on mouse NK activity were examined. In vivo administration of an anti-I-Ak antibody to C3H/He (H-2k) mice modulated their peritoneal cell (PC) and spleen cell (SC) natural killer (NK) activity against YAC-1 lymphoma target cells in vitro. No such effect was observed when BALB/c (H-2d) mice were treated with this antibody. Administration of anti-I-Ak antibody to mice before and after infection with Toxoplasma or treatment with poly(I:C) leads to suppression of NK activity in comparison to NK activity of mice infected with Toxoplasma or injected with poly(I:C) alone. A similar treatment regimen with M5/114 antibody which reacts with I-Ab, I-Ad, I-Ed, and I-Ek molecules resulted in decreased NK activity in B10.D2 (H-2d) but not in B10.BR (H-2k) mice. Serum and cell culture supernatant interferon (IFN) concentrations were not altered as a result of anti-I-Ak treatment. Removal of adherent cells did not restore NK activity of anti-I-Ak-treated Toxoplasma-infected mice to levels obtained with mice infected with Toxoplasma. In contrast, depletion of Ly 2.1+ cells from nylon-wool nonadherent SC of mice treated with anti-I-Ak antibody, before and after infection with Toxoplasma, resulted in restoration of NK activity to the same level as that observed in Toxoptasma-infected mice.  相似文献   

18.
Coxsackieviruses (CV) are important human pathogens that have been implicated in the pathogenesis of several diseases, including myocarditis and pancreatitis. How the human immune system recognizes and controls CV infections is not well understood. Studies in mice suggest that natural killer (NK) cells play a critical role in viral clearance and host survival, but the mechanism(s) by which human NK cells may contribute to the host anti-CV defence has not been investigated. Here we show that CVB3 infection markedly reduces HLA class I cell surface expression but does not increase the expression of the activating NK cell receptor ligands MICA/B and ULBP1-3 on human cells. We also demonstrate that the lowered target cell HLA class I surface expression does not correlate with an increased susceptibility to NK cell-mediated killing. However, NK cells responded with a robust production of interferon γ (IFN-γ) when peripheral blood mononuclear cells were cocultured with infected cells. In summary, this study shows that CVB3 interferes with the expression of NK cell receptor ligands on infected cells and indicates that IFN-γ production, rather than cytotoxicity, marks the early human NK cell response to CVB3 infection.  相似文献   

19.
HSV-1 infection renders a mouse fibroblast cell line (MCN) sensitive to murine splenic NK killing which is independent of interferon (IFN) induction during the assay. This NK (HSV-1) activity is distinctive from conventional NK (YAC-1) in that they cannot be aborted by anti-asialo GM1 (anti-ASGM1) antibody plus complement treatment as NK (YAC-1) does. Further characterization of these two subpopulations was carried out by fluorescence-activated cell sorting (FACS) technique based on their cell surface asialo GM1 (ASGM1) phenotype. While almost all NK (YAC-1) activity resides within FACS-positive population, both ASGM1 positive and negative cell populations can kill the virally infected MCN equally well. One interesting observation is that only the ASGM1 positive cells respond significantly to IL-2 NK boosting. Five different mouse strains (CD-1, C57BL/6J, C57BL/6J-BG, SM/J, and SJL) were compared on their FACS profile with anti-ASGM1 antibody as well as their NK function. The differences observed are discussed.  相似文献   

20.
The natural killer (NK) cell system of mice in the peritoneal cavity is of very low to undetectable activity, and testing peritoneal NK cells is a useful model to study the influence of activating substances upon local injection. Injection of indomethacin at doses of 100-400 micrograms/mouse caused a marked activation of NK cell activity which was maximal at 3 days and lasted for a total of 6 days. A similar albeit less marked effect was observed with other cyclooxygenase inhibitors such as aspirin. Prostaglandin E2 reversed the activation of NK cells induced by injection of indomethacin. The cellular count of the peritoneal population was 2-fold elevated after indomethacin injection but the percentage of macrophages in the washed-out cell population was decreased from 60% (controls) to around 20%. The NK cell nature of the effector cells activated by indomethacin was substantiated by the finding that previous injection of anti-asialo GM1 antibody prevented activation. Interferon could not be detected in the peritoneal wash fluid after injection of indomethacin, suggesting interferon-independent activation. However, the possibility of small interferon quantities being locally produced could not be excluded. In further experiments we found after intraperitoneal injection of indomethacin not only cells that killed YAC-1 targets in a 4-hour assay but also killer cells that were insensitive to anti-asialo GM1 and killed P815 cells in an 18-hour assay. We assumed that these were macrophages and have done further experiments with in vitro grown bone-marrow-derived macrophages. These could be activated for killing of P815 targets by the addition of indomethacin, but (to a lesser degree) also for killing of YAC-1 lymphoma cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号