首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Current models of mitotic chromosome structure are based largely on the examination of maximally condensed metaphase chromosomes. Here, we test these models by correlating the distribution of two scaffold components with the appearance of prophase chromosome folding intermediates. We confirm an axial distribution of topoisomerase IIalpha and the condensin subunit, structural maintenance of chromosomes 2 (SMC2), in unextracted metaphase chromosomes, with SMC2 localizing to a 150-200-nm-diameter central core. In contrast to predictions of radial loop/scaffold models, this axial distribution does not appear until late prophase, after formation of uniformly condensed middle prophase chromosomes. Instead, SMC2 associates throughout early and middle prophase chromatids, frequently forming foci over the chromosome exterior. Early prophase condensation occurs through folding of large-scale chromatin fibers into condensed masses. These resolve into linear, 200-300-nm-diameter middle prophase chromatids that double in diameter by late prophase. We propose a unified model of chromosome structure in which hierarchical levels of chromatin folding are stabilized late in mitosis by an axial "glue."  相似文献   

2.
Haspin‐mediated phosphorylation of histone H3 at threonine 3 (H3T3ph) promotes proper deposition of Aurora B at the inner centromere to ensure faithful chromosome segregation in metazoans. However, the function of H3T3ph remains relatively unexplored in plants. Here, we show that in maize (Zea mays L.) mitotic cells, H3T3ph is concentrated at pericentromeric and centromeric regions. Additional weak H3T3ph signals occur between cohered sister chromatids at prometaphase. Immunostaining on dicentric chromosomes reveals that an inactive centromere cannot maintain H3T3ph at metaphase, indicating that a functional centromere is required for H3T3 phosphorylation. H3T3ph locates at a newly formed centromeric region that lacks detectable CentC sequences and strongly reduced CRM and ZmBs repeat sequences at metaphase II. These results suggest that centromeric localization of H3T3ph is not dependent on centromeric sequences. In maize meiocytes, H3T3 phosphorylation occurs at the late diakinesis and extends to the entire chromosome at metaphase I, but is exclusively limited to the centromere at metaphase II. The H3T3ph signals are absent in the afd1 (absence of first division) and sgo1 (shugoshin) mutants during meiosis II when the sister chromatids exhibit random distribution. Further, we show that H3T3ph is mainly located at the pericentromere during meiotic prophase II but is restricted to the inner centromere at metaphase II. We propose that this relocation of H3T3ph depends on tension at the centromere and is required to promote bi‐orientation of sister chromatids.  相似文献   

3.
We present a new model of the three-dimensional structure of chromosomes. With DNA and protein staining it could be shown by high-resolution scanning electron microscopy that metaphase chromosomes are mainly composed of DNA packed in "chromomeres" (coiled solenoides) and a dynamic matrix formed of parallel protein fibers. In the centromeric region, the chromomeres are less densely packed, giving insight into the matrix fibers. We postulate that chromosome condensation is achieved by the binding of solenoids to matrix fibers which have contact sites to one another and move antiparallel to each other. As condensation progresses, loops of solenoids accumulate to form additional chromomeres, causing chromosomes to become successively shorter and thicker as more chromomeres are formed. For sterical reasons, a tension vertical to the axial direction forces the chromatids apart. The model can simply explain the enormous variety of chromosome morphology in plant and animal systems by varying only a few cytological parameters. Primary and secondary constrictions and deletions are defined as regions devoid of chromomeres. Even in the highly condensed metaphase, all genes would be easily accessible.  相似文献   

4.
Separase is an evolutionarily conserved protease that is essential for chromosome segregation and cleaves cohesin Scc1/Rad21, which joins the sister chromatids together. Although mammalian separase also functions in chromosome segregation, our understanding of this process in mammals is still incomplete. We generated separase knockout mice, reporting an essential function for mammalian separase. Separase-deficient mouse embryonic fibroblasts exhibited severely restrained increases in cell number, polyploid chromosomes, and amplified centrosomes. Chromosome spreads demonstrated that multiple chromosomes connected to a centromeric region. Live observation demonstrated that the chromosomes of separase-deficient cells condensed, but failed to segregate, although subsequent cytokinesis and chromosome decondensation proceeded normally. These results establish that mammalian separase is essential for the separation of centromeres, but not of the arm regions of chromosomes. Other cell cycle events, such as mitotic exit, DNA replication, and centrosome duplication appear to occur normally. We also demonstrated that heterozygous separase-deficient cells exhibited severely restrained increases in cell number with apparently normal mitosis in the absence of securin, which is an inhibitory partner of separase.  相似文献   

5.
Unusual chromosome architecture and behaviour at an HSR   总被引:2,自引:0,他引:2  
Sullivan BA  Bickmore WA 《Chromosoma》2000,109(3):181-189
Amplification of sequences within mammalian chromosomes is often accompanied by the formation of homogeneously staining regions (HSRs). The arrangement of DNA sequences within such amplicons has been investigated, but little is known about the chromosome structure or behaviour of these unusual regions. We have analysed the metaphase chromosome structure of the dihydrofolate reductase (DHFR) amplicon of CHOC400 cells. The chromatin in this region contains hyperacetylated nucleosomes yet, at the same time, appears to be densely packed like heterochromatin. The region does not bind heterochromatin proteins. We show that the dense packing of the region is restricted to DNA located close to the chromosome core/scaffold. In contrast, levels of the chromosome scaffold protein topoisomerase II at HSRs are the same as those found at other euchromatic locations. Metaphase chromosome condensation of the HSR is shown to be sensitive to topoisomerase II inhibitors, and sister chromatids often appear to remain attached within the HSRs at metaphase. We suggest that these features underlie anaphase bridging and the aberrant interphase structure of the HSR. The DHFR amplicon is widely used as a model system to study mammalian DNA replication. We conclude that the higher-order chromosome structure of this amplicon is unusual and suggest that caution needs to be exercised in extrapolating data from HSRs to normal chromosomal loci. Received: 19 October 1999; in revised form: 13 December 1999 / Accepted: 27 December 1999  相似文献   

6.
Monoclonal antibodies (Mabs) were raised against isolated Chinese hamster protein-depleted chromosomes Chromosome scaffolds) in order to probe for components involved in the higher-order structure of mammalian chromosomes. One of the Mabs detected a ring-like structure in metaphase at the centromere, which is conserved between Chinese hamster and human cells. Additionally, the Mab stained the centrioles in interphase cells in these two species. The antigen was enriched in chromosomal protein preparations by comparison with nuclear protein samples, and has an apparent Mr=170,000. The centromere antigen remained present in chromosome scaffold preparations, indicating that it was tightly associated with DNA. The antigen was distinct in its centromeric localisation from any of the centromere antigens reported to date. A possible role of the antigen in stabilising the centromere, by holding the sister chromatids together until their separation at the metaphase-anaphase transition is presented.  相似文献   

7.
The experiments described were directed toward understanding relationships between mouse satellite DNA, sister chromatid pairing, and centromere function. Electron microscopy of a large mouse L929 marker chromosome shows that each of its multiple constrictions is coincident with a site of sister chromatid contact and the presence of mouse satellite DNA. However, only one of these sites, the central one, possesses kinetochores. This observation suggests either that satellite DNA alone is not sufficient for kinetochore formation or that when one kinetochore forms, other potential sites are suppressed. In the second set of experiments, we show that highly extended chromosomes from Hoechst 33258-treated cells (Hilwig, I., and A. Gropp, 1973, Exp. Cell Res., 81:474-477) lack kinetochores. Kinetochores are not seen in Miller spreads of these chromosomes, and at least one kinetochore antigen is not associated with these chromosomes when they were subjected to immunofluorescent analysis using anti-kinetochore scleroderma serum. These data suggest that kinetochore formation at centromeric heterochromatin may require a higher order chromatin structure which is altered by Hoechst binding. Finally, when metaphase chromosomes are subjected to digestion by restriction enzymes that degrade the bulk of mouse satellite DNA, contact between sister chromatids appears to be disrupted. Electron microscopy of digested chromosomes shows that there is a significant loss of heterochromatin between the sister chromatids at paired sites. In addition, fluorescence microscopy using anti-kinetochore serum reveals a greater inter-kinetochore distance than in controls or chromosomes digested with enzymes that spare satellite. We conclude that the presence of mouse satellite DNA in these regions is necessary for maintenance of contact between the sister chromatids of mouse mitotic chromosomes.  相似文献   

8.
Chromosome condensation and sister chromatid pairing in budding yeast   总被引:30,自引:9,他引:21       下载免费PDF全文
We have developed a fluorescent in situ hybridization (FISH) method to examine the structure of both natural chromosomes and small artificial chromosomes during the mitotic cycle of budding yeast. Our results suggest that the pairing of sister chromatids: (a) occurs near the centromere and at multiple places along the chromosome arm as has been observed in other eukaryotic cells; (b) is maintained in the absence of catenation between sister DNA molecules; and (c) is independent of large blocks of repetitive DNA commonly associated with heterochromatin. Condensation of a unique region of chromosome XVI and the highly repetitive ribosomal DNA (rDNA) cluster from chromosome XII were also examined in budding yeast. Interphase chromosomes were condensed 80-fold relative to B form DNA, similar to what has been observed in other eukaryotes, suggesting that the structure of interphase chromosomes may be conserved among eukaryotes. While additional condensation of budding yeast chromosomes were observed during mitosis, the level of condensation was less than that observed for human mitotic chromosomes. At most stages of the cell cycle, both unique and repetitive sequences were either condensed or decondensed. However, in cells arrested in late mitosis (M) by a cdc15 mutation, the unique DNA appeared decondensed while the repetitive rDNA region appeared condensed, suggesting that the condensation state of separate regions of the genome may be regulated differently. The ability to monitor the pairing and condensation of sister chromatids in budding yeast should facilitate the molecular analysis of these processes as well as provide two new landmarks for evaluating the function of important cell cycle regulators like p34 kinases and cyclins. Finally our FISH method provides a new tool to analyze centromeres, telomeres, and gene expression in budding yeast.  相似文献   

9.
When mouse L-cells were treated with a combination of 5-bromodeoxyuridine (BrdUrd) and Hoechst 33258, the metaphase chromosomes revealed undercondensation of the chromatin fibers in the sister centromeres. The application of the osmium-thiocarbohydrazide technique to the air-dried chromosome preparations made it possible to elucidate the ultrastructure of the undercondensed centromeric region at the level of the 30 nm chromatin fiber. Scanning electron microscopy revealed that the undercondensed region consisted of a coiled fiber with a diameter of about 400 nm, and a gyre diameter of approximately 600 nm. The coiled fiber was composed of the 30 nm chromatin fiber loops. These findings indicate that a continuous coiled structure, which is the final higher order structure of the condensed chromatin fiber, exists throughout the entire length of the mouse L-cell metaphase chromosome.  相似文献   

10.
In many eukaryotes, condensins I and II associate with chromosomes in an ordered fashion during mitosis and play nonoverlapping functions in their assembly and segregation. Here we report for the first time the spatiotemporal dynamics and functions of the two condensin complexes during meiotic divisions in mouse oocytes. At the germinal vesicle stage (prophase I), condensin I is present in the cytoplasm, whereas condensin II is localized within the nucleus. After germinal vesicle breakdown, condensin II starts to associate with chromosomes and becomes concentrated onto chromatid axes of bivalent chromosomes by metaphase I. REC8 "glues" chromosome arms along their lengths. In striking contrast to condensin II, condensin I localizes primarily around centromeric regions at metaphase I and starts to associate stably with chromosome arms only after anaphase I. Antibody injection experiments show that condensin functions are required for many aspects of meiotic chromosome dynamics, including chromosome individualization, resolution, and segregation. We propose that the two condensin complexes play distinctive roles in constructing bivalent chromosomes: condensin II might play a primary role in resolving sister chromatid axes, whereas condensin I might contribute to monopolar attachment of sister kinetochores, possibly by assembling a unique centromeric structure underneath.  相似文献   

11.
The reduction of chromosome number during meiosis is achieved by two successive rounds of chromosome segregation, called meiosis I and meiosis II. While meiosis II is similar to mitosis in that sister kinetochores are bi-oriented and segregate to opposite poles, recombined homologous chromosomes segregate during the first meiotic division. Formation of chiasmata, mono-orientation of sister kinetochores and protection of centromeric cohesion are three major features of meiosis I chromosomes which ensure the reductional nature of chromosome segregation. Here we show that sister chromatids frequently segregate to opposite poles during meiosis I in fission yeast cells that lack both chiasmata and the protector of centromeric cohesion Sgo1. Our data are consistent with the notion that sister kinetochores are frequently bi-oriented in the absence of chiasmata and that Sgo1 prevents equational segregation of sister chromatids during achiasmate meiosis I.  相似文献   

12.
In the present work we report the phosphorylation pattern of histone H3 and the development of microtubular structures using immunostaining techniques, in mitosis of Rhynchospora tenuis (2n = 4), a Cyperaceae with holocentric chromosomes. The main features of the holocentric chromosomes of R. tenuis coincide with those of other species namely: the absence of primary constriction in prometaphase and metaphase, and the parallel separation of sister chromatids at anaphase. Additionaly, we observed a highly conserved chromosome positioning at anaphase and early telophase sister nuclei. Four microtubule arrangements were distinguished during the root tip cell cycle. Interphase cells showed a cortical microtubule arrangement that progressively forms the characteristic pre-prophase band. At prometaphase the microtubules were homogeneously distributed around the nuclear envelope. Metaphase cells displayed the spindle arrangement with kinetochore microtubules attached throughout the entire chromosome extension. At anaphase kinetochoric microtubules become progressively shorter, whereas bundles of interzonal microtubules became increasingly broader and denser. At late telophase the microtubules were observed equatorially extended beyond the sister nuclei and reaching the cell wall. Immunolabelling with an antibody against phosphorylated histone H3 revealed the four chromosomes labelled throughout their entire extension at metaphase and anaphase. Apparently, the holocentric chromosomes of R. tenuis function as an extended centromeric region both in terms of cohesion and H3 phosphorylation.  相似文献   

13.
The reduction of chromosome number during meiosis is achieved by two successive rounds of chromosome segregation, called meiosis I and meiosis II. While meiosis II is similar to mitosis in that sister kinetochores are bi-oriented and segregate to opposite poles, recombined homologous chromosomes segregate during the first meiotic division. Formation of chiasmata, mono-orientation of sister kinetochores and protection of centromeric cohesion are three major features of meiosis I chromosomes which ensure the reductional nature of chromosome segregation. Here we show that sister chromatids frequently segregate to opposite poles during meiosis I in fission yeast cells that lack both chiasmata and the protector of centromeric cohesion Sgo1. Our data are consistent with the notion that sister kinetochores are frequently bi-oriented in the absence of chiasmata and that Sgo1 prevents equational segregation of sister chromatids during achiasmate meiosis I.Key words: meiosis, chromosome segregation, recombination, kinetochore, Sgo1, fission yeast  相似文献   

14.
We have studied two aspects of the process of sister chromatid separation in the Drosophila melanogaster neuroblasts. First, we analyzed the requirement of a functional spindle for sister chromatid separation to take place using microtubule depolymerizing drugs such as colchicine or a reversible analogue (MTC). Incubation of this tissue in colchicine causes the cells to block irreversibly at metaphase and no significant levels of sister chromatid separation were observed even after long periods of incubation. Exposure of neuroblasts to MTC also causes cells to block at metaphase, but after reversion most of the cells enter anaphase and are thus able to complete sister chromatid separation. These results imply that a functional spindle is required for sister chromatid separation. Second, we studied the role of heterochromatin during chromatid pairing and subsequent separation in chromosomes which carry either one or two extra pieces of heterochromatin. The results indicate that sister chromatids establish strong pairing along the translocated heterochromatin. During the early stages of anaphase, these chromosomes separate first the centromeric region and later the regions bearing extra heterochromatin. These results indicate that constitutive heterochromatin plays an important role for sister chromatid pairing and might be involved in the process of separation.  相似文献   

15.
Dej KJ  Ahn C  Orr-Weaver TL 《Genetics》2004,168(2):895-906
Chromosomes are dynamic structures that are reorganized during the cell cycle to optimize them for distinct functions. SMC and non-SMC condensin proteins associate into complexes that have been implicated in the process of chromosome condensation. The roles of the individual non-SMC subunits of the complex are poorly understood, and mutations in the CAP-G subunit have not been described in metazoans. Here we elucidate a role for dCAP-G in chromosome condensation and cohesion in Drosophila. We illustrate the requirement of dCAP-G for condensation during prophase and prometaphase; however, we find that alternate mechanisms ensure that replicated chromosomes are condensed prior to metaphase. In contrast, dCAP-G is essential for chromosome condensation in metaphase of single, unreplicated sister chromatids, suggesting that there is an interplay between replicated chromatids and the condensin complex. In the dcap-g mutants, defects in sister-chromatid separation are also observed. Chromatid arms fail to resolve in prophase and are unable to separate at anaphase, whereas sister centromeres show aberrant separation in metaphase and successfully move to spindle poles at anaphase. We also identified a role for dCAP-G during interphase in regulating heterochromatic gene expression.  相似文献   

16.
Mutations in the gene l(1)zw10 disrupt the accuracy of chromosome segregation in a variety of cell types during the course of Drosophila development. Cytological analysis of mutant larval brain neuroblasts shows very high levels of aneuploid cells. Many anaphase figures are aberrant, the most frequent abnormality being the presence of lagging chromosomes that remain in the vicinity of the metaphase plate when the other chromosomes have migrated toward the spindle poles. Finally, the centromeric connection between sister chromatids in mutant neuroblasts treated with colchicine often appears to be broken, in contrast with similarly treated control neuroblasts. The 85-kD protein encoded by the l(1)zw10 locus displays a dynamic pattern of localization in the course of the embryonic cell cycle. It is excluded from the nuclei during interphase, but migrates into the nuclear zone during prometaphase. At metaphase, the zw10 antigen is found in a novel filamentous structure that may be specifically associated with kinetochore microtubules. Upon anaphase onset, there is an extremely rapid redistribution of the zw10 protein to a location at or near the kinetochores of the separating chromosomes.  相似文献   

17.
The behaviour of two chromosome structures in silver-stained chromosomes was analyzed through the first meiotic division in spermatocytes of the acridoid species Arcyptera fusca. Results showed that at diakinesis kinetochores and chromatid cores are individualized while they associate in bivalents of metaphase I; only kinetochores and distal core spots associate in the sex chromosome. Metaphase I is characterized by morphological and localization changes of both kinetochores and cores which define the onset of anaphase I. These changes analyzed in both autosomes and in the sex chromosome allow us to distinguish among three different substages in metaphase I spermatocytes. B chromosomes may be present as univalents, bivalents, or trivalents. Metaphase I B univalents are characterized by separated cores except at their distal ends and individualized and flat sister kinetochores. At anaphase I sister kinetochores of lagging B chromatids remain connected through a silver-stained strand. The behaviour of cores and kinetochores of B bivalents is identical with that found in the autosomal bivalents. The differences in the morphology of kinetochores of every chromosome shown by B trivalents at metaphase I may be related to the balanced forces acting on the multivalent. The results show dramatic changes in chromosome organization of bivalents during metaphase I. These changes suggest that chromatid cores are not involved in the maintenance of bivalents. Moreover, the changes in morphology of kinetochores are independent of the stage of meiosis but correlate with the kind of division (amphitelic-syntelic) that chromosomes undergo.  相似文献   

18.
Kinetochores and chromatid cores of meiotic chromosomes of the grasshopper species Arcyptera fusca and Eyprepocnemis plorans were differentially silver stained to analyse the possible involvement of both structures in chromatid cohesiveness and meiotic chromosome segregation. Special attention was paid to the behaviour of these structures in the univalent sex chromosome, and in B univalents with different orientations during the first meiotic division. It was observed that while sister chromatid of univalents are associated at metaphase I, chromatid cores are individualised independently of their orientation. We think that cohesive proteins on the inner surface of sister chromatids, and not the chromatid cores, are involved in the chromatid cohesiveness that maintains associated sister chromatids of bivalents and univalents until anaphase I. At anaphase I sister chromatids of amphitelically oriented B univalents or spontaneous autosomal univalents separate but do not reach the poles because they remain connected at the centromere by a long strand which can be visualized by silver staining, that joins stretched sister kinetochores. This strand is normally observed between sister kinetochores of half-bivalents at metaphase II and early anaphase II. We suggest that certain centromere proteins that form the silver-stainable strand assure chromosome integrity until metaphase II. These cohesive centromere proteins would be released or modified during anaphase II to allow normal chromatid segregation. Failure of this process during the first meiotic division could lead to the lagging of amphitelically oriented univalents. Based on our results we propose a model of meiotic chromosome segregation. During mitosis the cohesive proteins located at the centromere and chromosome arms are released during the same cellular division. During meiosis those proteins must be sequentially inactivated, i.e. those situated on the inner surface of the chromatids must be eliminated during the first meiotic division while those located at the centromere must be released during the second meiotic division.by D.P. Bazett-Jones  相似文献   

19.
T Haaf  P E Warburton  H F Willard 《Cell》1992,70(4):681-696
Centromeres of mammalian and other complex eukaryotic chromosomes are dominated by one or more classes of satellite DNA. To test the hypothesis that alpha-satellite DNA, the major centromeric satellite of primate chromosomes, is involved in centromere structure and/or function, human alpha-satellite DNA was introduced into African green monkey (AGM) cells. Centromere protein binding was apparent at the sites of integrated human alpha-satellite DNA. In the presence of an AGM centromere on the same chromosome, human alpha-satellite was associated with bridges between the separating sets of chromatids at anaphase and an increased number of lagging chromosomes at metaphase, both features consistent with the integrated alpha-satellite disrupting normal chromosome segregation. These experiments suggest that alpha-satellite DNA provides the primary sequence information for centromere protein binding and for at least some functional aspect(s) of a mammalian centromere, playing a role either in kinetochore formation or in sister chromatid apposition.  相似文献   

20.
Cohesion between sister chromatids is essential for their bi-orientation on mitotic spindles. It is mediated by a multisubunit complex called cohesin. In yeast, proteolytic cleavage of cohesin's alpha kleisin subunit at the onset of anaphase removes cohesin from both centromeres and chromosome arms and thus triggers sister chromatid separation. In animal cells, most cohesin is removed from chromosome arms during prophase via a separase-independent pathway involving phosphorylation of its Scc3-SA1/2 subunits. Cohesin at centromeres is refractory to this process and persists until metaphase, whereupon its alpha kleisin subunit is cleaved by separase, which is thought to trigger anaphase. What protects centromeric cohesin from the prophase pathway? Potential candidates are proteins, known as shugoshins, that are homologous to Drosophila MEI-S332 and yeast Sgo1 proteins, which prevent removal of meiotic cohesin complexes from centromeres at the first meiotic division. A vertebrate shugoshin-like protein associates with centromeres during prophase and disappears at the onset of anaphase. Its depletion by RNA interference causes HeLa cells to arrest in mitosis. Most chromosomes bi-orient on a metaphase plate, but precocious loss of centromeric cohesin from chromosomes is accompanied by loss of all sister chromatid cohesion, the departure of individual chromatids from the metaphase plate, and a permanent cell cycle arrest, presumably due to activation of the spindle checkpoint. Remarkably, expression of a version of Scc3-SA2 whose mitotic phosphorylation sites have been mutated to alanine alleviates the precocious loss of sister chromatid cohesion and the mitotic arrest of cells lacking shugoshin. These data suggest that shugoshin prevents phosphorylation of cohesin's Scc3-SA2 subunit at centromeres during mitosis. This ensures that cohesin persists at centromeres until activation of separase causes cleavage of its alpha kleisin subunit. Centromeric cohesion is one of the hallmarks of mitotic chromosomes. Our results imply that it is not an intrinsically stable property, because it can easily be destroyed by mitotic kinases, which are kept in check by shugoshin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号